JPS5976296A - Preparation of optical recording medium - Google Patents
Preparation of optical recording mediumInfo
- Publication number
- JPS5976296A JPS5976296A JP58175460A JP17546083A JPS5976296A JP S5976296 A JPS5976296 A JP S5976296A JP 58175460 A JP58175460 A JP 58175460A JP 17546083 A JP17546083 A JP 17546083A JP S5976296 A JPS5976296 A JP S5976296A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- naphthoquinone
- optical recording
- recording medium
- coloring matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
Landscapes
- Manufacturing Optical Record Carriers (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はレーザ光によって情報全記録再生することので
きる光学記録媒体の製造方法に関し、さらに詳しくは半
導体レーザの発振波長の光エネルギーにより物質状態の
変化を利用して記録を行う光学記録媒体の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical recording medium in which all information can be recorded and reproduced using a laser beam, and more specifically, the present invention relates to a method for manufacturing an optical recording medium in which all information can be recorded and reproduced using a laser beam, and more specifically, it relates to a method for manufacturing an optical recording medium that can record and reproduce all information using a laser beam. The present invention relates to a method for manufacturing an optical recording medium.
従来、この種の光学記録媒体としてTe合金、 Te酸
化物、バブル形成媒体及び有機色素等が用いられていた
。Conventionally, Te alloys, Te oxides, bubble-forming media, organic dyes, and the like have been used as optical recording media of this type.
Te合金は、Teと半導体、例えばAs、Se等の固溶
合金として用いられている。この媒体は、比較的書き込
み感度が高く、又記録再生の光学系を小型にし得る半導
体レーザにも適合するが、化学的に不安定であシ、空気
中放置で容易に劣化することと、楢成材料(Te、 A
s、 Se等)が毒性奮示すという問題点がある。Te alloy is used as a solid solution alloy of Te and semiconductors such as As and Se. This medium has relatively high writing sensitivity and is compatible with semiconductor lasers, which can make the optical system for recording and reproduction compact, but it is chemically unstable and easily deteriorates when left in the air. Materials (Te, A
s, Se, etc.) are toxic.
Te酸化物は、Te合金よυ安定であるが、その光学特
性、例えば吸収率2反射率が酸化状態に敏感に依存する
。そのため、この媒体は媒体形成時に酸化状態を厳しく
制御しなければならないという欠点を有する。Although Te oxide is more v-stable than Te alloy, its optical properties, such as absorption 2 reflectance, depend sensitively on the oxidation state. Therefore, this medium has the disadvantage that the oxidation state must be tightly controlled during the formation of the medium.
バブル形成媒体は、反射層、透過層、吸収層から成る層
構造であシ、繰9返し反射干渉により光の吸収率を高め
高感度化全図っている。したかつで、この媒体は現在最
も高M&度な媒体の一つであるが、多層構造のため成膜
回数が多いことと、繰り返し反射干渉が各層の厚さに大
きく依存するため、成膜時の膜厚制御1[しく行なわな
ければならないという欠点がある。The bubble-forming medium has a layered structure consisting of a reflective layer, a transmitting layer, and an absorbing layer, and the absorption rate of light is increased by repeated reflection interference nine times, thereby achieving high sensitivity. This medium is currently one of the highest M&D media, but because it has a multilayer structure, it requires a large number of film formations, and the repeated reflection interference greatly depends on the thickness of each layer. The disadvantage is that the film thickness control must be carried out properly.
