JPS5975676A - Distortion sensor - Google Patents

Distortion sensor

Info

Publication number
JPS5975676A
JPS5975676A JP18585582A JP18585582A JPS5975676A JP S5975676 A JPS5975676 A JP S5975676A JP 18585582 A JP18585582 A JP 18585582A JP 18585582 A JP18585582 A JP 18585582A JP S5975676 A JPS5975676 A JP S5975676A
Authority
JP
Japan
Prior art keywords
layer
pattern
film
resistive
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18585582A
Other languages
Japanese (ja)
Other versions
JPH0259634B2 (en
Inventor
Koichiro Sakamoto
孝一郎 坂本
Shinichi Mizushima
水島 真一
Shozo Takeno
武野 尚三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Tokyo Sanyo Electric Co Ltd
Toshiba Corp
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Toshiba Corp, Tokyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP18585582A priority Critical patent/JPS5975676A/en
Publication of JPS5975676A publication Critical patent/JPS5975676A/en
Publication of JPH0259634B2 publication Critical patent/JPH0259634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain the distortion sensor of high degree of accuracy and high reliability at low cost by a method wherein an insulating resin layer, a resistive layer having Ni, Cr and Si as main ingredients, a resistive layer having Ti as a main ingredient, and a conductive layer having Cu as a main ingredient are formed by lamination on a beam material successively, and the prescribed pattern is formed by performing a photoetching. CONSTITUTION:After the pattern forming surface of the beam body 1 has been flattened by polishing and cleaned, polyimide resin is uniformly applied on the pattern forming surface. Subsequently, the above is hardened by heating and an insulating resin layer 14 consisting of polyimide resin is formed. Then, the first resistive layer 15 is obtained by forming an Ni-Cr-Si layer on the insulating resin layer 14 by performing a sputtering, a Ti film layer is formed as the second resistive layer 16, and a Cu film layer is formed on said Ti film layer as a conductive layer 17. After the prescribed pattern has been formed on the above laminated body, the pattern as shown in the diagram (a) is obtained by performing an etching on the Cu, Ti and Ni-Cr-Si located on the region other than the pattern above-mentioned. Subsequently, the pattern as shown in the diagram (b) is obtained by performing an etching on strain gage resistive bodies 8a- 8d and the Cu layer of the upper layer of a temperature sensor 9.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえば電子秤に用いられる歪センサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a strain sensor used, for example, in an electronic scale.

〔発明の技術的背景およびその問題点〕従来の薄膜抵抗
体によυ形成された歪センサにおいては、ストレンゲー
ジ抵抗体としてNiCrやNiCrサーメットが用いら
れ、ストレンゲージ・ビーム体間の絶縁層にはSjO+
やTa 205などの無機酸化物層が用いられている。
[Technical background of the invention and its problems] In conventional strain sensors formed using thin film resistors, NiCr or NiCr cermet is used as the strain gauge resistor, and the insulating layer between the strain gauge and the beam body is is SjO+
Inorganic oxide layers such as Ta 205 and Ta 205 are used.

この場合、ストレンゲージ抵抗体はゼロ点の温度ドリフ
トラ少くするために抵抗の温度係数を極力小さくしなけ
ればならないが、NiCrやNiCrサーメットは膜形
成時の真空度依存性が太きいため、温度係数のバラツキ
を小さくすることは容易でない。また、絶縁層として上
述した無機酸化物を用いた場合ビーム体表面の傷やビン
ポールの彫物を受けやすく絶縁不良が生じ易い。そして
、歪センサとして使用するとき、ビーム体の伸縮によf
) Ta2O!iなどは柔軟性に乏しいため、大きな衝
撃がビーム体に加わったときなどクラック等が発生し易
い。さらに、導体層としてAuが用いられているが高価
となる。
In this case, the temperature coefficient of resistance of the strain gauge resistor must be made as small as possible in order to reduce temperature drift at the zero point, but NiCr and NiCr cermet have a strong dependence on the degree of vacuum during film formation, so the temperature coefficient It is not easy to reduce the variation in Furthermore, when the above-mentioned inorganic oxide is used as the insulating layer, the beam body surface is susceptible to scratches and vinyl pole carvings, and insulation defects are likely to occur. When used as a strain sensor, f
) Ta2O! Since materials such as i have poor flexibility, cracks are likely to occur when a large impact is applied to the beam body. Furthermore, although Au is used as the conductor layer, it is expensive.

