JPS58104149A - High magnetic permeability alloy - Google Patents

High magnetic permeability alloy

Info

Publication number
JPS58104149A
JPS58104149A JP56200045A JP20004581A JPS58104149A JP S58104149 A JPS58104149 A JP S58104149A JP 56200045 A JP56200045 A JP 56200045A JP 20004581 A JP20004581 A JP 20004581A JP S58104149 A JPS58104149 A JP S58104149A
Authority
JP
Japan
Prior art keywords
alloy
magnetic permeability
magnetic
corrosion resistance
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56200045A
Other languages
Japanese (ja)
Other versions
JPS625974B2 (en
Inventor
Mitsuo Okazaki
岡崎 充男
Koichi Tamaki
玉城 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP56200045A priority Critical patent/JPS58104149A/en
Publication of JPS58104149A publication Critical patent/JPS58104149A/en
Publication of JPS625974B2 publication Critical patent/JPS625974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To obtain a high magnetic permeability alloy for a magnetic shield with imoroved corrosion resistance and hot workability by substituting Si and Mg for part of Fe in an Ni-Cu-Fe alloy. CONSTITUTION:This high magnetic permeability alloy consists of, by weight, 57-74% Ni, 12% Cu, 0.3-3.5% Si, 0.001-0.02% Mg and the balance Fe. Si is added to reduce the magnetostriction and magnetic anisotropy of the alloy as well as to improve the corrosion resistance. Mg is added to improve the hot workability of the alloy. By the alloy composition the high magnetic permeability alloy with superior initial permeability and maximum permeability as well as improved hot workability and corrosion resistance is obtd.

Description

【発明の詳細な説明】 本発明は高透磁率が要求される磁気シールド部材に適用
して良好な磁気特性を有し、さらに磁気特性を失うこと
なく耐食性、熱間加工性を改善した磁気シールド用高透
磁率合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a magnetic shield that has good magnetic properties when applied to magnetic shield members that require high magnetic permeability, and that also has improved corrosion resistance and hot workability without losing magnetic properties. The present invention relates to high magnetic permeability alloys for use.

Ni−Fe系高透磁率合金を用いた磁気シールド部材は
9例えばテープレコーダー等の磁気記録装置における磁
気ヘッドのシールドケースとして広く用いられている。
Magnetic shielding members using Ni--Fe based high magnetic permeability alloys are widely used, for example, as shield cases for magnetic heads in magnetic recording devices such as tape recorders.

なかでもMo、Cu等を゛含む高Niパーマロイ(JI
S−PC材)および低Niパーマロイ(JIS−PB材
)が多く用いられている。
Among them, high Ni permalloy (JI) containing Mo, Cu, etc.
S-PC material) and low Ni permalloy (JIS-PB material) are often used.

前者は高透磁率・高耐食性を有するが、高価なNiを7
6重量%(以下単に%と記す。)以上と多量に含み、さ
らに高価なMOをも含有しているため。
The former has high magnetic permeability and high corrosion resistance, but it uses expensive Ni.
This is because it contains a large amount of 6% by weight (hereinafter simply referred to as %) or more, and also contains MO, which is more expensive.

磁性合金の中では価格が高いという欠点がある。Among magnetic alloys, it has the disadvantage of being expensive.

また後者はNi量が45%程度であるため安価でかつ1
0エルステツドにおける磁束密度B、0が14000ガ
ウスと高い反面、耐食性が極端に劣ると共に初透磁率μ
iが5000で前者に比べ低いという欠点がある。例え
ば安価な45%Ni −Fe パーマロイを磁気シール
ド用ヘッドケースとして用いるためには、耐食性が劣る
ために防錆処理としてメッキ処理を施す必要があり、か
えって高価となる。
In addition, the latter has a Ni content of about 45%, so it is inexpensive and 1
Although the magnetic flux density B at 0 oersted is as high as 14,000 Gauss, the corrosion resistance is extremely poor and the initial permeability μ
The disadvantage is that i is 5000, which is lower than the former. For example, in order to use inexpensive 45% Ni-Fe permalloy as a head case for a magnetic shield, it is necessary to perform a plating treatment as a rust prevention treatment because of its poor corrosion resistance, which makes it rather expensive.

故に従来のJIS−PC材では、磁気特性に優れ。Therefore, conventional JIS-PC materials have excellent magnetic properties.

