JPS59131493A - Manufacture of optical recording medium - Google Patents

Manufacture of optical recording medium

Info

Publication number
JPS59131493A
JPS59131493A JP58232328A JP23232883A JPS59131493A JP S59131493 A JPS59131493 A JP S59131493A JP 58232328 A JP58232328 A JP 58232328A JP 23232883 A JP23232883 A JP 23232883A JP S59131493 A JPS59131493 A JP S59131493A
Authority
JP
Japan
Prior art keywords
naphthoquinone dye
naphthoquinone
dye
medium
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58232328A
Other languages
Japanese (ja)
Other versions
JPH0251392B2 (en
Inventor
Sotaro Edokoro
絵所 壮太郎
Masaki Ito
雅樹 伊藤
Masaru Matsuoka
賢 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58232328A priority Critical patent/JPS59131493A/en
Publication of JPS59131493A publication Critical patent/JPS59131493A/en
Publication of JPH0251392B2 publication Critical patent/JPH0251392B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To obtain a chemically stable optical recording medium having a high sensitivity in the wave-length region of semiconductor lasers by a method in which a naphthoquinone dye is vaporized to form a naphthoquinone dye-dominated recording layer on one or both sides of a base plate. CONSTITUTION:A naphthoquinone dye of the formula is vaporized to form a naphthoquinone dye-dominated recording layer on one or both sides of a base plate. The naphthoquinone dye, generally called 2,3-dicyano-1,4-naphthoquinone, has absorption peak wave lengths varying from visible region to near infrared region. Any of the auxochromes has absorption peak wave length in the near infrared region, and the naphthoquinone dye compound having NH2 as R of the formula is most conformative to the oscillation wave length of semiconductor lasers. Also, the naphthoquinone dye compound having alkoxyl group as (R')n of the formula is most desirable for other conditions. The optical recording medium thus obtained has a high sensitivity, is chemically stable, can be stored for long periods of time, and can be easily molded.

Description

【発明の詳細な説明】 本発明はレーザ光によって情報を記録再生することので
きる光学記録媒体の製造方法に関し、さらに詳しくは半
導体レーザの発振波長の光エネルギーによ、!7物質状
態の変化全利用して記録を行う光学記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical recording medium that can record and reproduce information using laser light, and more specifically, using optical energy at the oscillation wavelength of a semiconductor laser! The present invention relates to a method for manufacturing an optical recording medium that performs recording by utilizing all changes in the state of seven substances.

従来、この種の光学記録媒体としてTe合金。Conventionally, Te alloy has been used as this type of optical recording medium.

Te酸化物、バブル形成媒体及び有機色素等が用いられ
ていた。
Te oxide, bubble-forming media, organic dyes, etc. were used.

Te合金は、Te−と半導体、例えばAs、Se等の固
溶合金として用いられている。この媒体は、比較的書き
込み感度が高く、又記録再生の光学系を小型にし得る半
導体レーザにも適合するが、化学的に不安定であシ、空
気中放置で容易に劣化することと、構成材料(Te、A
s、Se等)が毒性を示すという問題点がある。
Te alloy is used as a solid solution alloy of Te and semiconductors such as As and Se. This medium has relatively high writing sensitivity and is compatible with semiconductor lasers, which can make the optical system for recording and reproduction compact, but it is chemically unstable and easily deteriorates when left in the air. Material (Te, A
There is a problem that s, Se, etc.) exhibit toxicity.

Te酸化物は、Te合金よ多安定であるが、その光学特
性9例えば吸収率9反射率が酸化状態に敏感に依存する
。そのため、この媒体は媒体形成時に酸化状態を厳しく
制御しなければならないという欠点を有する。
Te oxides are more multistable than Te alloys, but their optical properties, such as absorption and reflectance, depend sensitively on the oxidation state. Therefore, this medium has the disadvantage that the oxidation state must be tightly controlled during the formation of the medium.