〔発明の目的」 本発明は、このような点に鑑みなされたもので、高精度
で信頼性が高く安価な歪センサを得ることを目的とする
[Object of the Invention] The present invention was made in view of the above points, and an object of the present invention is to obtain a highly accurate, highly reliable, and inexpensive strain sensor.

〔発明の概要〕[Summary of the invention]

本発明は、ビーム体上に絶縁樹脂層、NiCrSi k
主成分とする第一抵抗層、T1を主成分とする第二抵抗
層およびCu’に主成分とする導体層を順次積層形成し
、フォトエツチングにより所定のパターンを形成するこ
とによジ、これらの組合せの特°性面から歪センサに好
適となシ、パターン形成も容易となるように柚成したも
のである。
The present invention includes an insulating resin layer, NiCrSi k, on the beam body.
A first resistance layer containing T1 as the main component, a second resistance layer containing T1 as the main component, and a conductor layer containing Cu' as the main component are sequentially laminated, and a predetermined pattern is formed by photo-etching. It is suitable for strain sensors in terms of the combination of characteristics, and it is made so that pattern formation is easy.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described based on the drawings.

まず、第1図は歪センサの軌路を示ずもので、ジュラル
ミンや5O8630などを機械加工してなるビーム体(
1)には溝(2)によυ連結されつつ薄肉変形部(3)
(4)を形成する穴(5)(6’lが形成されている。
First of all, Figure 1 does not show the trajectory of the strain sensor; it is a beam body (made by machining duralumin, 5O8630, etc.).
1) is connected by the groove (2) and has a thin deformed part (3).
Holes (5) (6'l) forming (4) are formed.

そして、ビーム体(1)の上面には歪センサ回路(7)
がパターン形成されてお9、ストレンゲージ抵抗体(8
cL)(8/’)(80)(8d)は薄肉変形部(3)
 (4)上に設けられている。
A strain sensor circuit (7) is installed on the top surface of the beam body (1).
is patterned 9, and the strain gauge resistor (8
cL) (8/') (80) (8d) is the thin deformed part (3)
(4) Provided above.

また、(9)は温度センサでありビーム体(1)の変形
量の温度による変化を補償する抵抗体である。これらノ
ストレンゲージ抵抗体(8a)(8A)(8G)(8d
)や温度センサ(9)はリードパターン←O)により互
いに連結され、第2図に示すような歪センサ回路が形成
されている。
Further, (9) is a temperature sensor, which is a resistor that compensates for changes in the amount of deformation of the beam body (1) due to temperature. These strain gauge resistors (8a) (8A) (8G) (8d
) and temperature sensor (9) are connected to each other by a lead pattern ←O) to form a strain sensor circuit as shown in FIG.

また、ビーム体(1)にはベースαJに対する取付用の
孔Qzが形成され、先端側には荷重が印加される金具が
接続される孔α3が形成されている。@3図に、荷重が
印加されたときの変形の様子を示すもので、今荷重Wが
印加されるとビーム体(1)は変形し、ストレンゲージ
抵抗体(8cL)(84)は引張υ歪を受け、ストレン
ゲージ抵抗体(8L−)(8d)は圧縮歪を受け、それ
ぞれの抵抗値が変化し、歪センサ回路に出力電圧が発生
するというものである。
Further, a hole Qz for attachment to the base αJ is formed in the beam body (1), and a hole α3 to which a metal fitting to which a load is applied is connected is formed on the tip side. Figure @3 shows the state of deformation when a load is applied. Now, when a load W is applied, the beam body (1) deforms, and the strain gauge resistor (8cL) (84) undergoes tensile υ Upon receiving strain, the strain gauge resistors (8L-) (8d) receive compressive strain, their respective resistance values change, and an output voltage is generated in the strain sensor circuit.

