JPS5976817A - Heat-treating method of abrasion resistance spheroidal graphite cast iron - Google Patents
Heat-treating method of abrasion resistance spheroidal graphite cast ironInfo
- Publication number
- JPS5976817A JPS5976817A JP18582782A JP18582782A JPS5976817A JP S5976817 A JPS5976817 A JP S5976817A JP 18582782 A JP18582782 A JP 18582782A JP 18582782 A JP18582782 A JP 18582782A JP S5976817 A JPS5976817 A JP S5976817A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- spheroidal graphite
- abrasion resistance
- graphite cast
- pearlite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】 に関するものである。[Detailed description of the invention] It is related to.
従来より球状黒鉛鋳鉄を用いて、例えばギヤ、スプロケ
ツト等の部品を納置することが広く行われている。この
ような動力伝達部品は,全体として高い靭性を備えるこ
とが望まれろ。そこで例えば特開昭52−62116号
公報や同5 6 − 130453号公報に示されるよ
うに、基地を微細混合組織比して強靭化された鋳鉄を用
いれば上記要求は満たされろ。Conventionally, spheroidal graphite cast iron has been widely used to house parts such as gears and sprockets. It is desirable that such power transmission parts have high toughness as a whole. Therefore, as shown in, for example, JP-A-52-62116 and JP-A-56-130453, the above requirements can be met by using cast iron toughened by forming a fine mixed structure for the matrix.
一方、上記ギヤ、スプロケット等の部品は、表面の歯面
が他の部品の歯面と互いに打ち合うので、この歯面は高
い耐摩耗性を備えることが望まれる。ところが、上記の
ような微細混合組織からなる鋳鉄は、組織中にフェライ
トを含むため、耐摩耗性に劣りしかもフェライトが疲労
クラックの起点となるため疲労強度も高くないので、上
記部品の月料として使用された場合は耐摩耗性不足、疲
労強度不足が避けられなかった。On the other hand, since the tooth surfaces on the surfaces of parts such as gears and sprockets strike against the tooth surfaces of other parts, it is desirable that these tooth surfaces have high wear resistance. However, cast iron, which has a fine mixed structure as described above, contains ferrite in its structure, so it has poor wear resistance and also does not have high fatigue strength because ferrite acts as the starting point for fatigue cracks. When used, insufficient wear resistance and fatigue strength were unavoidable.
本発明は上記事情に鑑みてなされたものであり、全体と
してはフェライト基地(30%以下の少贋のパーライト
の含有を許容する)として高い靭性な確保する一方、表
面の所望部はマルテンサイトもしくはベーナイト組織と
して高い耐摩耗性、疲労強宜を兼ね備えた耐摩耗性球状
黒鉛鋳鉄を生成し得ろ熱処理法を提供するものである。The present invention has been made in view of the above circumstances, and while ensuring high toughness as a ferrite base as a whole (allowing the inclusion of a small amount of pearlite of 30% or less), desired parts of the surface are made of martensite or The present invention provides a heat treatment method for producing wear-resistant spheroidal graphite cast iron having high wear resistance and fatigue strength as a bainitic structure.
本発明の耐摩耗性球状黒鉛鋳鉄の熱処理法は、パーライ
ト面@率が30%以下のフェライト型球状黒鉛鋳鉄で鋳
造された部品の、耐摩耗性を要求される表面部位のみを
、900〜1000°Cで5秒〜5分加熱葆持したのち
空冷し、その後上記部品全体を焼入れまたはオーステン
パー処理することを特徴とするものである。The heat treatment method for wear-resistant spheroidal graphite cast iron of the present invention is to treat only the surface areas that require wear resistance of parts cast from ferritic spheroidal graphite cast iron with a pearlite surface ratio of 30% or less. It is characterized in that it is heated and held at .degree. C. for 5 seconds to 5 minutes, then cooled in air, and then the entire part is quenched or austempered.