一方、有機色素媒体は種々の形態で開発されている。そ
れらを大別すると色素単体型と色素を高分子樹脂中に溶
剤で溶解させた相溶型処分けられる。相溶型の媒体はた
とえば特開昭55−161690号に開示されているよ
うK、高分子樹脂であるポリビニールアセテートに色素
としてポリニスデルイエローを溶剤で相溶し、回転塗布
法で基板上に形成される。この媒体は、比較的短波長領
域(400〜50−0 +s−m、−)に吸収を示すが
、半導体レーザの波長域(〜800nm )ではほとん
ど吸収が無く、半導体レーザを使用する記録装置の媒体
としては使用することができない。又、一般に相溶型の
媒体は、媒体形成法が溶媒塗布に限られ、基板に樹脂全
1更用する場合は、樹脂を溶解しない溶剤を選択しなり
ればならないという制約がある。一方、色素単体型の媒
体としては、たとえばスクアリリウム色素を#着法で形
成する媒体が特開昭56−46221号に開示されてい
る。この色素は半導体レーザの発振波長である近赤外波
長領域に比較的大きな吸収があるが、記録感度はTe合
金よりも悪い。On the other hand, organic dye media have been developed in various forms. They can be roughly divided into single dye types and compatible types in which the dye is dissolved in a polymer resin using a solvent. A compatible medium is, for example, as disclosed in JP-A-55-161690, in which polyvinyl acetate, which is a polymer resin, is mixed with polynisdel yellow as a pigment using a solvent, and the mixture is coated onto a substrate by spin coating. is formed. This medium exhibits absorption in a relatively short wavelength region (400 to 50-0 +s-m, -), but has almost no absorption in the semiconductor laser wavelength region (~800 nm), making it suitable for recording devices that use semiconductor lasers. It cannot be used as a medium. Furthermore, in general, the medium forming method for compatible media is limited to solvent coating, and when all resin is used for the substrate, there is a restriction that a solvent that does not dissolve the resin must be selected. On the other hand, as a single dye medium, for example, a medium in which a squarylium dye is formed by a # coating method is disclosed in JP-A-56-46221. Although this dye has relatively large absorption in the near-infrared wavelength region, which is the oscillation wavelength of a semiconductor laser, its recording sensitivity is lower than that of Te alloy.
本発明の目的は、前述の従来技術の欠点を改良し、半導
体レーザの波長頭載において高感度で化学的に安定な光
記録媒体の製造方法を提供することである。An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a method for manufacturing an optical recording medium that is highly sensitive and chemically stable at the wavelength of a semiconductor laser.
すなわち本発明は、 一般式 (式中RはOH,NH,、NHX又はNX、を表わし。That is, the present invention general formula (In the formula, R represents OH, NH, NHX or NX.
R′はOH,NH,、NHX、 NX、又はN)Iぺ)
−X′を表わす。(ここでXはアルキル基、X′は水素
原子、アルキル基、アリル基、アミノ基又は置換アミン
基を表わす。))で表わされるナフトキノン色素を蒸発
でせて、基板の片側又は両側に前記ナフトキノン色素を
主成分とする記録層音形成することを特徴とする。上記
の一般式で表わ式れ暮ナフトキノン色素は2.3−ジッ
プノー1.4−ナフトキノンと総称され、5.8位の助
式団R、R’の種類によって吸収ピーク波長が可萩領截
から赤外領域に移行する。上記の助式団R、R’として
例示したものはどれも赤外領域に吸収ピーク波長がある
が、上記一般式中のRとしてNH,IR’ としてNH
→Q−x′*付加した化合物が半導体レーザの発振波長
と最も良く適合し、さらにx’6アルキル基としたもの
が他の諸条件に対して最も好ましいものである、
たとえば
NH,0
N1(O
01H9
で表わされる5−アミノ−2,3−ジシブノー8−(4
′−ブチルアニリノ)−1,4−ナフトキノンをア十ト
ン溶剤中で測定した場合、この色素のスペクトルの吸収
極大波長λm1lKは759nmであシ、半尋体レーザ
の発振波長と良く適合することが判る。前記ナフトキノ
ン色素化合物は、比較的商温2品湿の環境条件でも安定
であり、T@金合金ような空気中酸化による劣化は水式
ない。このことは、保睦膜無しで長期間の使用に耐るこ
とを意味する。又この化合物は、一般の有機色素と同様
に低い熱伝導率を有しており、その値は金属の1
一〜□である。したがって、レーザ光記録時の10
100
媒体中での熱の拡散が少なくなり、光照射部の媒体温度
を効率良く高めることができる。R' is OH, NH,, NHX, NX, or N)Ipe)
-X'. (Here, X represents an alkyl group, and X' represents a hydrogen atom, an alkyl group, an allyl group, an amino group, or a substituted amine group.)) By evaporating the naphthoquinone dye represented by It is characterized by a recording layer containing pigment as a main component that forms sound. The naphthoquinone dyes represented by the above general formula are collectively referred to as 2,3-zipnor-1,4-naphthoquinone, and the absorption peak wavelength varies depending on the type of sub-groups R and R' at the 5.8-position. to the infrared region. All of the auxiliary groups R and R' listed above have absorption peak wavelengths in the infrared region, but in the general formula R, NH, and IR', NH.
