JPS5975656A - Semiconductor integrated circuit structure - Google Patents

Semiconductor integrated circuit structure

Info

Publication number
JPS5975656A
JPS5975656A JP57187044A JP18704482A JPS5975656A JP S5975656 A JPS5975656 A JP S5975656A JP 57187044 A JP57187044 A JP 57187044A JP 18704482 A JP18704482 A JP 18704482A JP S5975656 A JPS5975656 A JP S5975656A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
region
substrate
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57187044A
Other languages
Japanese (ja)
Other versions
JPH0517712B2 (en
Inventor
Toshihiro Sekikawa
敏弘 関川
Yutaka Hayashi
豊 林
Hitoshi Kawanami
仁志 川浪
Kiyoko Nagai
永井 清子
Hidekazu Suzuki
英一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57187044A priority Critical patent/JPS5975656A/en
Publication of JPS5975656A publication Critical patent/JPS5975656A/en
Publication of JPH0517712B2 publication Critical patent/JPH0517712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To shorten the time required for transmitting an information signal, or to reduce time delay by setting up an optical waveguide as an information signal transmitting path between unit circuits for an integrated circuit. CONSTITUTION:Regarding a transmission section E1, electric light converting light-emitting elements 4, such as a light-emitting diode, a semiconductor laser, etc. are set up on a substrate 1, and the active region or light-emitting section 6 for the elements is arranged so as to emit beams I into the optical waveguide 3. An electrode region 5 for driving the light-emitting elements 4 is formed in the surface of the substrate. On the other hand, light-receiving elements 10 as a reception section D1 are constituted so that a P-N junction is formed between a first region 7 formed to a section such as the surface section of the substrate and a second region 1a as a substrate 1 section around the first region, and a potential change generated in the first region 7 can be detected as an information signal when the first region 7 is connected to the predetermined electric signal input terminal of the unit circuit with the reception section. The optical waveguide 3 is constituted to a shape that it is bent down toward the substrate side in order to introduce beams toward the reception section.

Description

【発明の詳細な説明】 本発明は、いくつかの単位回路を有し、単位回路間で情
報信号の授受を必要とするように構成された半導体集積
回路構造の改良、殊に情報信号伝送の高速化を図った半
導体集積回路構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a semiconductor integrated circuit structure having several unit circuits and requiring the transmission and reception of information signals between the unit circuits, and in particular to improvements in the structure of a semiconductor integrated circuit that has several unit circuits and is configured to require the transmission and reception of information signals between the unit circuits. This article relates to a semiconductor integrated circuit structure designed to increase speed.

バイポーラ乃至MO8)ランジスタ等の構成素子を持つ
単位回路(素子数が単一の場合も含む)を複数個、同一
の基板上に集積し、単位回路間で情報信号の授受を行な
わせる半導体集積回路はよくあるが、従来のものは、い
づれも、情報信号の伝送はキャリアの流れ乃至電流によ
っていた。
Bipolar to MO8) Semiconductor integrated circuit in which multiple unit circuits (including cases with a single element) having constituent elements such as transistors are integrated on the same substrate, and information signals are exchanged between the unit circuits. However, in all conventional systems, information signals are transmitted by the flow of carriers or current.

即ち、送信部も受信部も、半導体電子デバイスとしての
トランジスタ等で構成され、その間の伝送路は当然のこ
ととして、金属等の導電材線路で構成されていた。
That is, both the transmitting section and the receiving section are composed of transistors and the like as semiconductor electronic devices, and the transmission path between them is, as a matter of course, composed of a conductive material line made of metal or the like.

然るに、集積密度の向上は将来に亘ってよυ一層の進展
を見せることは、これまでの経緯からも顕らかであシ、
従って、単位回路自体乃至は各単位回路の構成子が更に
微細化していくことによって、一枚の基板上に搭載され
る単位回路数も大幅に増加し、複雑化していくことが見
込まれるが、そうすると、逆に、単位回路間を連絡する
配線長は長くなっていくことが予想される0、 すると、微細化によυ単位回路自体が電気信号を処理す
るのに要する時間がいくら短くなっても、単位回路量信
号伝送路を電気信号が通過するに要する時間遅れの方が
同程度がそれ以上に長くなる虞れが十分にあシ、それで
は折角の寸法微細化による集積回路全体の性能向上も阻
害されてしまう。
However, it is clear from past events that the improvement in agglomeration density will continue to progress even further in the future.
Therefore, as the unit circuits themselves and the components of each unit circuit become further miniaturized, the number of unit circuits mounted on a single board is expected to increase significantly and become more complex. Then, conversely, the length of wiring connecting unit circuits is expected to increase.0 Then, due to miniaturization, the time required for the υ unit circuit itself to process electrical signals will decrease. However, there is a good chance that the time delay required for an electrical signal to pass through a signal transmission line with a unit circuit amount will be longer than that, so it is highly likely that the overall performance of integrated circuits will be improved by miniaturizing the dimensions. is also inhibited.

