JPS597651B2 - Manufacturing method for optical transmission materials - Google Patents

Manufacturing method for optical transmission materials

Info

Publication number
JPS597651B2
JPS597651B2 JP12283579A JP12283579A JPS597651B2 JP S597651 B2 JPS597651 B2 JP S597651B2 JP 12283579 A JP12283579 A JP 12283579A JP 12283579 A JP12283579 A JP 12283579A JP S597651 B2 JPS597651 B2 JP S597651B2
Authority
JP
Japan
Prior art keywords
quartz glass
optical transmission
cladding material
gas
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12283579A
Other languages
Japanese (ja)
Other versions
JPS5645847A (en
Inventor
隆二 小林
邦昭 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP12283579A priority Critical patent/JPS597651B2/en
Publication of JPS5645847A publication Critical patent/JPS5645847A/en
Publication of JPS597651B2 publication Critical patent/JPS597651B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • C03B37/01823Plasma deposition burners or heating means
    • C03B37/0183Plasma deposition burners or heating means for plasma within a tube substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Description

【発明の詳細な説明】 本発明は光損失の著しく少ない光伝送用素材、特に伝送
容量の大きい単モード型素材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an optical transmission material with extremely low optical loss, particularly a single mode material with a large transmission capacity.

単モード型伝送路では径は多モード型の場合と同様に1
00ttm前後であるが、光路となるコア−径を10t
tm以下に抑えることにより、信号光パルスの乱れを低
減し、各種モードの入り交つた多モード型伝送路に比べ
て、著しくパルス信号の伝送密度を増大させることがで
きるので、海底ケーブル等長距離・高密度伝送用として
、その実用化が期待されるものである。
In a single mode transmission line, the diameter is 1 as in the case of a multimode transmission line.
00ttm, but the core diameter that becomes the optical path is 10tm.
By keeping it below tm, it is possible to reduce the disturbance of signal light pulses and significantly increase the transmission density of pulse signals compared to a multimode transmission line with a mixture of various modes, so it can be used over long distances such as submarine cables.・It is expected that it will be put into practical use for high-density transmission.

このように、長距離伝送を目的とするために、特に光損
失の少ないことが要求される。光伝送用素材の製造方法
として代表的なロッドインチューブ法はクラッド材の石
英ガラス管(チューブ)にコア材の石英ガラス棒(ロッ
ド)を挿入し加熱してクラッド材とコア材を溶着させ、
これを紡糸して伝送用素材のファイバーとする方法であ
り、この方法は、各素材の寸法精度の規制が容易で量産
性に富むが、コア材とクラッド材の界面に気泡、不純物
が伴いやすく、そのためファイバーの光損失が大きくあ
られれるという欠点があつた。
In this way, for the purpose of long-distance transmission, particularly low optical loss is required. The rod-in-tube method, which is a typical manufacturing method for optical transmission materials, involves inserting a quartz glass rod as a core material into a quartz glass tube as a cladding material, heating it, and welding the cladding material and the core material.
This method is spun into fibers for transmission materials. This method allows for easy regulation of the dimensional accuracy of each material and is highly suitable for mass production, but it is prone to bubbles and impurities at the interface between the core material and cladding material. Therefore, the disadvantage was that the optical loss of the fiber was large.

この欠点を解決する方法として、本出願人はすでに特願
昭53−143160号(特開昭55一71636号)
明細書に上記コア材とクラッド材の溶着前に該コア材と
該クラッド材間の隙間にC)N、、O、S、、Beより
なる群の中から選ばれた少なくとも一種とハロゲンの少
なくとも一種とを含みかつ水素を含まない室温で流体を
なす化合物を気相熱処理剤としで気相で流すことにより
、該クラッド材内面と該コア材表面の不純物をそれぞれ
揮発性ハロゲン化物として除去することよりなる光伝送
用素材の製造方法(以下、先発明という)を開示してい
る。
As a method to solve this drawback, the present applicant has already proposed Japanese Patent Application No. 53-143160 (Japanese Unexamined Patent Publication No. 55-171636).
In the specification, before welding the core material and the cladding material, C) at least one member selected from the group consisting of N, O, S, Be and at least a halogen is added to the gap between the core material and the cladding material. Impurities on the inner surface of the cladding material and on the surface of the core material are removed as volatile halides by flowing a compound that is fluid at room temperature and does not contain hydrogen as a vapor phase heat treatment agent. Discloses a method for manufacturing an optical transmission material (hereinafter referred to as the "prior invention") comprising:

この先発明の方法を単モード型伝送路の製造に適用する
場合、次のような問題が生ずる。
When the method of the previous invention is applied to manufacturing a single mode transmission line, the following problems arise.