バブル形成媒体は、反射層、透過層、吸収層から成る層
構造であシ、繰シ返し反射干渉によシ光の吸収率を高め
高感度化を図っている。したがって、この媒体は現在数
も高感度な媒体の一つでおるが、多層構造のため成膜回
数が多いことと、繰り返し反射干渉が各層の厚さに大き
く依存するため、成膜時の膜厚制御を厳しく行なわなけ
ればならないという欠点がある。
The bubble-forming medium has a layered structure consisting of a reflective layer, a transmitting layer, and an absorbing layer, and uses repeated reflection interference to increase the light absorption rate and achieve high sensitivity. Therefore, this medium is currently one of the most highly sensitive media, but due to its multilayer structure, it requires a large number of film formations, and the repeated reflection interference largely depends on the thickness of each layer. The disadvantage is that the thickness must be strictly controlled.

一方、有機色素媒体は棟々の形態で開発されている。そ
れらを大別すると色素単体型と色素を高分子樹脂中に溶
剤で溶解させた相溶型に分けられる。相溶型の媒体はた
とえば特開昭55−161690号に開示されているよ
うに、高分子樹脂である月(リビニールアセテートに色
素としてポリエステルイ゛エローを溶剤で相溶し、回転
塗布法で基板上に形成される。この媒体は、比較的短波
長領域(400〜500nm ) に吸収を示すが、半
導体レーザの波長域(〜800nm)ではほとんど吸収
が無く、半導体レーザを使用する記録装置の媒体として
は使用することができない。又、一般に相溶型の媒体は
、媒体形成法が溶媒塗布に限られ、基板に樹脂を使用す
る場合は、樹脂を溶解しない溶剤を選択しなければなら
ないという制約がある。一方、色素単体型の媒体として
は、たとえばスクアリリウム色素を蒸着法で形成する媒
体が特開昭56−46221号に開示されている。この
色素は半導体レーザの発振波長である近赤外波長領域に
比較的大きな吸収があるが、記録感度はTe合金よシも
悪い。
On the other hand, organic dye media have been developed in various forms. They can be roughly divided into single dye types and compatible types in which the dye is dissolved in a polymer resin using a solvent. For example, as disclosed in JP-A No. 55-161690, a compatible medium is a polymeric resin (vinyl acetate) mixed with polyester yellow as a pigment using a solvent, and then applied by spin coating. This medium exhibits absorption in a relatively short wavelength region (400 to 500 nm), but has almost no absorption in the semiconductor laser wavelength region (~800 nm), making it difficult for recording devices that use semiconductor lasers. It cannot be used as a medium.In addition, in general, the method for forming a compatible medium is limited to solvent coating, and if a resin is used for the substrate, a solvent must be selected that does not dissolve the resin. On the other hand, as a single dye medium, for example, a medium in which a squarylium dye is formed by a vapor deposition method is disclosed in JP-A-56-46221. Although it has relatively large absorption in the outer wavelength region, its recording sensitivity is worse than Te alloy.

本発明の目的は、前述の従来技術の欠点を改良し、半導
体レーザの波長領域において高感度で化学的に安定な光
記録媒体の製造方法を提供することである。
An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a method for manufacturing an optical recording medium that is highly sensitive and chemically stable in the wavelength region of semiconductor lasers.

すなわち本発明は、 (式中RはOI(、NIE(、、NHX  又はNX、
を表わし、(R’)nはアルコキシル基を表わし、nは
置換数を表わす。(ここでXはアルキル基を表わす。)
)で表わされるナフトキノン色素を蒸発させて、基板の
片側又は両側に前記す7トキノン色素を主成分とする記
録層を形成することを特徴とする。
That is, the present invention provides the following: (wherein R is OI(, NIE(,, NHX or NX,
, (R')n represents an alkoxyl group, and n represents the number of substitutions. (Here, X represents an alkyl group.)
) is evaporated to form a recording layer containing the above-mentioned 7-toquinone dye as a main component on one or both sides of the substrate.