本発明において素材をパーライトの面積率が30%以下
のフェライト鋳鉄としたのはパーライトの含有率が30
%を超えると、それは既にフェライト鋳鉄の゛特性?損
なう領截であり、靭性が不足するので好ましくないから
である。In the present invention, the material is ferritic cast iron with a pearlite area ratio of 30% or less, because the pearlite content is 30%.
%, it already has the characteristics of ferritic cast iron? This is because it is undesirable because it damages the area and lacks toughness.
上記のフェライト鋳鉄素材?900〜1000°Cで5
秒・〜5分加熱保持J−ろことにより、表面の基地がオ
ーステナイト化し、それとともに黒鉛からこのオーステ
ナイトへの炭素の拡散固溶が促進され、その後の空冷に
よって該オーステナイトはパーライト化づ−ろ。The above ferritic cast iron material? 5 at 900-1000°C
By heating and holding for up to 5 minutes, the matrix on the surface becomes austenite, and at the same time, the diffusion solid solution of carbon from graphite to this austenite is promoted, and by subsequent air cooling, the austenite becomes pearlite.
その後焼入れまたはオーステツバー処理ヲ行うと、上記
表面に形成されたパーライトは、フェライトを含まない
マルテンサイト(焼入れ時)またはベイナイト(オース
テンパー処理時)の単一組織に変態し、表面の耐摩耗性
、疲労強度が向上するのである。一方内部の基地は、フ
ェライトが主要部であるため上記加熱処理の影響をあま
り受けずに大半のフェライトは残存する外、フェライト
基地中に当初かう含有していたパーライトおよび加熱処
理によって析出した一部のパーライトは焼入れまたはオ
ーステンパー処理が行われると、マルテンサイト(焼入
れ時)またはベイナイト(オーステンパー処理時)に変
態し、結果的に前記フェライトとの2相組織となり、高
い靭性な損なわずに保持するものとなる。When quenching or austempering is then performed, the pearlite formed on the surface transforms into a single structure of martensite (during quenching) or bainite (during austempering) that does not contain ferrite, improving the wear resistance of the surface. This improves fatigue strength. On the other hand, since the internal base is mainly composed of ferrite, it is not affected much by the above heat treatment, and most of the ferrite remains. When the pearlite is hardened or austempered, it transforms into martensite (during hardening) or bainite (during austempering), resulting in a two-phase structure with the ferrite, which maintains high toughness without loss. Become something to do.
なお、上記加熱処理を900℃未満で行うと、黒鉛から
の炭素の固溶速度が遅(処理に長時間を要する。反対に
10506Cを超えた温度で加熱すると、素材が局部的
に溶融する恐れがある外、組織学的に品質が劣下するの
で好ましくない。また該加熱保持を5秒〜5分行うのは
、上記炭素を十分にオーステナイト中に固溶、拡散させ
るためには5秒以上必要であり、逆に5分を超えると結
晶粒が粗大化する外、表面部の高温が内部まで伝達され
るので好ましくない。Note that if the above heat treatment is performed at a temperature below 900°C, the rate of solid solution of carbon from graphite is slow (the process takes a long time).On the other hand, if the heat treatment is performed at a temperature exceeding 10506C, there is a risk that the material will melt locally. In addition, it is not preferable because it deteriorates the quality structurally.Also, heating and holding for 5 seconds to 5 minutes is required for more than 5 seconds to fully dissolve and diffuse the carbon into the austenite. On the other hand, if the heating time exceeds 5 minutes, the crystal grains will become coarse and the high temperature at the surface will be transmitted to the inside, which is not preferable.
以下、本発明の実施例について述べる。Examples of the present invention will be described below.
〔第1実施例〕
0試料組成
C:3.72 、 Si:2.75 、 M
n:0.23 。[First Example] 0 Sample composition C: 3.72, Si: 2.75, M
n: 0.23.
P:0.03 、 S:0.0]5 、
Mg:0.044 。P: 0.03, S: 0.0]5,
Mg: 0.044.