しかして、歪センサ回路の形成について第4図ないし第
6図により説明する。まず、ビーム体(1)のパターン
形成面を平坦に研磨し清浄に洗浄した後、1000cp
の粘度をもつワニス状のポリイミド樹脂を滴下し、ビー
ム体(1)をスピンナにより約160Orpmの回転速
度で回転させてポリイミドat 脂tパターン形成面に
均一に塗布する。その後、100℃で1時間乾燥後、2
00℃で1時間加熱硬化することによ少厚さ4μのポリ
イミド樹脂からなる絶縁樹脂層0冶を形成する。ついで
、スパッタリングにより、この絶縁樹脂層q→上に厚さ
1ooo人のNi Cr S i層(Ni;70.Cr
:20.Si’IO)を形成して第一抵抗層α9とする
。さらに、第二抵抗層(teとして厚さ1μのTi膜層
を形成し、その表面に導体層α7)として厚さ2μのC
u膜層を形成する。第4図はこのようにして得られた積
層体を示す。ここで、スパッタリング糸付は、初期到達
真空度6 x 1O−6Torr、アルゴン分圧Phr
 = 4 x 1O−3Torrとし、スパッタリング
出力にはI)O’FN、源を使用する。
The formation of the strain sensor circuit will now be explained with reference to FIGS. 4 to 6. First, the pattern forming surface of the beam body (1) was polished flat and cleaned, and then
A varnish-like polyimide resin having a viscosity of 100 ml is applied dropwise and the beam body (1) is rotated by a spinner at a rotational speed of about 160 rpm to uniformly apply the polyimide resin to the surface on which the polyimide pattern is formed. After that, after drying at 100℃ for 1 hour,
By heating and curing at 00° C. for 1 hour, an insulating resin layer made of polyimide resin with a thickness of 4 μm is formed. Then, by sputtering, a 100 mm thick NiCrSi layer (Ni; 70.Cr
:20. Si'IO) is formed to form the first resistance layer α9. Furthermore, a Ti film layer with a thickness of 1 μm is formed as a second resistance layer (te, and a conductor layer α7 on the surface of the Ti film layer with a thickness of 2 μm).
Form a u film layer. FIG. 4 shows the laminate thus obtained. Here, for the sputtering thread, the initial vacuum level is 6 x 1O-6 Torr, and the argon partial pressure is Phr.
= 4 x 1O-3 Torr, and use I) O'FN source for sputtering output.

このようにして形成された積層体につき、フォトエツチ
ングによシ所定のパターンを得る。寸ず、its 5 
rv ta+に示ずよりにフォトレジストで所定のパタ
ーンを形成後、このパターン部以外の領域のcu。
A predetermined pattern is obtained by photo-etching the laminate thus formed. Sunzu, its 5
After forming a predetermined pattern with photoresist as shown in rv ta+, cu in the area other than this pattern part.

Ti、NiCrSi fぞれぞれのエッチャントを用い
てエツチングし、図示のようなパターンを得る。ここで
、パターン部以外の領域はポリイミド樹脂層、1なわち
絶#′咬樹脂層α→が露出する。ここに、最後のNiC
rSi層のエツチングにおいてフッ化水酸塩化第二鉄系
のエッチャントを用いるものであり、ポリイミド樹脂は
このエッチャントには侵さ−れることなく最適である。
Etching is performed using Ti and NiCrSi f etchants to obtain a pattern as shown. Here, the polyimide resin layer 1, that is, the absolute resin layer α→ is exposed in the area other than the pattern portion. Here is the last NiC
In etching the rSi layer, a ferric fluoride hydroxide etchant is used, and polyimide resin is not attacked by this etchant and is therefore ideal.

ちなみに、公知の絶縁層である5iOz層の場合にCは
フッ化水酸塩化第二鉄系の侵蝕が倣しく使用できない。
Incidentally, in the case of a 5iOz layer, which is a known insulating layer, C cannot be used because of the corrosion caused by ferric fluoride hydroxide.