上記の一般式で衣わされるす7トキノン色素は、2.3
−ジシアノ−1,4−ナフトキノンと総称され、5.8
位の助色団の種類によって吸収ピーク波長が可視領域か
ら近赤外領域に変化する。上記例示した助色団はどれも
近赤外領域に吸収ピーク波長があるが、上記一般式中の
RとしてNH,を付加した化合物が半導体レーザの発振
波長と最も良く適合し、さらに(R’)nをアルコキシ
ル基としたものが他の妬条件に対して最も好ましいもの
でで表わされる5−アミノ−2,3−ジシアノ−8−〔
(4−メトキシ)フェニルアミノ)−1,4−ナフトキ
ノンをアセトン溶剤中で測定した場合、この色素のスペ
クトルの吸収極大波長λmaXは770nmであシ、半
導体レーザの発振波長と良く適合することが判る。前記
ナフトキノン色素化合物は、比較的高温、高湿の壌境粂
件でも安定であり、Te合金のような空気中酸化による
劣化は示さない。このことは、保護膜無しで長期間の使
用に耐ることを意味する。又この化合物は、一般の有機
色素と同様に低い熱伝導率を有しており、その値は金属
の−〜−である。したがって、レーザ10  100 光記録時の媒体中での熱の拡散が少なくな9、元照射部
の媒体温度を効率良く高めることができる。
The sootquinone dye coated with the above general formula is 2.3
-Generally known as dicyano-1,4-naphthoquinone, 5.8
The absorption peak wavelength changes from the visible region to the near-infrared region depending on the type of auxochrome. All of the above-mentioned auxochromes have an absorption peak wavelength in the near-infrared region, but the compound in which NH is added as R in the above general formula is most compatible with the oscillation wavelength of a semiconductor laser, and also (R' 5-amino-2,3-dicyano-8-[
When (4-methoxy)phenylamino)-1,4-naphthoquinone is measured in an acetone solvent, the absorption maximum wavelength λmaX of the spectrum of this dye is 770 nm, which is found to match well with the oscillation wavelength of a semiconductor laser. . The naphthoquinone dye compound is stable even in relatively high temperature and high humidity soil conditions, and does not show deterioration due to air oxidation unlike Te alloys. This means that it can withstand long-term use without a protective film. Also, this compound has a low thermal conductivity similar to general organic dyes, and its value is - to - that of metals. Therefore, the diffusion of heat in the medium during laser optical recording is reduced, and the temperature of the medium at the original irradiation part can be efficiently raised.

記録媒体は、上記ナフトキノン色素を蒸着によシ基板の
片面又は両面に付着して形成される。前記のRがNH,
で、アルコキシル基がOCH,、QC,H,。
The recording medium is formed by depositing the naphthoquinone dye on one or both sides of a substrate by vapor deposition. The above R is NH,
So, the alkoxyl group is OCH,,QC,H,.

QC,H,の場合は約220〜240℃程度で蒸着が可
能となシ、QC4H,は約200〜220℃程度で蒸着
が可能となる。またこれらのナフトキノン色素は約30
0℃前後で分解するため、蒸着温度は該分解温度よシ低
く、前記蒸着が可能となる温度よシ数十度高い温度まで
可能である。基鈑材料としては種々のものが使用できる
が一般には、ガラス、 AI 。
In the case of QC,H, vapor deposition is possible at about 220 to 240°C, and in the case of QC4H, vapor deposition is possible at about 200 to 220°C. Moreover, these naphthoquinone dyes have approximately 30
Since it decomposes at around 0° C., the deposition temperature is lower than the decomposition temperature, and can be several tens of degrees higher than the temperature at which the vapor deposition is possible. Various materials can be used as the base plate material, but glass and AI are generally used.

合成樹脂が望ましい。合成樹脂としてはポリメチルメタ
クリル(PMMA)、ポリビニールクロライド(pvc
)、ポリサルホン、ポリカーボネート等がある。基板形
状は円板形状、テープ形状、シート形状が適用できる。
Synthetic resin is preferable. Synthetic resins include polymethyl methacrylate (PMMA) and polyvinyl chloride (PVC).
), polysulfone, polycarbonate, etc. The substrate shape can be a disk shape, a tape shape, or a sheet shape.