→Q−x′* The compound that is added is most compatible with the oscillation wavelength of the semiconductor laser, and the one with an x′6 alkyl group is the most preferable one considering other conditions. For example, NH,0 N1( 5-amino-2,3-disibuno 8-(4
When measuring 1,4-naphthoquinone ('-butylanilino) in a tentone solvent, the absorption maximum wavelength λm11K of the spectrum of this dye is 759 nm, which is found to match well with the oscillation wavelength of a semidiamond laser. . The naphthoquinone dye compound is relatively stable even under ambient conditions of commercial temperature and humidity, and is not subject to deterioration due to air oxidation like T@gold alloys. This means that it can be used for a long time without a protective film. In addition, this compound has a low thermal conductivity similar to general organic dyes, and its value is 11 to □ compared to metals. Therefore, 10
100 The diffusion of heat in the medium is reduced, and the temperature of the medium in the light irradiation section can be efficiently raised.
記録媒体は、上記ナフトキノン色素全蒸着によシ基板の
へ面又は両面に付着して形成される。前述のナフトキノ
ン色素のうちRがNH,で、R′がNH−Q−X’ (
X’はアルキル基ンの場合は約210〜250℃i口後
で蒸着が可能となる。またこれらのナフトキノン色素は
約300℃前後で分解するため、参着温度は該分解温度
よシ低く、前記蒸着が可能となる温度より数十度高い温
度まで可能である。基板Ihとし、ては拙々のものが陸
用できるが一般にはガラス、A11合成樹脂が望ましい
。合成樹脂としではポリメチルメタクリル(PMMA)
。The recording medium is formed by depositing the above naphthoquinone dye on the bottom or both sides of the substrate. Of the naphthoquinone dyes mentioned above, R is NH, and R' is NH-Q-X' (
When X' is an alkyl group, vapor deposition is possible at about 210 to 250°C. Furthermore, since these naphthoquinone dyes decompose at around 300° C., the reference temperature is lower than the decomposition temperature and can be several tens of degrees higher than the temperature at which the vapor deposition is possible. As for the substrate Ih, although some modest ones can be used for land use, glass or A11 synthetic resin is generally preferable. Synthetic resin is polymethyl methacrylate (PMMA)
.
ポリビニールクロライド(pvc)、ポリサルホン。Polyvinyl chloride (PVC), polysulfone.
ポリカーボネート等がある。基板形状は円板形状。Polycarbonate, etc. The board shape is a disk shape.
テープ形状、シート形形(が適用できる。Tape shape, sheet shape (can be applied).
基板上に形成されたナフトキノン色素膜に半導体レーザ
光をレンズで収光して照射すると、照射部の色素膜が除
去されて孔が形成される。この孔形成の機イ(翳よ明イ
1aではないが、#発(昇華)をともなう融解〜f集に
因ると考えられる。形成される孔の大きさは、レーザ光
の収光径、レーザパワー。When a naphthoquinone dye film formed on a substrate is irradiated with semiconductor laser light focused by a lens, the dye film in the irradiated area is removed and holes are formed. The mechanism for this pore formation (although not 1a, it is thought to be due to melting accompanied by sublimation).The size of the pore formed is determined by the convergence diameter of the laser beam, laser power.