高耐食性を有し、かつ安価な磁性合金材料を得ることは
困難であった。しかしながら、工業的には安価で磁気特
性・耐食性・熱間加工性を兼ね備えた優れた磁性合金が
強く要望されている。
It has been difficult to obtain magnetic alloy materials that have high corrosion resistance and are inexpensive. However, from an industrial perspective, there is a strong demand for a magnetic alloy that is inexpensive and has excellent magnetic properties, corrosion resistance, and hot workability.

本発明は上記の要望に対してなされたもので。The present invention has been made in response to the above needs.

JIS−PC材の諸特性を十分維持しながら高価なNi
量を数%〜20%程度低減し、さらに高価なMoを全く
含まない磁気シールド部材に好適な新規の高透磁率合金
を提供するものである。
While maintaining the various properties of JIS-PC material, expensive Ni
The present invention provides a new high magnetic permeability alloy which is suitable for magnetic shielding members, which reduces the amount of Mo by several percent to about 20%, and which does not contain any expensive Mo.

ところで、 Ni−Fe合金にOuを添加したNi −
Fe−Cu合金についての研究は古くから行なわれてお
り、優れた磁気特性(μ1=14000)を有すること
はよく知られている(例えばBoxorth著” Fe
rromagnetism” D、No5trand 
Company、 1951)。
By the way, Ni - which is obtained by adding O to Ni-Fe alloy
Research on Fe-Cu alloys has been conducted for a long time, and it is well known that they have excellent magnetic properties (μ1 = 14,000) (for example, in "Fe-Cu" by Boxorth).
rromagnetism” D, No5trand
Company, 1951).

しかしながら上記合金系において、 Cu量が10%以
上では熱間加工性を著しく劣化させるという欠点がある
ため実用化が困難であった。
However, in the above alloy system, if the Cu content is 10% or more, it has been difficult to put it into practical use because it has the disadvantage of significantly deteriorating hot workability.

本発明者らは上記欠点を改善し、さらにNi−Fe−C
u三元系合金よりも優れた透磁率を有し。
The present inventors have improved the above-mentioned drawbacks and further improved Ni-Fe-C.
Has better magnetic permeability than u-ternary alloys.

寸だ熱間加工性・耐食性に優れた高透磁率合金の研究を
重ねてきた。その結果、Ni57〜74%。
We have been researching high magnetic permeability alloys with excellent hot workability and corrosion resistance. As a result, Ni was 57 to 74%.

0u12〜62%、残部Feからなる合金で、しかもそ
のFeの一部をSiおよびMgで置きかえることにより
、三元系合金よりも透磁率は数段向上し。
By using an alloy consisting of 0u12 to 62% and the balance Fe, and replacing a part of the Fe with Si and Mg, the magnetic permeability is improved by several steps compared to the ternary alloy.

初透磁率μi = 170000 、最大透磁率μm=
 220000が得られ、熱間加工性についても著しく
改善され、さらに耐食性についてはJIS−PC材より
も優れることを見い出した。
Initial permeability μi = 170000, maximum permeability μm =
220,000 was obtained, the hot workability was significantly improved, and the corrosion resistance was found to be superior to that of JIS-PC material.

本発明は以上の結果に基づきなされたもので。The present invention was made based on the above results.

本発明磁性合金は、 Ni 57〜74%、  Cu1
2〜32%、Si0.3〜6.0%、  Mg0.00
1〜0.02%および残部Feからなることを特徴とす
る。
The magnetic alloy of the present invention contains 57 to 74% Ni, Cu1
2-32%, Si0.3-6.0%, Mg0.00
It is characterized by consisting of 1 to 0.02% and the balance Fe.

ここでNiは57〜74%の範囲で高透磁率を有するが
、 Niが57%未満では透磁率が低下し。
Here, Ni has high magnetic permeability in the range of 57 to 74%, but when Ni is less than 57%, the magnetic permeability decreases.

耐食性も著しく劣り、また74%を越えるとCu量12
%以上の添加により透磁率の低下が著しい。
Corrosion resistance is also significantly inferior, and if it exceeds 74%, the Cu content is 12%.
% or more, the magnetic permeability decreases significantly.

さらにNiが74%を越えるものは、省資源低価格化を
考慮すれば工業的に不利となる。
Further, those containing more than 74% Ni are industrially disadvantageous in terms of saving resources and lowering prices.