基板上に形成されたナフトキノン色素膜に半導体レーザ
光をレンズで収光して照射すると、照射部の色素膜が除
去されて孔が形成される。この孔形成の機構は明確では
ないが、蒸発(昇華)をともなう融′Jv!凝集に因る
と考えられる。形成される孔の大きさは、レーザ光の収
光径、レーザパワー。
When a naphthoquinone dye film formed on a substrate is irradiated with semiconductor laser light focused by a lens, the dye film in the irradiated area is removed and holes are formed. The mechanism of this pore formation is not clear, but it involves evaporation (sublimation). This is thought to be due to aggregation. The size of the hole formed depends on the focused diameter of the laser beam and the laser power.

照射時間に依存するが、大体02〜3pmであることが
望ましい。このような孔形成に必要なレーザエネルギー
は小さなものであシ、したがって、短時間で孔形成が可
能である。具体的には、波長830nmのA I G 
aA s半導体レーザ光をビーム径1.4μmに収光し
た場合、色素膜面上でのパワーは2〜lQmW、照射時
間は50〜300 n seeの範囲で孔を形成するこ
とができる。当然のことながら、上記パワー、あるいは
照射時間の上限値以上の条件でも孔全形成することがで
きるが、上記条件は望ましい使用条件である。情報の記
録は、2進情報を孔の有無に対応させることによシなさ
れる。
Although it depends on the irradiation time, it is preferably about 02 to 3 pm. The laser energy required to form such a hole is small, and therefore the hole can be formed in a short time. Specifically, A I G with a wavelength of 830 nm
When the aAs semiconductor laser beam is focused to a beam diameter of 1.4 μm, holes can be formed with a power on the dye film surface of 2 to 1QmW and an irradiation time of 50 to 300 nsee. Naturally, the holes can be completely formed even under conditions that exceed the upper limits of the above-mentioned power or irradiation time, but the above-mentioned conditions are desirable usage conditions. Information is recorded by associating binary information with the presence or absence of holes.

通常円板状媒体を等速回転させて、記録情報に合わせて
孔を形成して情報を記録する。なお、以上の場合におい
て色素膜の膜厚は0.01〜0.5μmで、好適には0
02〜0.2μmである。
Information is usually recorded by rotating a disk-shaped medium at a constant speed and forming holes in accordance with the recorded information. In addition, in the above case, the film thickness of the pigment film is 0.01 to 0.5 μm, preferably 0.01 to 0.5 μm.
02 to 0.2 μm.

このように記録された情報(孔)の読み出しは、媒体か
らの反射光又は透過光の光量変化を検出することにより
なされる。一般に反射光を検出する方法が採用される。
The information (holes) recorded in this manner is read out by detecting changes in the amount of light reflected or transmitted from the medium. Generally, a method of detecting reflected light is adopted.

これは、反射光検出の方が光学系が簡単になるためであ
る。即ち、一つの光学系で投光と集光が可能であるため
である。読み出しはレーザ光を連続させて照射する。そ
の時の光量は媒体に何らの形状変化が起らない弱いエネ
ルギーに設定され、通常記録時の光量の−〜−であ  
lO る。
This is because the optical system for reflected light detection is simpler. That is, this is because one optical system can project and collect light. For reading, laser light is continuously irradiated. The amount of light at that time is set to a weak energy that does not cause any shape change to the medium, and is about the same as the amount of light during normal recording.
lOru.