すなわち、コア材として、製造および取扱いの容易な径
6薦翼以上の棒を利用するとすれば、上述の気相熱処理
およびコア材とクラッド材の溶着に適当なクラッド材の
内径は8ないし12mmとなり、クラッド材の肉厚は3
0mm以上を要することになる。このような熱伝導率の
低い肉厚管の内面を加熱するのに外熱方式では管の外面
を過度に高い温度に曝しかつ加熱時間も長くなるので、
クラッド材の熱変形を招き易く不適当である。本発明は
上記の先発明の問題点を解決し、クラッド材の熱変形を
起こさせることなく、光損失の著しく少ない光伝送用素
材、特に伝送容量の大きい単モード型素材の製造を可能
ならしめる方法を提供するもので、その要旨とするとこ
ろは、管状のクラツド材の内壁にコア材を溶着させ、こ
れを紡糸することよりなる光伝送用素材の製造方法にお
いて、該クラツド材と該コア材の溶着前に該クラツド材
内部にC..NlO、S,.selよりなる群の中から
選ばれた少なくとも一種とハロゲンの少なくとも一種と
を含みかつ水素を含まない室温で流体をなす化合物を、
非平衡プラズマ発生下において、気相で流すことを特徴
とする光伝送用素材の製造方法、にある。
That is, if a rod with a diameter of 6 mm or more, which is easy to manufacture and handle, is used as the core material, the inner diameter of the clad material suitable for the above-mentioned vapor phase heat treatment and welding of the core material and clad material is 8 to 12 mm. , the wall thickness of the cladding material is 3
0 mm or more is required. In order to heat the inner surface of such thick-walled tubes with low thermal conductivity, external heating methods expose the outer surface of the tube to excessively high temperatures and require a long heating time.
This is unsuitable as it tends to cause thermal deformation of the cladding material. The present invention solves the above-mentioned problems of the previous invention, and makes it possible to manufacture optical transmission materials with extremely low optical loss, especially single-mode materials with large transmission capacity, without causing thermal deformation of the cladding material. This method provides a method for manufacturing an optical transmission material, which comprises welding a core material to the inner wall of a tubular cladding material and spinning the core material, the cladding material and the core material. C. inside the clad material before welding. .. NlO,S,. A compound that is fluid at room temperature and contains at least one selected from the group consisting of sel and at least one halogen and does not contain hydrogen,
A method for manufacturing a material for optical transmission, characterized by flowing in a gas phase under non-equilibrium plasma generation.

このように、本発明においては、コア材とクラツド材の
溶着前に上記気相処理を行なう加熱状態にするために、
先発明における外熱方式の代りに、クラツド材内部に発
生させた非平衡プラズマを利用するものである。
As described above, in the present invention, in order to bring the core material and the cladding material into a heating state for performing the above-mentioned vapor phase treatment before welding,
Instead of the external heating method in the previous invention, non-equilibrium plasma generated inside the cladding material is used.

すなわち、クラツド材を囲んで設けた高周波誘導コイル
を通してクラツド材内部に発生させた非平衡プラズマの
下で、適当な減圧度を保ちつつ、該クラツド材の管内に
上記C、NlO、S,.Seよりなる群の中から選ばれ
た少なくとも一種とハロゲンの少なくとも一種とを含み
かつ水素を含まない室温で流体をなす化合物よりなる気
相熱処理剤を気相で流入させ、該非平衡プラズマによる
熱あるいは化学的活性作用により、該気相熱処理剤によ
るクラツド材の内面、またはクラツド材内に挿入した溶
着前のコア材の表面の浄化作用を促進するものである。
本発明において、クラツド材の管内にプラズマ放電を生
じさせるために必要な高周波電力周波数は0.2MHz
〜30GHzの範囲である。
That is, under a non-equilibrium plasma generated inside the cladding material through a high-frequency induction coil provided surrounding the cladding material, the above-mentioned C, NlO, S, . A gas-phase heat treatment agent made of a compound that is fluid at room temperature and contains at least one selected from the group consisting of Se and at least one halogen and does not contain hydrogen is introduced in the gas phase, and the heat generated by the non-equilibrium plasma or The chemical activation action promotes the purification effect of the gas-phase heat treatment agent on the inner surface of the cladding material or the surface of the core material inserted into the cladding material before welding.
In the present invention, the high frequency power frequency required to generate plasma discharge inside the cladding material tube is 0.2MHz.
~30GHz.