Cuは12〜32%の範囲内では高透磁率を有するζ がOuが12%未郷ではNi量が74%を越えないと高
透磁率が得ら五ず、 Cuが32%を越えると初透磁率
μiが低下し熱間加工性も劣化する。
Cu has a high magnetic permeability in the range of 12 to 32%.Ou has a high magnetic permeability in the range of 12%.In Migo, high magnetic permeability cannot be obtained unless the Ni amount exceeds 74%, and when Cu exceeds 32%, it becomes difficult to obtain high magnetic permeability. Magnetic permeability μi decreases and hot workability also deteriorates.

Siは9本合金の耐食性を改善すると共に磁歪および磁
気異方性を小さくするために添加するものである。Si
を添加することにより磁性焼鈍の際に合金表面層に薄い
8iの酸化被膜が形成され、これが一種の不働態被膜と
して働き耐食性を向上させる。Siの酸化被膜を形成さ
せるためにはSiを0.3%以上添加する必要があり。
Si is added to improve the corrosion resistance of the nine alloy and to reduce magnetostriction and magnetic anisotropy. Si
By adding , a thin 8i oxide film is formed on the alloy surface layer during magnetic annealing, and this acts as a kind of passive film and improves corrosion resistance. In order to form a Si oxide film, it is necessary to add 0.3% or more of Si.

0.3%未満では、酸化被膜が形成されず耐食性を劣化
させる。またSiを3.0%を越えて添加しても、酸化
被膜が形成され耐食性を向上させるが。
If it is less than 0.3%, no oxide film will be formed and corrosion resistance will deteriorate. Furthermore, even if Si exceeds 3.0%, an oxide film is formed and corrosion resistance is improved.

同時に磁束密度B、I Oが著しく低下すると共に磁歪
および磁気異方性が大きくなる。以上のことからSiの
添加量は0.6〜3.0%の範囲が耐食性を高めさらに
磁歪および磁気異方性を小さくするために好適であ′る
At the same time, the magnetic flux densities B and IO decrease significantly, and the magnetostriction and magnetic anisotropy increase. From the above, it is preferable that the amount of Si added be in the range of 0.6 to 3.0% in order to improve corrosion resistance and further reduce magnetostriction and magnetic anisotropy.

Mgは本合金の熱間加工性を改善するために添加するも
のであり、 0.001%未満では効果は現われず、 
0.02%を越えると初透磁率が低下し実用に供し得な
い。(なお詳細は実施例1で述べる。) なお本発明合金に脱酸剤、脱硫剤としてA1゜C,Ca
、 Mn等を総量で1%以下添加してもよい。
Mg is added to improve the hot workability of this alloy, and if it is less than 0.001%, no effect will be seen.
If it exceeds 0.02%, the initial magnetic permeability decreases and it cannot be put to practical use. (Details will be described in Example 1.) In addition, A1°C, Ca was added to the alloy of the present invention as a deoxidizing agent and a desulfurizing agent.
, Mn, etc. may be added in a total amount of 1% or less.

次に実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

〈実施例−1〉 表1に示す組成のNi、 Cu、 Si、 Mgおよび
Feの全量3 Kyをマグネシアルツボ中で真空高周波
誘導炉により溶解した後、鉄型に鋳込み、 Ouの偏析
の生じない適当な冷却速度で室温まで冷却して鋳塊を得
た。この鋳塊を1300℃で5時間均質化焼鈍を行なっ
た後、厚さ10111のJIS−13号試験片(JIS
Z2201による)を切り出した。
<Example-1> A total amount of 3 Ky of Ni, Cu, Si, Mg, and Fe having the composition shown in Table 1 was melted in a magnesia crucible in a vacuum high-frequency induction furnace, and then cast into an iron mold, so that no segregation of O would occur. An ingot was obtained by cooling to room temperature at an appropriate cooling rate. This ingot was subjected to homogenization annealing at 1300°C for 5 hours, and then a JIS-13 test piece with a thickness of 10111 (JIS
Z2201) was cut out.