記録・再生時の光の入射方向として、媒体面側・  と
基板面側の2通シがある。本例の如き単層媒体では両方
向の配置とも使用可能である。基板面側入射では、媒体
面上に付着した麿埃に影響されることなく記録・再生が
可能であシ、よシ望ましい形態である。なお、媒体が形
成されている面の反対側の基板面上に付着した厘埃及び
その面のキズ等の欠陥は、基板厚さが1mm以上であれ
ば、その面でのビーム径が充分大きいので記録・再生に
悪影響を与えない。
There are two directions of light incidence during recording and playback: on the medium surface and on the substrate surface. Both orientations can be used with single layer media such as the present example. When the light is incident on the substrate surface side, recording and reproduction can be performed without being affected by dust attached to the surface of the medium, which is a very desirable form. Note that defects such as dust attached to the substrate surface opposite to the surface on which the medium is formed and defects such as scratches on that surface will cause the beam diameter on that surface to be sufficiently large if the substrate thickness is 1 mm or more. Therefore, it does not adversely affect recording/playback.

情報は孔列として記録される。孔列は一般に同心円状又
はスパイラル状の多数のトラックを形成する。再生する
場合、光ビームは特定トラックの孔列上を精度良く追跡
する必要がある。これを実現する一つの手段として回転
機構の精度を空気軸受などを使用して高めるという方法
がある。しかし、この場合は、回転系が複雑となシ、又
高価となるので実用的ではない。よシ望ましいのは、基
板上に光の案内溝を設ける方法である。ビーム径程度の
溝に光が入射すると、光が回折さ、れる。ビーム中心が
溝からずれるにつれて回折光強度の空間分布が異なシ、
これを検出して、ビームを溝の中心に入射させるように
サーボ系を構成することができる。通常溝の幅は、0.
6〜1.2μm、その深さは使用する記録再生波長の−
〜−の範囲に設定さ4 れる。したがって記録層は鍔付基板面上に形成される。
Information is recorded as a series of holes. The rows of holes generally form a number of concentric or spiral tracks. When reproducing, the light beam needs to accurately track the hole array of a specific track. One way to achieve this is to increase the precision of the rotating mechanism by using air bearings or the like. However, in this case, the rotation system is complicated and expensive, so it is not practical. A more desirable method is to provide a light guide groove on the substrate. When light enters a groove about the diameter of the beam, it is diffracted. The spatial distribution of the diffracted light intensity changes as the beam center shifts from the groove,
A servo system can be configured to detect this and direct the beam to the center of the groove. Usually the width of the groove is 0.
6 to 1.2 μm, its depth is - of the recording/reproducing wavelength used.
It is set in the range of ~-4. Therefore, the recording layer is formed on the flanged substrate surface.

2.3−ジシアノ−1,4ナフトキノン色素の薄膜は通
常の抵抗加熱蒸着法によシ形成することができる。室温
に保持された基板上に薄膜を形成すると、その結晶性は
無定形、即ち非晶質となる。
Thin films of 2,3-dicyano-1,4 naphthoquinone dyes can be formed by conventional resistance heating vapor deposition methods. When a thin film is formed on a substrate kept at room temperature, its crystallinity becomes amorphous, that is, it becomes amorphous.

非晶質膜からの反射光には、多結晶膜で見られる粒界ノ
イズが含ま姓ないので非晶質膜を使用した時の再生のジ
Nは良好である。
Since the reflected light from the amorphous film does not contain the grain boundary noise seen in polycrystalline films, the reproduction di-N is good when the amorphous film is used.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は実際に蒸着で基板上に作成した5−アミノ−2
,3−ジシアノ−8−((4−メトキシ)フェニルアミ
ノ)−1,4−ナフトキノン色素の薄膜の吸収スペクト
ルを示したものである。これより、A I G aA 
s半導体レーザの発振波長である〜800nm 付近に
吸収極太があQ、本色累が半導体レーザを使用する光学
記録媒体として好適であることがN認された。なお、本
蒸着膜の複素屈折率は波長830 nmで2.4−10
.7 である。
Figure 1 shows 5-amino-2 actually created on a substrate by vapor deposition.
, 3-dicyano-8-((4-methoxy)phenylamino)-1,4-naphthoquinone dye thin film absorption spectrum. From now on, A I G aA
It was found that there was a very thick absorption near ~800 nm, which is the oscillation wavelength of the s semiconductor laser, and that this color layer was suitable as an optical recording medium using a semiconductor laser. The complex refractive index of the deposited film is 2.4-10 at a wavelength of 830 nm.
.. It is 7.