(以上重量%)、 残りFc (FCD45 )○試
料形状
20X25X40mm
Oパーライト面積率
0係 :完全フェライト基地
(上記試料を焼鈍して完全フェライト化)0熱 処
理
■ 表面部位のパーライト化のための熱処理試料を定盤
上に載置し、酸素・アセチ
レンバーナで加熱し約30秒で930〜950℃に昇温
。試料Aは該温度で90秒保持後空冷。試料Bは該温度
で30秒保持後空冷。(more than % by weight), remaining Fc (FCD45) ○ Sample shape 20 x 25 x 40 mm O pearlite area ratio 0 ratio: Complete ferrite base (annealing the above sample to complete ferrite) 0 heat treatment
Process ■ A heat-treated sample for pearlitization of the surface area was placed on a surface plate and heated with an oxygen/acetylene burner to raise the temperature to 930-950℃ in about 30 seconds. Sample A was held at the temperature for 90 seconds and then cooled in air. Sample B was held at the temperature for 30 seconds and then cooled in air.
該熱処理後のこれら試料A、Bの断面硬さを第1図に示
す。また上記試料へ〇熱処理後の組織写真を第5図に示
1〜(倍率は100倍)。The cross-sectional hardness of these samples A and B after the heat treatment is shown in FIG. In addition, a photograph of the structure of the above sample after heat treatment is shown in Fig. 5 (magnification: 100x).
該第5図の組織写真は、試料Aを表面がら深さ方向に0
5關切削した状態におけろ面を撮影したものであり、非
常に微細なパーライト組織となっていることがわかる。The microstructure photograph in FIG. 5 shows sample A at zero depth from the surface.
This is a photograph of the bottom surface after 5 degrees of cutting, and it can be seen that it has a very fine pearlite structure.
■ 強靭化のための熱処理
上記■の熱処理を施した試料A、Bを
各々異なる下記3種の条件で、炉を用いて焼入れ処理し
た。(2) Heat treatment for toughening Samples A and B, which had been subjected to the heat treatment described in (1) above, were quenched in a furnace under the following three different conditions.
(熱処理条件)
(11850°C×32分加熱後、水焼入れ(2183
0°C×30分加熱後、水焼入れ(3183,0’CX
60分加熱後、水焼入れ該熱処理後の試料への断面硬さ
を第2図に、また試料Bの断面硬・さな第3図に示す。(Heat treatment conditions) (After heating at 11,850°C for 32 minutes, water quenching (2,183
After heating at 0°C for 30 minutes, water quenching (3183,0'CX
After heating for 60 minutes and water quenching, the cross-sectional hardness of the sample after the heat treatment is shown in FIG. 2, and the cross-sectional hardness of sample B is shown in FIG.
これら第2、第3図に明確に示されるように、各試料の
表面部は十分な硬さを備えている。また上記焼入れ処+
l (11’&施した試料Aの表面部の組織写真を第6
図に、内部の組織写真を第7図に示す(倍率は各々40
0倍)。第6図に示されるように、焼入れ前はパーライ
ト組織であった表面部はマルテンサイト組織となってい
ろ。一方焼入れ前はフェライト組織であった内部は、第
7図写真においては白色がかった灰色のフェライト組織
に黒色がかった灰色の島状のマルテンサイトか混合した
2相組織となっている。なお第6、第7図におけろ黒い
大きな点状の部分は黒鉛である。As clearly shown in FIGS. 2 and 3, the surface portion of each sample has sufficient hardness. In addition, the above-mentioned quenching place +
l (11')
Figure 7 shows a photograph of the internal structure (the magnification is 40
0 times). As shown in FIG. 6, the surface portion, which had a pearlite structure before quenching, now has a martensitic structure. On the other hand, the interior, which had a ferrite structure before quenching, becomes a two-phase structure in which a whitish-gray ferrite structure and blackish-gray island-like martensite are mixed, as shown in the photograph in FIG. In addition, the large black dot-shaped portions in FIGS. 6 and 7 are graphite.