照射時間に依存するが、大体0.2〜3μmであること
が望′ましい。このような孔形成に必璧なレーザエネル
ギーは小さなものであり、したがって、短時間で孔形成
が可能である。具体的には、ン反長830nrnのAl
GaAs半導体レーザ光?ビーム径1.4μmに収光し
た場合、色素)逆面上でのパワーは2〜10mW、照射
時間は50〜300nsecの範囲で礼金形成すること
ができる。当然のことながら、上記パワー、あるいは照
射時間の上限値以上の条件でも礼金形成することができ
るが、上記条ど+は望ましい防用条件である。IF4’
i狽の記録は、2進情報を孔の有無に対応させることに
よシなされる。Although it depends on the irradiation time, it is preferably about 0.2 to 3 μm. The required laser energy for forming such holes is small, and therefore holes can be formed in a short time. Specifically, Al with a diagonal length of 830nrn
GaAs semiconductor laser light? When the beam is focused to a beam diameter of 1.4 μm, key metal formation can be performed with a power of 2 to 10 mW on the reverse side of the dye and an irradiation time of 50 to 300 nsec. Naturally, the key money can be formed under conditions that exceed the upper limits of the above power or irradiation time, but the above condition + is a desirable defensive condition. IF4'
Recording of holes is done by associating binary information with the presence or absence of holes.
通常円板状媒体全等速回転させて、記録情報に合わせて
礼金形成して情報を記録する。なお、以上の場合におい
て色素膜の膜厚は0.01〜0.5μmで、好適には0
.02〜0.2/Amである。Usually, information is recorded by rotating a disc-shaped medium at a constant speed and forming key money in accordance with the recorded information. In addition, in the above case, the film thickness of the pigment film is 0.01 to 0.5 μm, preferably 0.01 to 0.5 μm.
.. 02 to 0.2/Am.
このように記録された情報(孔)の読み出しは、媒体か
らの反射光又は透過光の光量変化全検出することにより
なされる。一般に反射光を検出する方法が採用される。The information (holes) recorded in this manner is read out by detecting all changes in the amount of light reflected or transmitted from the medium. Generally, a method of detecting reflected light is adopted.
これは、反射光検出の方が光学系が簡単になるためであ
る。即ち、一つの光学系で投光と集光が可能であるため
である。読み出しはレーザ光を連続させて照射する。そ
の時の光量は媒体に伺らの形状変化が起らない弱いエネ
ルある。This is because the optical system for reflected light detection is simpler. That is, this is because one optical system can project and collect light. For reading, laser light is continuously irradiated. The amount of light at that time has a weak energy that does not cause any shape change in the medium.
記録、再生時の光の入射方向として、媒体面側と基板面
側の2通りがある。本例の如き単層媒体では両方向の配
置とも使用可能である。基板面側入射では、媒体面上に
付着した塵埃に影響されることなく記録、再生が可能で
あシ、よシ望ましい形態である。なお、媒体が形成され
ている而の反対側の基板面上に付着した塵埃及びその面
のキズ等の欠陥は、基板厚さが1罷以上であれば、その
面でのビーム径が充分大きいので記録、再生に悪影響を
与えない。There are two directions of incidence of light during recording and reproduction: toward the medium surface and toward the substrate surface. Both orientations can be used with single layer media such as the present example. When the light is incident on the substrate surface side, recording and reproduction can be performed without being affected by dust attached to the surface of the medium, which is a highly desirable form. Note that defects such as dust and scratches on the opposite side of the substrate from where the medium is formed will cause the beam diameter on that surface to be sufficiently large if the substrate thickness is one or more lines. Therefore, it does not adversely affect recording and playback.