周波数が0.2MHz以下ではプラズマを閉じ込めるク
ラツド材の管径が大きくなり、また30GHz以上では
装置コストが過大となるので、いずれも不適当である。
本発明においてコア材とクラツド材内に溶着前に挿入す
る場合には、それらをあらかじめ機械研摩または化学研
摩あるいは熱処理を施しておく、また、コア材を溶着前
にクラツド材内に挿入せずにクラツド材内面のみを上記
気相熱処理し、この気相処理によつて浄化されたクラツ
ド材の内面に実質的に気相熱処理を受けたと同様なきわ
めて純粋な状態でコア層を析出付着させ、これを延伸に
よつて中実のコア材とする場合もあるが、この場合はコ
ア材としてはあらかじめ機械研摩などを施す必要のない
ことはもちろんである。
If the frequency is less than 0.2 MHz, the pipe diameter of the cladding material that confines the plasma becomes large, and if the frequency is more than 30 GHz, the cost of the device becomes excessive, so both are inappropriate.
In the present invention, when inserting the core material and the cladding material into the cladding material before welding, they must be mechanically polished, chemically polished, or heat treated in advance, and the core material should not be inserted into the cladding material before welding. Only the inner surface of the cladding material is subjected to the above vapor phase heat treatment, and a core layer is precipitated and adhered to the inner surface of the cladding material purified by this vapor phase treatment in an extremely pure state substantially as if it had been subjected to vapor phase heat treatment. In some cases, the core material is made into a solid core material by stretching, but in this case, it goes without saying that the core material does not need to be subjected to mechanical polishing or the like in advance.

本発明は以上のように、クラツド材内に非平衡プラズマ
を発生させることによつて、伝送容量の大きい単モード
型素材の製造においても、クラツド材の熱変形を招くこ
となく、光損失の著しく少ない光伝送用素材を製造でき
る方法を提供するもので、その工業的価値はきわめて大
きい。
As described above, the present invention generates non-equilibrium plasma within the cladding material, thereby reducing optical loss without causing thermal deformation of the cladding material even in the production of single mode materials with large transmission capacity. This method provides a method for manufacturing optical transmission materials with a small amount of material, and its industrial value is extremely large.

次に、本発明を実施例によつて具体的に説明するが、本
発明はその要旨を越えない限り以下の実施例に限定され
るものではない。
EXAMPLES Next, the present invention will be specifically explained using Examples, but the present invention is not limited to the following Examples unless the gist of the invention is exceeded.

実施例 1 A1203を1.8%ドープした高純度合成石英ガラス
棒(径6mm)を機械研摩したのち、パークロルエチレ
ン、エタノール、純水、10%弗酸、純水の順に各液中
で超音波洗浄を行ない、次いで、電熱乾燥器内で120
℃で乾燥した。
Example 1 A high-purity synthetic quartz glass rod (diameter 6 mm) doped with 1.8% A1203 was mechanically polished, and then superabsorbed in each solution in the following order: perchloroethylene, ethanol, pure water, 10% hydrofluoric acid, and pure water. Sonically cleaned, then heated in an electric dryer for 120
Dry at °C.