試料番号No 、 71〜N006から切りi出された
上記試片を用いて1200°Cでアルゴン雰囲気中にて
引張試験を行なった。この時のひずみ速度は4.2×1
0−1を用いた。Mg量と初透磁率μiおよび断面収縮
率との関係を第1図に示す。ここで断面収縮率が大きい
程、加工性が良好であることを表わしている。この図よ
り初透磁率μiはMg量が増加するにしたがい低下し、
 Mg量が0.02%を越えるとμi<10000とな
り高透磁率合金として実用に供し難いことがわかる。ま
た断面収縮率はMg量が増加すると共に大きくなり、 
Mg量が0.02%以上では飽和状態を呈している。
A tensile test was conducted at 1200° C. in an argon atmosphere using the specimens cut out from sample numbers No. 71 to No. 006. The strain rate at this time is 4.2×1
0-1 was used. FIG. 1 shows the relationship between the Mg content, the initial magnetic permeability μi, and the cross-sectional shrinkage rate. Here, the larger the cross-sectional shrinkage rate, the better the workability. From this figure, the initial magnetic permeability μi decreases as the Mg amount increases,
It can be seen that when the Mg content exceeds 0.02%, μi<10000, making it difficult to put the alloy to practical use as a high magnetic permeability alloy. In addition, the cross-sectional shrinkage rate increases as the Mg content increases,
When the amount of Mg is 0.02% or more, a saturated state is exhibited.

次に試料番号No、1およびNo、3から切り出しだ試
片を用いて800〜1300℃の適当な温度で引張試験
を行なった。雰囲気、ひずみ速度は上記と同様とした。
Next, a tensile test was conducted using specimens cut from sample numbers No. 1 and No. 3 at an appropriate temperature of 800 to 1300°C. The atmosphere and strain rate were the same as above.

拳この時の試験温度と断面収縮率との関係を第2図に示
す。この図よりMgを添加しだ試片(No、3)はMg
無添加の試片(No、 1 )に比べ断面収縮率が大き
くなっていることがわかる。
Figure 2 shows the relationship between the test temperature and cross-sectional shrinkage rate at this time. From this figure, the Mg-added specimen (No. 3) is Mg-added.
It can be seen that the cross-sectional shrinkage rate is higher than that of the additive-free specimen (No. 1).

以上より断面収縮率に及ぼすMgの影響は著しく大であ
ることがわかる。すなわちMgを0.001〜0.02
%の範囲で添加するととにより熱間加工性は改善される
From the above, it can be seen that the influence of Mg on the cross-sectional shrinkage rate is extremely large. That is, Mg is 0.001 to 0.02
When added in the range of %, hot workability is improved.

〈実施例−2〉 実施例−1と同様にして表2に示す組成の鋳塊得1通常
の熱間加工および冷間加工により板厚0.5 m111
の板材を作製した。ここで熱間加工の際。
<Example-2> In the same manner as in Example-1, an ingot having the composition shown in Table 2 was obtained. 1. A plate thickness of 0.5 m111 was obtained by normal hot working and cold working.
A plate material was prepared. Here during hot processing.

本発明材においてはカド割れ・耳割れ等が全く発生せず
熱間加工性は良好であったが、比較例の試料番号No、
1においては、耳割れが多数発生し。
In the material of the present invention, no corner cracks or edge cracks occurred and the hot workability was good, but comparative sample No.
In case 1, many ear cracks occurred.

熱間加工性は著しく悪かった。そしてこれらの板材より
磁気測定用試料(外径45龍、内径33III+のリン
グ)および耐食性試験用試料(5C1lIX50mm)
を作成し、これらの試料に磁性焼鈍を施した。磁気測定
は、初透磁iμi、最大透磁率μm、保磁力HC礼□・
l および磁束密度B・・1::、、・、!1′&)いて行
ない、その結果を表2に示す。また耐食 試験には塩水
噴霧試験(65℃、5%塩水)を用いた。 この時の結
果を表2に示す。
Hot workability was extremely poor. From these plate materials, samples for magnetic measurement (ring with outer diameter 45× and inner diameter 33III+) and corrosion resistance test sample (5C11IX50mm) were prepared.
were prepared, and these samples were subjected to magnetic annealing. Magnetic measurements include initial magnetic permeability iμi, maximum magnetic permeability μm, and coercive force HC.
l and magnetic flux density B...1::,,...! 1'&) and the results are shown in Table 2. In addition, a salt spray test (65°C, 5% salt water) was used for the corrosion resistance test. The results at this time are shown in Table 2.

以下余白 以上の結果より本発明合金はJIS−PB材(試料番号
No、14)に比べ磁気特性および耐食性に優れており
、またJ I 5−PC材(試料番号No、12゜13
)と同等の磁気特性を有し、耐食性の面ではJIS−P
C!材よりも優れており、96時間の塩水噴霧試験によ
っても発錆がない。
From the results shown in the margin below, the alloy of the present invention has superior magnetic properties and corrosion resistance compared to JIS-PB material (sample number No. 14), and JI 5-PC material (sample number No. 12゜13).
), and has the same magnetic properties as JIS-P in terms of corrosion resistance.
C! It is superior to other materials, and does not rust even after a 96-hour salt spray test.