つづいて、第5図(痢に示すように、ストレンゲージ抵
抗体(8a)(84)(8c)(8ii)S温度センサ
(9)上層の61層をCuのエッチャントを用いてエツ
チングし、図示のようなパターンを得る。これにより、
パターン上の必要箇所にはTi膜が露出することになる
。この場合、cuのエッチャントは塩化第二鉄系のもの
であシ、このエッチャントによυTi膜を侵蝕すること
がないため、上述のような選択エツチングが可能であシ
、この膜構成は好都合である。このプロセスにょp温度
センサ(19が完成する。さらに、to5図fGlに示
すように、ストレンゲージ抵抗体(8cL)(8句(s
c)(sd)に積層されているTi層をTiのエッチャ
ントでエツチングすることにより 、NiCrSiによ
る第一抵抗層oF9が露出し、歪センサ回路が完成され
る。ここで、Ti膜のエツチングはフッ化水素酸の7H
釈液を用いるが、このエッチャントによりNiCrSi
膜が侵蝕されることがなく、上述した選択エツチングが
可能となる。第6図は第5図(、)のX−又断面図を示
す。
Subsequently, as shown in FIG. 5, the upper layer 61 of the strain gauge resistors (8a) (84) (8c) (8ii) and the S temperature sensor (9) was etched using a Cu etchant. We get a pattern like .This gives us a pattern like
The Ti film is exposed at necessary locations on the pattern. In this case, the etchant for Cu is ferric chloride, and since this etchant does not corrode the υTi film, selective etching as described above is possible, and this film configuration is convenient. be. In this process, the temperature sensor (19) is completed.Furthermore, as shown in the to5 diagram fGl, the strain gauge resistor (8 cL) (8 lines (s)
c) By etching the Ti layer laminated in (sd) with a Ti etchant, the first resistance layer oF9 made of NiCrSi is exposed, and the strain sensor circuit is completed. Here, the Ti film is etched by 7H of hydrofluoric acid.
This etchant makes NiCrSi
The film is not eroded and the selective etching described above becomes possible. FIG. 6 shows a sectional view along the line X of FIG. 5 (,).

この第6図に示すように、リードノくターン00層はN
iCrSi / Ti /Cuの積層体であり、温度セ
ンサ(9)はNiCrSi / Ti O,) rRI
H体であり、ストレンゲージ抵抗体(8tL)(8’+
4)(8c)(8d)はNiCrSi層のみにより構成
されることになる。
As shown in Fig. 6, the lead no. turn 00 layer is N.
It is a laminate of iCrSi/Ti/Cu, and the temperature sensor (9) is made of NiCrSi/TiO,) rRI
H body, strain gauge resistor (8tL) (8'+
4) (8c) (8d) are composed only of NiCrSi layers.

したがって、本実施例によれば、NiCrSi層からな
る第一抵抗層09は約200μΩαと比抵抗が大きく、
かつ、抵抗温度係数が数ppm/1?:と小さいため、
ストレンゲージ抵抗体(8eL) (84)(8c )
’ (8d)として好適である。さらに、スパッタリン
グ形成時、真空度、アルゴン分圧、スパッタリング速度
等の形成条件の依肴性が少ないため製造が容易である。
Therefore, according to this embodiment, the first resistance layer 09 made of the NiCrSi layer has a large specific resistance of about 200 μΩα.
And the temperature coefficient of resistance is several ppm/1? : Because it is small,
Strain gauge resistor (8eL) (84) (8c)
' (8d) is suitable. Furthermore, during sputtering formation, there is little dependence on formation conditions such as degree of vacuum, argon partial pressure, sputtering speed, etc., so manufacturing is easy.

また、T1膜は抵抗温度係数が膜厚1μのとき3000
ppm/℃と大きいため、温度センサ(9)として好適
である。
In addition, the temperature coefficient of resistance of the T1 film is 3000 when the film thickness is 1μ.
Since the temperature is as large as ppm/°C, it is suitable as a temperature sensor (9).