このドープド石英ガラス棒を同様な洗浄工程を経た石英
ガラス管(内径12u1外径72mm)の管内に軸中心
に挿入し、これを硝子旋盤で回転させ、石英ガラス管の
一端からそれら石英ガラス管と石英ガラス棒との間隙の
空間を油回転ポンプで真空引きしながら、該石英ガラス
管の他端からHeガス20m1/分、ガス状CCl4O
,5ml/分を流入させるとともに該石英ガラス管をか
こむ高周波誘導コイルによつて発生させた非平衡プラズ
マ帯を該ガスの流れに沿つて90cTn/分の移動速度
で20回トラバースを繰り返した。高音波誘導コイルに
水冷銅パイプ(外径4m1fL)を幅30u以内に6タ
ーン巻いたものを使用し、周波数13.56MH2の高
周波電力を加えた。入力は300Wとしたが、その内約
70%が高周波誘導コイル内のキヤビテイで消費された
ものと推定される。一方、該石英ガラス管内の真空度は
油回転ポンプの入口部で約5T0rrであつた。20回
の該プラズマ帯のトラバースを終了後、ガス状CCl4
の流入を止め、代りに02ガスを0.5m1/分を流入
させ、さらに20回の上記プラズマ帯の移動加熱を行な
い、CCl4の熱分解によつて析出した炭素分を酸化除
去し、次いでHeガス及び、02ガス流入をともに止め
、真空に弓きながら酸水素バーナによつて該石英ガラス
管を外熱し、該石英ガラス管と該石英ガラス棒の溶着を
行なつた。
This doped quartz glass rod was inserted into the axial center of a quartz glass tube (inner diameter 12u1 outer diameter 72 mm) that had undergone a similar cleaning process, and was rotated on a glass lathe to connect the quartz glass tubes from one end of the quartz glass tube. While evacuating the space between the quartz glass rod and the quartz glass rod using an oil rotary pump, 20 m1/min of He gas and gaseous CCl4O were supplied from the other end of the quartz glass tube.
, 5 ml/min, and the nonequilibrium plasma zone generated by a high-frequency induction coil surrounding the quartz glass tube was traversed 20 times along the gas flow at a moving speed of 90 cTn/min. A water-cooled copper pipe (outer diameter 4 m 1 fL) wound 6 turns within a width of 30 u was used as a high-sonic induction coil, and high-frequency power at a frequency of 13.56 MH2 was applied. The input was 300 W, of which it is estimated that about 70% was consumed in the cavity within the high-frequency induction coil. On the other hand, the degree of vacuum inside the quartz glass tube was about 5T0rr at the inlet of the oil rotary pump. After traversing the plasma zone 20 times, gaseous CCl4
The flow of 02 gas was stopped, and 0.5 m1/min of 02 gas was flowed instead, and the plasma zone was transferred and heated 20 times to oxidize and remove the carbon deposited by thermal decomposition of CCl4. The inflow of both the gas and the 02 gas was stopped, and the quartz glass tube was externally heated with an oxyhydrogen burner while maintaining a vacuum, thereby welding the quartz glass tube and the quartz glass rod.

次いで、この棒状成形体を延伸機により径2011まで
引き延したのち、線引装置により外径120ttm1コ
ア径10μmのフアイバ一とし、このフアイバ一の光透
過損失を測定したところ、波長0.8μmで3.7dB
/K7lを得た。比較例として、上記CCl4による気
相熱処理を施さなかつた場合のフアイバ一の光透過損失
は波長0.8μmで18.3dB/Kmであつた。実施
例 2実施例1と同様に機械研摩、湿式洗浄を施した無
ドープの高純度合成石英ガラス棒(径7m7!L)を同
様に湿式洗浄を施した弗素0.5%ドープの石英ガラス
管(内径14m7!L1外径75.5mm)中に同軸状
に挿入し、これを硝子旋盤により回転させ、石英ガラス
管の一端よりCF2Cl2O.2ml/分、Arガス5
m1/分、02ガス0.2m1/分の混合ガス流入させ
るとともに、実施例1と同様の高周波誘導コイルにより
周波数0.44MHzで発生させたプラズマ帯を移動速
度30礪/分で上記混合ガスの流れに沿つて30回トラ
バースさせた。
Next, this rod-shaped molded body was drawn to a diameter of 2011 mm using a drawing machine, and then made into a fiber with an outer diameter of 120 ttm and a core diameter of 10 μm using a drawing device.The optical transmission loss of this fiber was measured, and it was found that at a wavelength of 0.8 μm. 3.7dB
/K7l was obtained. As a comparative example, the light transmission loss of the fiber without the above gas phase heat treatment using CCl4 was 18.3 dB/Km at a wavelength of 0.8 μm. Example 2 An undoped high-purity synthetic quartz glass rod (diameter 7m7!L) was mechanically polished and wet-cleaned in the same manner as in Example 1. A 0.5% fluorine-doped quartz glass tube was wet-cleaned in the same manner. (inner diameter 14 m7! L1 outer diameter 75.5 mm), and rotated it with a glass lathe, and then inserted the CF2Cl2O. 2ml/min, Ar gas 5
m1/min, 02 gas at 0.2 m1/min, and a plasma band generated at a frequency of 0.44 MHz by the same high-frequency induction coil as in Example 1 was transferred at a moving speed of 30 m1/min. Thirty traverses were made along the flow.