以下、上記■強靭化のための熱処理の温度条件について
述べる。良く知られたF”e−C系平衝状態図からも分
かるように、A、変態温度はFe−Fe5C系の方がP
e −C系よりも低い。Hereinafter, the temperature conditions for heat treatment for toughening will be described in (1) above. As can be seen from the well-known equilibrium phase diagram of the F''e-C system, the A, transformation temperature is lower for the Fe-Fe5C system than P.
e - lower than that of the C system.
したがってパーライトおよびフェライトの共存する球状
黒鉛鋳鉄を加熱してゆくとまずパーライトがいち早くオ
ーステナイトに変態する。一方、フェライトは黒鉛から
の炭素が拡散してはじめてオーステナイトに変態するが
、この黒鉛からの炭素の拡散はフェライト結晶粒界に沿
って進行す、るのでオーステナイト化も粒界に沿って緩
やかに進行する(第10図のパーライトとフェライトの
加熱変態特性図参照)。したがって■強靭比のための熱
処理温度は、A1変、四点より高ければよいが、850
℃を超えると炭素の拡散が速(、適正なオーステナイト
化率を得る熱処理時間の設定が難しい。他方750゛″
C未満では、フェライトのオーステナイト化が進まず、
内部ヲ前記2相組織とすることができない。Therefore, when spheroidal graphite cast iron containing pearlite and ferrite is heated, pearlite quickly transforms into austenite. On the other hand, ferrite transforms into austenite only after carbon from graphite diffuses, but this diffusion of carbon from graphite progresses along ferrite grain boundaries, so austenitization also progresses slowly along grain boundaries. (Refer to the heating transformation characteristics diagram of pearlite and ferrite in Figure 10). Therefore, ■ The heat treatment temperature for toughness ratio should be higher than A1 change, 4 points, but 850
If the temperature exceeds 750°C, carbon diffusion becomes rapid (and it is difficult to set the heat treatment time to obtain an appropriate austenitization rate.
If it is less than C, the austenitization of ferrite does not progress,
The interior cannot have the above-mentioned two-phase structure.
〔第2実施例〕
0試料組成
C:3.55 、 Si :2.86 、 M
n:0.24P:0.04 、 S:0.012
. Mg:0.038(以上重量%)、 残rlFe
(PCI)45)0試料形状
第1実施例に同じ
0パ一ライト面積率
5% (他はフェライト)
0熱 処 理
■ 表面部位のパーライト化のための熱処理
第1実施例に同じ。ただし加熱保持時
間は90秒のみ。[Second Example] 0 Sample composition C: 3.55, Si: 2.86, M
n: 0.24 P: 0.04, S: 0.012
.. Mg: 0.038 (more than weight %), remainder rlFe
(PCI) 45) 0 Sample shape Same as the first example 0 Pearlite area ratio 5% (others are ferrite) 0 Heat treatment ■ Heat treatment for pearlitizing the surface area Same as the first example. However, the heating holding time is only 90 seconds.
該熱処理後の試料の断面硬さの分布は、第2実施例にお
けるものとほぼ同じ。ただし内部の硬さがHv (ビッ
カース硬度)−170とやや高めであった。The cross-sectional hardness distribution of the sample after the heat treatment is almost the same as that in the second example. However, the internal hardness was a little high at Hv (Vickers hardness) -170.
■ 強靭化のだめの熱処理 上記■の熱処理を施した試料を下記の 条件でオーステンパー処理した。■ Heat treatment for toughening The sample subjected to the heat treatment described in ■ above is Austempered under certain conditions.
(1) 830°C×60分加熱後、250℃×2時
間保持
(2) 830°C×60分加熱後、350°GX2
時間保持
該熱処理後の試料の断面硬さを′第4図に示す。(1) After heating at 830°C for 60 minutes, hold at 250°C for 2 hours (2) After heating at 830°C for 60 minutes, at 350°GX2
The cross-sectional hardness of the sample after the time-holding heat treatment is shown in Figure 4.