しかも、Cuは比抵抗が小さく (2〜3 x to−
’Ωcrn)、パターン形成後もリード線半田付けが可
能であって安価でリードパターンα1として適している
。結局、ポリイミド樹脂層/NiCr5i層ZTi層Z
Cu層の膜構成によれば、それらの特性面から歪センサ
として好適であり、かつ、選択エツチングによるパター
ン形成で容易であるため、この面からも歪センサとして
好適である。
Moreover, Cu has a small resistivity (2 to 3 x to-
'Ωcrn), it is possible to solder the lead wires even after the pattern is formed, it is inexpensive, and it is suitable as the lead pattern α1. In the end, polyimide resin layer/NiCr5i layer ZTi layer Z
According to the film structure of the Cu layer, it is suitable as a strain sensor due to its characteristics, and since it is easy to form a pattern by selective etching, it is also suitable as a strain sensor from this point of view.

なお、本実施例では絶縁樹脂層Q噌としてポリイミド樹
脂を用いたが、環化系ポリブタジェンゴムを用いてもよ
い。まず、ビーム体(1)のパターン形成面を平滑に研
磨し清浄に洗浄した後、粘度300epに調整されたフ
ェス状の環化系ポリブタジェンゴムを滴下し、ビーム体
(1)ヲスピンナにより約160Orpmの回転速度で
回転させて環化系ポリブタジェンゴムをパターン形成面
に均一に塗布する。
In this example, polyimide resin was used as the insulating resin layer Q, but cyclized polybutadiene rubber may also be used. First, the pattern forming surface of the beam body (1) is polished smooth and cleaned, and then a face-shaped cyclized polybutadiene rubber whose viscosity is adjusted to 300 ep is dropped, and the beam body (1) is spun with a spinner. The cyclized polybutadiene rubber is uniformly applied to the pattern forming surface by rotating at a rotation speed of 160 rpm.

そして、80℃で30分溶剤を蒸発させた後、180℃
で1時間加熱硬化させ茗ことによp厚さ4μの環化系ポ
リブタジェンゴム膜を形成する。ついで、ポリイミド樹
脂の場合と同様に、スパッタリングにより第一、二抵抗
層α→a0、導体層αηを形成した後、フォトエツチン
グにより所定のパターンが形成される。この場合にもエ
ツチングに際し、環化系ポリブタジェンゴム膜がエッチ
ャントにより侵蝕されることはない。
Then, after evaporating the solvent for 30 minutes at 80°C,
By heating and curing for 1 hour, a cyclized polybutadiene rubber film having a thickness of 4 μm was formed. Next, as in the case of polyimide resin, after forming the first and second resistance layers α→a0 and the conductor layer αη by sputtering, a predetermined pattern is formed by photoetching. In this case as well, the cyclized polybutadiene rubber film is not corroded by the etchant during etching.