次に1.2 mm厚の円板状のPIVIMA基根上に、
5−アミノ−2,3−ジシアノ−8−((4−メトキシ
)フェニルアミノ)−1,4−す7トキノン色素を抵抗
加熱法で蒸着し、膜厚935Aの膜を得た。抵抗加熱ボ
ート材はMoであシ、蒸着時の真空度は1.5X10”
 Torr以下とした。基板は室温自然放置とし、蒸着
による基板温度上昇はほとんど認められなかった。ボー
ト温度を徐々に上げて行くと233℃で色素が融解し、
この温度に固定して蒸着した。蒸着速度は5A/sec
である。
Next, on the disc-shaped PIVIMA base with a thickness of 1.2 mm,
5-amino-2,3-dicyano-8-((4-methoxy)phenylamino)-1,4-su7toquinone dye was vapor-deposited by a resistance heating method to obtain a film with a thickness of 935A. The resistance heating boat material is Mo, and the degree of vacuum during vapor deposition is 1.5X10"
Torr or less. The substrate was left to stand at room temperature, and almost no increase in substrate temperature was observed due to vapor deposition. Gradually increasing the boat temperature, the dye melts at 233℃,
Vapor deposition was carried out by fixing this temperature. Vapor deposition rate is 5A/sec
It is.

なお、本色累の分解温度は295℃であシ、蒸着温度よ
り十分高い。
The decomposition temperature of the main color is 295° C., which is sufficiently higher than the deposition temperature.

第2図は、このようにして形成された媒体1を示してい
る。PMMA基板10上に色素膜20が形成されている
。この媒体1に矢印30の方向から波長830 nmの
半導体レーザ光を光学系(図示せず)で集光して照射し
た。この場合、レーザ光は媒体面上のパワーで2〜lQ
mW、照射時間50〜300nsec、  媒体移動線
速度13 m/ seeの条件で行なった。この記録波
長での記録感度は約40mJ/dであった。この記録に
よシ、色素膜20中に約1μm前後の径の孔40が形成
された。このような記録は、基板10を介して、即ち矢
印50の方向から光音入射しても同様に可能であった。
FIG. 2 shows the medium 1 thus formed. A dye film 20 is formed on a PMMA substrate 10. This medium 1 was irradiated with semiconductor laser light having a wavelength of 830 nm in the direction of the arrow 30, condensed by an optical system (not shown). In this case, the laser beam has a power of 2 to 1Q on the medium surface.
The conditions were mW, irradiation time 50 to 300 nsec, and linear velocity of medium movement 13 m/see. The recording sensitivity at this recording wavelength was about 40 mJ/d. According to this record, holes 40 with a diameter of about 1 μm were formed in the pigment film 20. Such recording was similarly possible even if the light sound was incident through the substrate 10, that is, from the direction of the arrow 50.