高周波発振機の入力電力は150Wで、その80%が高
周波誘導コイル内キヤビテイで消費されたものと推定さ
れる。一方、該石英ガス管内の真空度は油回転ポンプの
入口部で約1T0rrであつた。次いで、上記ガスの流
入をすべて止め、真空に引きながら酸水素バーナで該石
英ガラス管を外熱し該石英ガラス管と該石英ガラス棒を
溶着させ、延伸機により棒径を20mmまで縮小後、紡
糸して得られたフアイバ一(外径125μm1コア径1
0ttm)の光透過損失は波長0.8μmで2,9dB
/Kmであつた。比較例として、上記CF2Cl2によ
る気相熱処理を施さなかつた場合のフアイバ一の光透過
損失は波長0.8μmで14.2dB/Kmであつた。
The input power of the high frequency oscillator was 150 W, and it is estimated that 80% of it was consumed in the cavity within the high frequency induction coil. On the other hand, the degree of vacuum inside the quartz gas tube was about 1T0rr at the inlet of the oil rotary pump. Next, the inflow of all the above gases is stopped, and the quartz glass tube is externally heated with an oxyhydrogen burner while being evacuated to weld the quartz glass tube and the quartz glass rod. After reducing the diameter of the rod to 20 mm using a drawing machine, spinning is carried out. The obtained fiber (outer diameter 125 μm, core diameter 1
0ttm) optical transmission loss is 2.9 dB at a wavelength of 0.8 μm.
/Km. As a comparative example, the optical transmission loss of the fiber was 14.2 dB/Km at a wavelength of 0.8 μm when the gas phase heat treatment using CF2Cl2 was not performed.

実施例 3実施例1と同様に湿式洗浄を施した弗素0.
5%ドープした石英ガラス管(内径10mwL1外径1
5.5mm)を硝子旋盤で回転させ、管の一端より油回
転ポンプで真空に引きながら他端よりSOBr2lml
/分、Arガス2m1/分の混合ガスを流入させるとと
もに実施例1と同様のプラズマ帯を上記混合ガスの流れ
に沿つて30?/分で移動させた。
Example 3 Fluorine 0.0% was subjected to wet cleaning in the same manner as in Example 1.
5% doped quartz glass tube (inner diameter 10mwL1 outer diameter 1
5.5 mm) on a glass lathe, and while drawing a vacuum from one end of the tube with an oil rotary pump, add 2 lml of SOBr from the other end.
A mixed gas of 2 ml/min of Ar gas and 2 ml/min of Ar gas was introduced, and a plasma zone similar to that in Example 1 was formed along the flow of the mixed gas for 30 ml/min. / minute.

高周波発振機の出力は80Wとしたが、その内90%が
高周波誘導コイル内キヤビテイで消費されたものと推定
される。該石英ガラス管内の真空度は油回転4ポンプの
入口部で約0.5T0rrであつた。プラズマ帯の移動
を20回繰り返した後、上記混合ガスをガス状SiCl
42ml/分、02ガス3m1/分、Heガス10m1
/分の混合ガスに切り換え、高周波発振機出力を400
Wとし、プラズマ帯を60CTrL/分で80回トラバ
ースさせて該石英ガラス管の内壁に石英ガラス層を析出
させた。次いで、該混合ガラス管内を真空に引きながら
酸水素バーナにより強熱し該石英ガラス管を軟化させて
つふして中実棒状成形体とし、線引装置により外径12
0Itm1コア径8μmのフアイバ一に紡糸した。この
フアイバ一の光透過損失は波長0.8μmで2.8dB
/Kml波長1.0μmでは1.2dB/Kmであつた
。比較例として、上記SOBr2による気相熱処理を施
さなかつた場合のフアイバ一の光透過損失は波長0.8
μmで19.7dB/K7!l、波長1.0ttmでは
3.4dB/Kmであつた。
The output of the high frequency oscillator was 80 W, of which it is estimated that 90% was consumed in the cavity within the high frequency induction coil. The degree of vacuum inside the quartz glass tube was about 0.5T0rr at the inlet of the four oil rotary pumps. After repeating the movement of the plasma zone 20 times, the above mixed gas is converted into gaseous SiCl.
42ml/min, 02 gas 3ml/min, He gas 10ml
Switch to a mixed gas of / min and increase the high frequency oscillator output to 400
W and the plasma zone was traversed 80 times at 60 CTrL/min to deposit a quartz glass layer on the inner wall of the quartz glass tube. Next, while the inside of the mixed glass tube is evacuated, it is ignited with an oxyhydrogen burner to soften and close the quartz glass tube to form a solid rod-shaped molded product.
It was spun into a fiber with a core diameter of 8 μm. The optical transmission loss of this fiber is 2.8 dB at a wavelength of 0.8 μm.
/Kml was 1.2 dB/Km at a wavelength of 1.0 μm. As a comparative example, the light transmission loss of the fiber without the above-mentioned SOBr2 vapor phase heat treatment is 0.8 at wavelength.
19.7dB/K7 in μm! l, and at a wavelength of 1.0ttm, it was 3.4dB/Km.