ところで、リードパターンαQの抵抗値を小さくするに
は、パターン幅を大きくするか、膜厚を厚くすることが
考えられる。この場合、小型歪センーリなどのようにパ
ターン面積が限定されるときには、リードパターン叫の
膜厚を厚くすることが必要となる。ところが、たとえば
導体層助としてのCu層を3μから5μの膜厚にすると
、膜形成時の企が蓄積されて剥離等の現象がしばしば発
生する。一方、歪の少ない導体層材料としてAuやAI
!が公知であるが、Auは高価であI)、Alでは半田
付けでないものである。このような場合、導体層(17
)としてはAI!−Cu層を用い1+、ばよい。たとえ
ば、絶縁樹脂層H−4μ、 NiCrSi層=0.14
.Ti層=ip、At層=5μ、Cu層=1μに積層形
成した後、前述したプロセスによる選択エツチングで所
定のパターンが得られたものでおる。ずなわら、歪のな
い厚膜化がAJ層により達成さit、半田付けはCu層
の存在により確保される。この場合、 AI!のエッチ
ャントはリン酸−酢酸系のエッチャントが用いられ、こ
れによればTi膜を侵蝕することなく選択エツチングが
可能となる。なおこのような4層の積層構造NiCrS
i / TI /Aj?/Cuは、すべて同一真空槽内
で真空を破らずに連続して積層される場合は相互の膜間
の督着性は良好であるが、Ni(:rsi / Ti/
Al!を同一真空槽内で連続して積層した後真空槽から
取出し、AI!層上にC11層を積層した場合にはAl
膜とCu膜との間に密着不良を生じ易いことがわかった
ものである。一方、Cu膜を積層すZ)前にNiあるい
はTi膜を数100人程度に形成し、Cu膜を積層した
場合には密着性が良好となったものである。したがって
、すべて同一真空槽内で積層形成しない場合には、Ni
CrSi /’l’i/Ae /Ni /cuあるいは
NiCrSi/Ti/A/’/Ti/Cuの層構成が望
ましい。
By the way, in order to reduce the resistance value of the lead pattern αQ, it is possible to increase the pattern width or increase the film thickness. In this case, when the pattern area is limited, such as in a small strain sensor, it is necessary to increase the film thickness of the lead pattern. However, if the thickness of the Cu layer as an auxiliary conductive layer is made to be 3 to 5 microns, for example, problems during film formation are accumulated and phenomena such as peeling often occur. On the other hand, Au and AI can be used as conductor layer materials with low distortion.
! is known, but Au is expensive and Al cannot be soldered. In such a case, the conductor layer (17
) is AI! -1+ using a Cu layer is fine. For example, insulating resin layer H-4μ, NiCrSi layer=0.14
.. After forming a Ti layer with a thickness of ip, an At layer with a thickness of 5μ, and a Cu layer with a thickness of 1μ, a predetermined pattern was obtained by selective etching using the process described above. Of course, a thick film without distortion is achieved by the AJ layer, and soldering is ensured by the presence of the Cu layer. In this case, AI! A phosphoric acid-acetic acid based etchant is used as the etchant, which enables selective etching without corroding the Ti film. Note that such a four-layer stacked structure NiCrS
i/TI/Aj? /Cu has good adhesion between the films when they are all successively laminated in the same vacuum chamber without breaking the vacuum, but Ni(:rsi / Ti /
Al! After stacking them continuously in the same vacuum chamber, they are taken out from the vacuum chamber and AI! When a C11 layer is laminated on the layer, Al
It was found that poor adhesion easily occurs between the film and the Cu film. On the other hand, when several hundred Ni or Ti films were formed before laminating the Cu film and the Cu film was laminated, good adhesion was obtained. Therefore, if all layers are not formed in the same vacuum chamber, Ni
A layer configuration of CrSi/'l'i/Ae/Ni/cu or NiCrSi/Ti/A/'/Ti/Cu is desirable.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述したようにビーム体上に絶縁樹脂層、N
i(:rSiを主成分とする第一抵抗層、Tiを主成分
とする第二抵抗層およびCuを主成分とする導体層を・
順次積層形成し、フォトエツチングによυ所定のパター
ンを形成したので、これらの層組合せに基づく特性面の
利点から歪センサに好適となυ、パターン形成も容易で
あシ、よって、高精度で信頼性の高い安価なものを提供
できるものであ、る。
As described above, the present invention provides an insulating resin layer on the beam body, N
i(:r) A first resistance layer containing Si as a main component, a second resistance layer containing Ti as a main component, and a conductor layer containing Cu as a main component.
Since the layers are sequentially laminated and a predetermined pattern is formed by photo-etching, it is suitable for strain sensors due to the characteristics based on the combination of these layers.The pattern formation is also easy, so it can be used with high precision. It is possible to provide a highly reliable and inexpensive product.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は斜視図
、第2図は回路図、第3図は動作状態の側面図、第4図
は要旨を示す縦断側面図、第5図(a1〜(−1はフォ
トエツチングプロセスを示す平面図、第6図は第5図(
C1のx−x’線断面図である。 1・・・ビーム体、 14・・・絶縁樹脂層、15・・
・第一抵抗層、16・・・第二抵抗層、17・・・導体
層]、、3鳥 ノもLLい イも5昆 oBOは  51υ
The drawings show one embodiment of the present invention; FIG. 1 is a perspective view, FIG. 2 is a circuit diagram, FIG. 3 is a side view in an operating state, FIG. 4 is a longitudinal side view showing the gist, and FIG. Figures (a1 to (-1) are plan views showing the photoetching process, Figure 6 is Figure 5 (
It is a sectional view taken along the line xx' of C1. DESCRIPTION OF SYMBOLS 1... Beam body, 14... Insulating resin layer, 15...
・First resistance layer, 16...Second resistance layer, 17...Conductor layer], 3 Tori no LL Imo 5 Kobo BO is 51υ