上記実施例から明らかなように、不発明によシ得られる
光学記録媒体は、高感度であシかつ化学的に安定で長期
保存に耐え、加えて媒体形成が容易であるという優れた
利点を有していることが判る。なお、本実施例ではアル
コキシル基(R’ )n 、!:してメトキシル基CH
,O−を用いる例を示したがこの他にエトキシル基C1
H,O−、グロボキシル基C,H2O−等の炭素の多い
ものでも実施例とほぼ同様の製造条件で作製でき、等し
い有効性が得られる。
As is clear from the above examples, the optical recording medium obtained by the invention has the excellent advantages of being highly sensitive, chemically stable, durable for long-term storage, and easy to form. It turns out that it has. In this example, the alkoxyl group (R')n,! :Methoxyl group CH
, O- is shown, but in addition to this, ethoxyl group C1
Even those containing a large amount of carbon such as H, O-, globoxyl group C, H2O- can be produced under almost the same manufacturing conditions as in the example, and the same effectiveness can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5−アミノ−2,3ジシアノ−8−〔(4−メ
トキシ)フェニルアミノ)−1,4−ナストキノ/色累
蒸層欣の吸収スペクトルを表わすグラフ、第2図は、本
発明による光学記録媒体の断面図であり図中10は基板
、20は色素膜、30.50は光の入射方向、40は孔
を示す。 代理人ブト理上 IJg  Jf   :’、會ン、 
−’i−/ 昂  1  l 披 長 (nm)
FIG. 1 is a graph showing the absorption spectrum of 5-amino-2,3dicyano-8-[(4-methoxy)phenylamino)-1,4-nastoquino/color cumulus, and FIG. 2 is a graph showing the absorption spectrum of the present invention. In the figure, 10 is a substrate, 20 is a dye film, 30.50 is a light incident direction, and 40 is a hole. Agent Butori IJg Jf:', Meeting,
-'i-/ length (nm)

Claims (1)

【特許請求の範囲】[Claims] (式中RはOH,NH,、NHX又はNX、を表わし、
(R’)n  はアルコキシル基を表わし、nは置換数
を表わす(ここでXはアルキル基を表わす。))で表わ
されるナフトキノン色素全蒸発させて、基板の片側又は
両側に前記ナフトキノン色素を主成分とする記録層を形
成することを特徴とする光学記録媒体の製造方法。
(In the formula, R represents OH, NH, NHX or NX,
(R')n represents an alkoxyl group, n represents the number of substitutions (herein, X represents an alkyl group)) The naphthoquinone dye represented by 1. A method for producing an optical recording medium, comprising forming a recording layer as a component.
JP58232328A 1983-12-09 1983-12-09 Manufacture of optical recording medium Granted JPS59131493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58232328A JPS59131493A (en) 1983-12-09 1983-12-09 Manufacture of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232328A JPS59131493A (en) 1983-12-09 1983-12-09 Manufacture of optical recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57157475A Division JPS5948187A (en) 1982-06-25 1982-09-10 Photo recording medium

Publications (2)

Publication Number Publication Date
JPS59131493A true JPS59131493A (en) 1984-07-28
JPH0251392B2 JPH0251392B2 (en) 1990-11-07

Family

ID=16937470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232328A Granted JPS59131493A (en) 1983-12-09 1983-12-09 Manufacture of optical recording medium

Country Status (1)

Country Link
JP (1) JPS59131493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044497A1 (en) * 1997-03-31 1998-10-08 Matsushita Electric Industrial Co., Ltd. Optical recording medium and method of its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044497A1 (en) * 1997-03-31 1998-10-08 Matsushita Electric Industrial Co., Ltd. Optical recording medium and method of its manufacture

Also Published As

Publication number Publication date
JPH0251392B2 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
JPH0415115B2 (en)
JPH0415112B2 (en)
JPS6052940A (en) Optical recording medium
JPS6063744A (en) Optical information recording medium
JPS59131493A (en) Manufacture of optical recording medium
JPS6141597A (en) Optical information recording medium
JPH0567438B2 (en)
JP2630381B2 (en) Optical information recording medium
JPS6089842A (en) Optical recording medium
JPH0568016B2 (en)
JPS60151850A (en) Optical recording medium
JPH0251391B2 (en)
JPS59131494A (en) Optical recording system
JPH0250874B2 (en)
JPH0745259B2 (en) Optical information recording medium
JPS6339387A (en) Optical recording medium
JPH0648045A (en) Optical recording medium
JPS61246092A (en) Optical information-recording medium
JP2510529B2 (en) Optical information recording medium
JPS639578A (en) Optical recording medium
JPS61244588A (en) Optical information-recording medium
JPS61104345A (en) Optical information recording medium
JPS62125552A (en) Optical recording medium
JPS60190388A (en) Optical recording medium
JPH0549474B2 (en)