Claims (1)

【特許請求の範囲】[Claims] 1 管状のクラッド材の内壁にコア材を溶着させ、これ
を紡糸することよりなる光伝送用素材の製造方法におい
て、該クラッド材と該コア材の溶着前に該クラッド材内
部にC、N、O、S、Seよりなる群の中から選ばれた
少なくとも一種とハロゲンの少なくとも一種とを含みか
つ水素を含まない室温で流体をなす化合物を、非平衡プ
ラズマ発生下において、気相で流すことを特徴とする光
伝送用素材の製造方法。
1. In a method for manufacturing an optical transmission material, which comprises welding a core material to the inner wall of a tubular cladding material and spinning the core material, C, N, A compound that contains at least one selected from the group consisting of O, S, and Se and at least one halogen and does not contain hydrogen and is fluid at room temperature is caused to flow in a gas phase under non-equilibrium plasma generation. Features: A manufacturing method for optical transmission materials.
JP12283579A 1979-09-25 1979-09-25 Manufacturing method for optical transmission materials Expired JPS597651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12283579A JPS597651B2 (en) 1979-09-25 1979-09-25 Manufacturing method for optical transmission materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12283579A JPS597651B2 (en) 1979-09-25 1979-09-25 Manufacturing method for optical transmission materials

Publications (2)

Publication Number Publication Date
JPS5645847A JPS5645847A (en) 1981-04-25
JPS597651B2 true JPS597651B2 (en) 1984-02-20

Family

ID=14845805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12283579A Expired JPS597651B2 (en) 1979-09-25 1979-09-25 Manufacturing method for optical transmission materials

Country Status (1)

Country Link
JP (1) JPS597651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731604A1 (en) * 1987-09-19 1989-03-30 Philips Patentverwaltung METHOD FOR PRODUCING A MONOMODE LIGHT FIBER
JP4721573B2 (en) * 2001-08-23 2011-07-13 株式会社リコー Image forming apparatus

Also Published As

Publication number Publication date
JPS5645847A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
EP0547335B1 (en) Method of making fluorine/boron doped silica tubes
US4090055A (en) Apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
JPS5852935B2 (en) Manufacturing method for optical transmission materials
US5917109A (en) Method of making optical fiber having depressed index core region
US5106402A (en) Method of manufacturing a monomode optical fiber
JP4870573B2 (en) Alkali-doped optical fiber, preform thereof and method for producing the same
ATE19388T1 (en) PROCESS FOR THE MANUFACTURE OF OPTICAL FIBERS.
US6189342B1 (en) Method of making segmented core optical waveguide preforms
JPH0134938B2 (en)
JPH044986B2 (en)
US4504297A (en) Optical fiber preform manufacturing method
US5154745A (en) Method of fabricating preforms for making optical fibers by drawing
EP0216338A2 (en) Method of employing plasma for finishing start rods
JPS597651B2 (en) Manufacturing method for optical transmission materials
JP2007063094A (en) Inner surface treatment method for quartz tube, manufacturing method of optical fiber preform and manufacturing method of optical fiber
JPH01153551A (en) Production of optical fiber having definite polarization
US9994480B2 (en) Method for etching a primary preform
JPS6086047A (en) Manufacture of glass preform for optical fiber
JPS5879835A (en) Surface-treating method for optical fiber preform
JPS6259545A (en) Production of optical fiber preform
GB2082568A (en) Lightguide preform fabrication
JPS63256545A (en) Production of base material for optical fiber
KR830001241B1 (en) Manufacturing method of optical transmission material
JPS595532B2 (en) Manufacturing method of glass fiber for optical transmission
JPH0818842B2 (en) Method for manufacturing base material for optical fiber