情報は孔列として記録される。孔列は一般に同心円状又
はスパイラル状の多数のトラック全形成する。再生する
場合、光ビームは特定トラックの孔列上全精度良く追跡
する必要がある、これ全実現する一つの手段として回転
機構の精度を空気軸受などを使用して高めるという方法
がある。しかし、この場合は、回転系が複雑となり、又
高価となるので実用的ではない。より望ましいのは、基
板上に光の案内溝を設ける方法である。ビーム径程度の
溝に光が入射すると、光が回折される。ビーム中心が溝
からずれるにつれて回折光強度の空間分布が異なり、こ
れを検出して、ビームの溝の中心に入射させるようにサ
ーボ糸全構成することができる。通常溝の幅は、0.6
〜1.2μm、その深される。したがって記録層は溝付
基板面上に形成される。Information is recorded as a series of holes. The rows of holes generally form a number of concentric or spiral tracks. In the case of reproduction, the light beam must be accurately traced over the row of holes in a particular track.One way to achieve this is to increase the accuracy of the rotation mechanism by using an air bearing or the like. However, in this case, the rotation system becomes complicated and expensive, so it is not practical. More desirable is a method in which light guide grooves are provided on the substrate. When light enters a groove about the diameter of a beam, it is diffracted. As the beam center shifts from the groove, the spatial distribution of the diffracted light intensity differs, and by detecting this, the entire servo thread can be configured to direct the beam to the center of the groove. Normal groove width is 0.6
Its depth is ~1.2 μm. The recording layer is therefore formed on the grooved substrate surface.
2.3−ジシアノ−1,4ナフトキノン色素の1膜は通
常の抵抗加熱蒸着法により形成することができる。室温
に保持された基板上に閏、換金形成すると、その結晶性
は無定形、即ち非晶質となる。A film of 2,3-dicyano-1,4 naphthoquinone dye can be formed by a conventional resistance heating vapor deposition method. When a crystalline material is formed on a substrate kept at room temperature, its crystallinity becomes amorphous, that is, it becomes amorphous.
非晶質膜からの反射光には、多結晶膜で見られる粒界ノ
イズが含まれないので非晶質膜を使用した時の再生のS
/Nは良好である。The reflected light from the amorphous film does not include the grain boundary noise seen in polycrystalline films, so the reproduction S when using the amorphous film is
/N is good.
以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.
8g1図は、実際に蒸着で基板上に作製した5−アミノ
−2,3−ジシアノ−8(4′−ブチルアニリノ)−1
,4−ナフトキノン色素の薄膜の吸収スペクトルを示し
たものである。これより、AlGaAs半導体レーザの
発振波長である〜800nm付近に吸収極大があシ、本
色素が半導体レーザを使用する光学記録媒体として好適
であることが確認された。Figure 8g1 shows 5-amino-2,3-dicyano-8(4'-butylanilino)-1 actually produced on a substrate by vapor deposition.
, 4-naphthoquinone dye thin film absorption spectrum. From this, it was confirmed that the absorption maximum was found near ~800 nm, which is the oscillation wavelength of an AlGaAs semiconductor laser, and that this dye was suitable as an optical recording medium using a semiconductor laser.
次に1.2朋厚の円板状のPMMA基板上に、5−アミ
ノ−2,3−ジシアノ−8−(4’−ブチルアニリノ)
−1,4−ナフトキノン色素を抵抗加熱法で蒸着し、膜
厚550Aの膜を得た。抵抗加熱ボート材はFlloで
あり、蒸着前及び蒸着時の真窒度はそれぞれ6X10−
’ Torr 、 9X10−’ Torrであった。Next, 5-amino-2,3-dicyano-8-(4'-butylanilino) was deposited on a 1.2 mm thick disc-shaped PMMA substrate.