第1実施例におけるのと同様に表面部の硬さが十分に高
くなっている。また上記オーステンパー処理(1)を施
した試料の表面部の組織写真を第8図に、内部の組織写
真を第9図に示す(倍率は各々400倍)。第8図に示
されるように、上記オーステンパー処理前はパーライト
組織であった表面部はベイナイト組織となっている。一
方オーステンパー処理前はフェライト組織であった内部
は、第9図写真においては白色がかった灰色のフェライ
ト組織に黒色がかった灰色の島状のベイナイト組織が混
合した2相組織となっている。As in the first embodiment, the hardness of the surface portion is sufficiently high. Further, FIG. 8 shows a photograph of the surface structure of the sample subjected to the austempering treatment (1), and FIG. 9 shows a photograph of the inside structure (magnification: 400x in each case). As shown in FIG. 8, the surface portion, which had a pearlite structure before the austempering process, now has a bainite structure. On the other hand, the interior, which was a ferrite structure before the austempering process, becomes a two-phase structure in which a whitish-gray ferrite structure and a blackish-gray island-like bainite structure are mixed, as shown in the photograph in FIG.
以−ト詳細に説明した通り、本発明の熱処理法は、球状
黒鉛鋳鉄の表面部にマルテンサイト(焼入れ時)または
ベイナイト(オーステンパー処理時)の単一組織を形成
し、内部にはフェライトと上記マルテンサイト(焼入れ
時)またはベイナイト(オーステンパー処理時)とから
なる2相組織を形成するものであり、したがって本発明
の熱処理法によれば表面部が特に耐摩耗性、疲労強度に
優れ、全体としては高い靭性を備えた耐摩耗性球状黒鉛
鋳鉄が得られる。As explained in detail below, the heat treatment method of the present invention forms a single structure of martensite (during quenching) or bainite (during austempering) on the surface of spheroidal graphite cast iron, and ferrite and bainite are formed inside. It forms a two-phase structure consisting of martensite (during quenching) or bainite (during austempering), and therefore, according to the heat treatment method of the present invention, the surface portion has particularly excellent wear resistance and fatigue strength, Overall, wear-resistant spheroidal graphite cast iron with high toughness is obtained.
第1図は本発明の第1実施例におげろ、表面パーライト
化処理後の試料の断面硬さを示すグラフ、
第2図は上記表面パーライト化処理の加熱保持時間を9
0秒として第1実、怖例による熱処理が施された試料の
断面硬さを示すグラフ、第3図は上記六面パーライト化
処理の加熱保持時間’&30秒として第1実施例による
熱処理が施された試料の断面硬さを示すグラフ、第4図
は本発明の第2実施例による熱処理が施された試料の断
面硬さを示すグラフ、第5図は上記第1実施例における
、表面パーライト化処理後の試料の組織を示す顕微鏡写
真、
第”6図と第7図はそれぞれ、上記第1実施例による熱
処理が施された試料の表面部組織と内部組織を示す顕微
鏡写真、
第8図と第、9図はそれぞれ、上記第2実施例による熱
処理が施された試料の表面部組織と内部組織を示す顕微
鏡写真、
第10図は本発明に係る、パーライトとフェライトの加
熱変態特性を示1−グラフである。
第2図
@ 表Ilb力゛ら/13巨xi (m
/m1第3図
面
表面φらの y巨魅 (m/ITl)
第4図
膚1う東回
第10図
77−Figure 1 is a graph showing the cross-sectional hardness of the sample after the surface pearlitization treatment according to the first embodiment of the present invention. Figure 2 is a graph showing the heating holding time of the surface pearlitization treatment for 90 minutes.