Claims (1)

【特許請求の範囲】 1 ビーム体上に絶縁樹脂層、NiCrSiを主成分と
する第一抵抗層、Tiを主成分とする第二抵抗層および
Cuを主成分とする導体層を順次積層形成し、フォトエ
ツチングにより所定のパターンを形成したことを特徴と
する歪センサ。 2 絶縁4ml脂層がポリイミド樹脂により形成される
ことを特徴とする特許請求の範囲第1項記載の歪センサ
。 3 絶縁樹脂層が環化系ポリブタジェンゴムにより形成
されることを特徴とする特許請求の1ii4囲第1項第
1の歪センサ。
[Claims] 1. An insulating resin layer, a first resistance layer mainly composed of NiCrSi, a second resistance layer mainly composed of Ti, and a conductor layer mainly composed of Cu are sequentially laminated on the beam body. A strain sensor characterized in that a predetermined pattern is formed by photoetching. 2. The strain sensor according to claim 1, wherein the insulating 4ml fat layer is formed of polyimide resin. 3. The strain sensor of claim 1ii4, item 1, wherein the insulating resin layer is formed of cyclized polybutadiene rubber.
JP18585582A 1982-10-22 1982-10-22 Distortion sensor Granted JPS5975676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18585582A JPS5975676A (en) 1982-10-22 1982-10-22 Distortion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18585582A JPS5975676A (en) 1982-10-22 1982-10-22 Distortion sensor

Publications (2)

Publication Number Publication Date
JPS5975676A true JPS5975676A (en) 1984-04-28
JPH0259634B2 JPH0259634B2 (en) 1990-12-13

Family

ID=16178053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18585582A Granted JPS5975676A (en) 1982-10-22 1982-10-22 Distortion sensor

Country Status (1)

Country Link
JP (1) JPS5975676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440042U (en) * 1987-09-07 1989-03-09
JPS6467985A (en) * 1987-09-08 1989-03-14 Nec Corp Electrostrictive effect element
US5640178A (en) * 1994-09-16 1997-06-17 Fujitsu Limited Pointing device
JP2019132790A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440042U (en) * 1987-09-07 1989-03-09
JPS6467985A (en) * 1987-09-08 1989-03-14 Nec Corp Electrostrictive effect element
US5640178A (en) * 1994-09-16 1997-06-17 Fujitsu Limited Pointing device
JP2019132790A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
WO2019151345A1 (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
US11326967B2 (en) 2018-02-02 2022-05-10 Minebea Mitsumi Inc. Strain gauge with improved temperature effect detection

Also Published As

Publication number Publication date
JPH0259634B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US4019168A (en) Bilayer thin film resistor and method for manufacture
JPH07201529A (en) Resistor
JP3473485B2 (en) Thin film resistor and manufacturing method thereof
JP4232871B2 (en) Etching solution for forming buried resistors
JPS5975676A (en) Distortion sensor
US4374159A (en) Fabrication of film circuits having a thick film crossunder and a thin film capacitor
JPS5975104A (en) Strain sensor
JP2000146511A (en) Strain gauge
JP2749489B2 (en) Circuit board
Bethe et al. Thin-film strain-gage transducers
JPS61181103A (en) Platinum temperature measuring resistor
JP2001110602A (en) Thin-film resistor forming method and sensor
JP3229460B2 (en) Strain gauge
JPS6334414B2 (en)
JPS6239927B2 (en)
JPS6225977B2 (en)
JP2530008B2 (en) Wiring board manufacturing method
JP2790903B2 (en) Metal base wiring board with resistance
JPH02288290A (en) Hybrid integrated circuit
JPS61148859A (en) Hybrid integrated circuit device and manufacture thereof
JPH0685100A (en) Multilayer module circuit substrate
JPH08148795A (en) Thin film circuit board
JPH0129249B2 (en)
WO1998009298A1 (en) Chip resistor and method for manufacturing the same
JPS6041252A (en) Manufacture of hybrid integrated circuit