以上述べた如く本発明合金は高透磁率合金として従来使
用されているJIS−PC材と同等あるいは同等以上の
特性を有し、しかも熱間加工性に優れ、安価であるので
1例えば磁気記録装置における磁気ヘッドのシールドケ
ースに使用して好適である。
As mentioned above, the alloy of the present invention has properties equivalent to or superior to JIS-PC materials conventionally used as a high magnetic permeability alloy, has excellent hot workability, and is inexpensive. It is suitable for use in a shield case for a magnetic head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金を1200℃で引張試験した時のM
g量と初透磁率μi、および断面収縮率との関係を示し
、第2図は本発明合金と比較材を引張試験したときの試
験温煕と断面収縮率との関係を示す。 第2図 Mバ駅麗度(’C)
Figure 1 shows the M of the alloy of the present invention when subjected to a tensile test at 1200°C.
The relationship between the g amount, the initial magnetic permeability μi, and the cross-sectional shrinkage rate is shown, and FIG. 2 shows the relationship between the test temperature and the cross-sectional shrinkage rate when the alloy of the present invention and a comparative material were subjected to a tensile test. Figure 2 M bus station Reido ('C)

Claims (1)

【特許請求の範囲】[Claims] 1、重量%でNi57〜74%、  0u12〜32%
、  SiO,3〜5.0%、  Mg 0.001〜
0.02%および残部reからなる高透磁率合金。
1.Ni57-74%, 0u12-32% by weight
, SiO, 3-5.0%, Mg 0.001-
High permeability alloy consisting of 0.02% and the balance re.
JP56200045A 1981-12-14 1981-12-14 High magnetic permeability alloy Granted JPS58104149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200045A JPS58104149A (en) 1981-12-14 1981-12-14 High magnetic permeability alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200045A JPS58104149A (en) 1981-12-14 1981-12-14 High magnetic permeability alloy

Publications (2)

Publication Number Publication Date
JPS58104149A true JPS58104149A (en) 1983-06-21
JPS625974B2 JPS625974B2 (en) 1987-02-07

Family

ID=16417902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200045A Granted JPS58104149A (en) 1981-12-14 1981-12-14 High magnetic permeability alloy

Country Status (1)

Country Link
JP (1) JPS58104149A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284119A (en) * 1975-12-31 1977-07-13 Daido Steel Co Ltd Iron nickel system high permeability alloy
JPS5734311A (en) * 1980-08-11 1982-02-24 Toshiba Corp Magnetic shielding parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284119A (en) * 1975-12-31 1977-07-13 Daido Steel Co Ltd Iron nickel system high permeability alloy
JPS5734311A (en) * 1980-08-11 1982-02-24 Toshiba Corp Magnetic shielding parts

Also Published As

Publication number Publication date
JPS625974B2 (en) 1987-02-07

Similar Documents

Publication Publication Date Title
US5158624A (en) Soft-magnetic nickel-iron-chromium alloy
JPS60159157A (en) Fe-ni alloy having excellent hot workability
US4298381A (en) Abrasion-resistive high permeability magnetic alloy
US3837844A (en) Wear resisting magnetic material having high permeability
JPS58104149A (en) High magnetic permeability alloy
JPS625973B2 (en)
JPS631642B2 (en)
JPH03191041A (en) Fe-ni-cr series soft magnetic alloy
JPH0138862B2 (en)
JPH01252756A (en) Ni-fe-cr soft magnetic alloy
JPS63307246A (en) Free cutting high permeability alloy
JPS5867845A (en) High permeability alloy thin strip
JPS5927371B2 (en) Fe↓-Co magnetic material
JPS62222B2 (en)
JPS6151023B2 (en)
JPS5922781B2 (en) Wear resistant high permeability high saturation magnetic flux density alloy
JPS6046341A (en) Magnetic alloy
JPS6362576B2 (en)
JPS59170234A (en) Magnetic alloy
JPS6144933B2 (en)
JPS6274052A (en) Fe-co soft magnetic material
JPH03158440A (en) Magnetic alloy for magnetic head core and its production
JPH11354313A (en) Magnetic material having high magnetic permeability
JPS5927373B2 (en) Fe↓-Co magnetic material
JPS58177434A (en) Wear resistant magnetic alloy of high magnetic permeability