A graph showing the cross-sectional hardness of the samples subjected to the heat treatment according to the first and third examples with 0 seconds as the heating holding time of the above-mentioned six-sided pearlitization treatment and 30 seconds. Fig. 4 is a graph showing the cross-sectional hardness of the sample heat-treated according to the second embodiment of the present invention, and Fig. 5 is a graph showing the cross-sectional hardness of the sample heat-treated according to the second embodiment of the present invention. 6 and 7 are micrographs showing the surface structure and internal structure of the sample subjected to the heat treatment according to the first embodiment, respectively. 9 and 9 are micrographs showing the surface structure and internal structure of the sample heat-treated according to the second embodiment, respectively, and FIG. 10 shows the heating transformation characteristics of pearlite and ferrite according to the present invention. 1 - It is a graph. Figure 2 @ Table Ilb Force et al.
/m1 3rd drawing surface
Claims (1)
鋳鉄から鋳造された部品の、耐摩耗性を要求される表面
部位のみを、900〜1000°Cで5秒〜5分加熱保
持したのち空冷し、その後上記部品全体を焼入れまたは
オーステンパー処理することを特徴とする耐摩耗性球状
黒鉛鋳鉄の熱処理法。Parts cast from ferritic spheroidal graphite cast iron with a pearlite area ratio of 30 inches or less are heated and held at 900 to 1000°C for 5 seconds to 5 minutes, and then air cooled, A heat treatment method for wear-resistant spheroidal graphite cast iron, characterized in that the entire part is then quenched or austempered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18582782A JPS5976817A (en) | 1982-10-22 | 1982-10-22 | Heat-treating method of abrasion resistance spheroidal graphite cast iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18582782A JPS5976817A (en) | 1982-10-22 | 1982-10-22 | Heat-treating method of abrasion resistance spheroidal graphite cast iron |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5976817A true JPS5976817A (en) | 1984-05-02 |
Family
ID=16177562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18582782A Pending JPS5976817A (en) | 1982-10-22 | 1982-10-22 | Heat-treating method of abrasion resistance spheroidal graphite cast iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976817A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020014A (en) * | 1999-07-07 | 2001-01-23 | Denki Kogyo Co Ltd | High frequency induction hardening method of cast iron |
-
1982
- 1982-10-22 JP JP18582782A patent/JPS5976817A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020014A (en) * | 1999-07-07 | 2001-01-23 | Denki Kogyo Co Ltd | High frequency induction hardening method of cast iron |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108285965A (en) | Quenching-partitioning-deep cooling-tempering treatment process for steel material | |
JPH0156124B2 (en) | ||
JP2000129347A (en) | Production of high strength parts | |
JPH039168B2 (en) | ||
US4666533A (en) | Hardenable cast iron and the method of making cast iron | |
CN108866442A (en) | The heat treatment method and product of superhigh carbon steel | |
JPS5976817A (en) | Heat-treating method of abrasion resistance spheroidal graphite cast iron | |
JP3403663B2 (en) | Method for soft annealing of high carbon steel | |
JP2794881B2 (en) | High toughness spheroidal graphite cast iron and method for producing the same | |
SU812835A1 (en) | Method of treatment of parts | |
JPS61147815A (en) | Production of roll having high hardened depth | |
JPH034605B2 (en) | ||
JPH01104718A (en) | Manufacture of bar stock or wire rod for cold forging | |
JPS62994B2 (en) | ||
JP2007002292A (en) | Non-heat-treated steel to be nitrocarburized | |
JPH0379739A (en) | High strength and high toughness spheroidal graphite cast iron | |
JPH0116886B2 (en) | ||
JPH02166257A (en) | Spheroidal graphite cast iron and its production | |
JPS626612B2 (en) | ||
Jenkins | Heat Treating of Malleable Irons | |
JPS6244522A (en) | Manufacture of high strength ductile cast iron | |
JPH07207423A (en) | Production of case hardening steel parts | |
JPS58123822A (en) | Direct hardening method | |
JPS6383245A (en) | Graphite cast iron member and its production | |
JP3046543B2 (en) | Good hardening alloy cast iron |