A -1,4-naphthoquinone dye was vapor-deposited using a resistance heating method to obtain a film with a thickness of 550 Å. The resistance heating boat material is Flo, and the true nitrogen degree before and during vapor deposition is 6X10-
' Torr, 9X10-' Torr.
基板は室温自然放置とし、蒸着による基板温度上昇はほ
とんど認められなかった。ボート温度を徐々に上げて行
くと220℃で色素が融解し、この温度に固定して蒸着
した。蒸着速度は5A/就である。The substrate was left to stand at room temperature, and almost no increase in substrate temperature was observed due to vapor deposition. When the boat temperature was gradually raised, the dye melted at 220° C., and was fixed at this temperature for vapor deposition. The deposition rate was 5 A/min.
第2図は、このようにして形成された媒体1を示してい
る。PMMA基板10上に色素膜20が形成されている
。この媒体1に矢印30の方向から波長830 nmの
半導体レーザ光を光学系(図示せず)で収光して照射し
た。この場合レーザ光は媒体面上のパワーで2〜12m
W、照射時間50〜300 n5ecの条件で行なった
。この記録波長での記録感度は約16 m J /ca
であった。この記録によシ、色素膜20中に約0.9μ
mの径の孔40が形成された。このようなd0録は、基
&10を介して、卯ち矢印50方向から光を入射しても
同様に可能であった。 。FIG. 2 shows the medium 1 thus formed. A dye film 20 is formed on a PMMA substrate 10. This medium 1 was irradiated with semiconductor laser light having a wavelength of 830 nm from the direction of arrow 30 after being focused by an optical system (not shown). In this case, the laser beam has a power of 2 to 12 m on the medium surface.
The test was carried out under conditions of W and irradiation time of 50 to 300 n5ec. The recording sensitivity at this recording wavelength is approximately 16 mJ/ca
Met. According to this record, approximately 0.9μ is present in the pigment film 20.
A hole 40 with a diameter of m was formed. Such a d0 recording was similarly possible even when light was incident from the direction of the arrow 50 through the base &10. .
前記実施例と同様に、R′がNH−(D−H′t′ある
5−アミノ−2,3−ジシアノ−8−アニリノ−1,4
−ナツトキノン及びR′がNH−C>−Cn 。Similar to the previous example, 5-amino-2,3-dicyano-8-anilino-1,4 where R' is NH-(D-H't'
-Nuttoquinone and R' are NH-C>-Cn.
である5−アミノ−2,3−ジシアノ−8−(4’−メ
チルアニリノ)−1,4−ナフトキノン色素全抵抗加熱
法で蒸着してそれぞれの1膜ケ得た。One film of each of the 5-amino-2,3-dicyano-8-(4'-methylanilino)-1,4-naphthoquinone dyes was deposited by total resistance heating method.
前者はボート温度が240℃で昇華が如1す、後者け2
50℃で融解して蒸着可能となる。さらにR′がNH÷
C7馴NH−)参トC,H,の場合にはそれぞれ230
〜240℃及び210〜230℃の範囲で蒸着を行なっ
た。それぞれの膜(膜厚250λ)に半導体レーザで書
き込み金石ない書き込み感度を求めると、前記実施汐り
と同様な結果を得た。The former sublimes at a boat temperature of 240℃, the latter 2.
It melts at 50°C and can be deposited. Furthermore, R' is NH÷
C7 familiar NH-) 230 each in the case of C, H,
Depositions were carried out in the ranges of ~240<0>C and 210-230<0>C. When each film (thickness: 250λ) was written with a semiconductor laser and the writing sensitivity was determined, the same results as in the above-mentioned experiment were obtained.
上記実施例から明らかなように、本発明により得られる
光学H0録媒体は、Te合金媒体より高感度であシ、媒
体形成が容易であり、化学的に安定で長期保存に耐え、
再生のS/Nが良好であるという優れた利点金有してい
ることが分る。As is clear from the above examples, the optical H0 recording medium obtained by the present invention has higher sensitivity than Te alloy media, is easier to form, is chemically stable, can withstand long-term storage,
It can be seen that it has the excellent advantage of a good reproduction S/N ratio.
第1図は5−アミノ−2,3−ジシアノ−8−(4′−
ブチルアニリノ)−1,4−ナフトキノン色素蒸着膜の
吸収スペクトルを表わすグラフ、第2図は、本発明によ
る光学記録媒体の断面図であシ図中10は基板、20は
色素膜、30.50は光の入射方向、40は孔を示す。
代理人弁(」土 内 原 晋
オ 1 図
波長(nm)Figure 1 shows 5-amino-2,3-dicyano-8-(4'-
Fig. 2 is a graph showing the absorption spectrum of the vapor-deposited dye film of butylanilino-1,4-naphthoquinone, and is a cross-sectional view of the optical recording medium according to the present invention.In the figure, 10 is the substrate, 20 is the dye film, and 30. In the incident direction of light, 40 indicates a hole. Proxy dialect (Tsuchinai Hara Shino 1 Figure wavelength (nm)
Claims (1)
表わす。(ここでXはアルキル基、X′は水素原子。 アルキル基、アリル基、アミン基又は置換アミン基を表
わす。))で表わされるナフトキノン色素を蒸発させて
、基板の片側又は両側に前記ナフトキノン色素を主成分
とする記録層を形成することを特徴とする光学記録媒体
の製造方法。[Claims] General formula (wherein R represents OH, NH,, NHX or NX,
represent. (Here, X is an alkyl group, and X' is a hydrogen atom. It represents an alkyl group, an allyl group, an amine group, or a substituted amine group)). A method for producing an optical recording medium, comprising forming a recording layer containing as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58175460A JPS5976296A (en) | 1983-09-22 | 1983-09-22 | Preparation of optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58175460A JPS5976296A (en) | 1983-09-22 | 1983-09-22 | Preparation of optical recording medium |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57109332A Division JPS58224793A (en) | 1982-06-25 | 1982-06-25 | Optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5976296A true JPS5976296A (en) | 1984-05-01 |
JPH0250874B2 JPH0250874B2 (en) | 1990-11-05 |
Family
ID=15996450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58175460A Granted JPS5976296A (en) | 1983-09-22 | 1983-09-22 | Preparation of optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976296A (en) |
-
1983
- 1983-09-22 JP JP58175460A patent/JPS5976296A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0250874B2 (en) | 1990-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0415112B2 (en) | ||
JPH0415115B2 (en) | ||
US4285056A (en) | Replicable optical recording medium | |
JPS6063744A (en) | Optical information recording medium | |
JPS6052940A (en) | Optical recording medium | |
JPS5976296A (en) | Preparation of optical recording medium | |
JPS6363153A (en) | Production of optical recording medium | |
JPS5976297A (en) | Optical recording system | |
JPS59131493A (en) | Manufacture of optical recording medium | |
JPS6141597A (en) | Optical information recording medium | |
JPS6089842A (en) | Optical recording medium | |
JP2508055B2 (en) | Optical recording medium manufacturing method | |
JPS59131494A (en) | Optical recording system | |
JP2508054B2 (en) | Optical recording medium manufacturing method | |
JP2508053B2 (en) | Optical recording medium manufacturing method | |
JPS6089843A (en) | Optical recording medium | |
JPS61246092A (en) | Optical information-recording medium | |
JPS62170044A (en) | Optical recording medium | |
JPH051749B2 (en) | ||
JPS61273987A (en) | Optical information recording medium | |
JPS62287446A (en) | Optical recording medium | |
JPS639575A (en) | Optical recording medium | |
JPS615987A (en) | Information-recording medium | |
JPS59201245A (en) | Optical recording medium | |
JPS63299982A (en) | Optical recording medium and recording method using the same |