本発明は、この点に鑑でなされたもので、複数の単位回
路、を同一基板上に搭載して成る半導体集積回路構造に
おいて、単位回路間の情報信号伝送に要する時間を短縮
できる、乃至時間遅れを少く抑えることのできる構成を
提供せんと本発明を端的に言えば、従来、電気信号を電
気信号としてそのまま伝送していたのに代え、一旦、光
信号に変換して伝送しようとするもの、言い換えれば、
全体としては半導体集積回路ではあるが、その単位回路
間の情報信号伝送路には光導波路構成を持つものである
。これにより、所期の目的としての信号伝送の高速化が
満たされることは、次の知見乃至原理から証される。
The present invention has been made in consideration of this point, and is capable of reducing the time required for information signal transmission between unit circuits in a semiconductor integrated circuit structure in which a plurality of unit circuits are mounted on the same substrate. To put it simply, the present invention aims to provide a configuration that can minimize delays.Instead of the conventional method of transmitting electrical signals as they are, the present invention aims to first convert them into optical signals and then transmit them. ,In other words,
Although it is a semiconductor integrated circuit as a whole, the information signal transmission path between its unit circuits has an optical waveguide structure. The following findings and principles prove that this achieves the desired goal of increasing the signal transmission speed.

半導体集積回路において、単位回路あるいは単位システ
ム間の信号の送受を、金属等導電性拐料を用いた配線に
より、それら人出方素子間を接続し、電気信号によって
行なう従来方式におりる信号伝送遅れ時間’I’DFは
、次の式でほぼ表わすことができる。
In semiconductor integrated circuits, signals are transmitted and received between unit circuits or unit systems using conventional methods in which electrical signals are used to connect these elements using wiring made of conductive materials such as metals. The delay time 'I'DF can be approximately expressed by the following equation.

TDE = CwL (ΔV)/Io      −(
1)ここに、Cwは配線の単位長さ当シの客月゛、Lは
配線長、ΔVは信号検出のために必要な電位変化、IO
は出力素子が駆動するために供給可能な出力電流である
。一方、光信号によって行なう方式でけ光導波路中にお
ける時間遅れは無視できるほど小さくなり、信号伝送遅
れ時間TDOは発光素子を駆動してから発ブr;までめ
遅れ時間T++oEど受光素子が受光後信号検出に必要
外電位変化を出力するまでの遅れ時間Tnnnとの和と
してホホ表わすことができる。すなわち、Tno = 
TDOE−1−Tnon       ・・・(2)で
ある。比較のため発光素子駆動型、流を従来方式の出力
電流、Inと同じにとるとTnorq + TpoI)
は次のようにほぼ表わすことができる。
TDE = CwL (ΔV)/Io −(
1) Here, Cw is the unit length of the wiring, L is the wiring length, ΔV is the potential change required for signal detection, and IO
is the output current that can be supplied to drive the output element. On the other hand, in the method using optical signals, the time delay in the optical waveguide becomes negligibly small, and the signal transmission delay time TDO is the delay time T++ from when the light emitting element is driven until the light is emitted. It can be expressed as the sum of the delay time Tnnn until outputting a potential change that is not necessary for signal detection. That is, Tno =
TDOE-1-Tnon (2). For comparison, if the light emitting element driven type is used and the current is the same as the output current of the conventional method, In, then Tnorq + TpoI)
can be approximately expressed as follows.

T+〕og = C*Vn/Io        −(
3)Tnon −(Cn + Ci )(ΔV)/(η
EηnIo)−(4)ここに、CE、VDは発光素子の
端子容量及び端子霜、圧でを)す、C10は受光素子の
端子容M、’、Ciけ受)゛r素子の端子に接続される
市、気信号検出のための素子の入力容〜剛、ηE及びη
Dはそれぞれ発光効率及び受光効率である。
T+]og = C*Vn/Io −(
3) Tnon − (Cn + Ci) (ΔV)/(η
EηnIo) - (4) Here, CE, VD are the terminal capacitance and terminal frost, pressure of the light emitting element, and C10 is the terminal capacitance of the light receiving element M, ', Ci is connected to the terminal of the element. input capacity of the element for air signal detection ~ stiffness, ηE and η
D is the luminous efficiency and the light receiving efficiency, respectively.

而して、」二連の式から顕もかなように、従来の電気信
号の棟まによる信号伝送時間遅れは配線長しに依存し、
他方、光信号に変換してのそれは配線長には依存しない
ため、同じ製造技術を仮定した場合、どの程度の配線長
までなら従来方式の方が高速であるとか、逆に最低配線
長L47tinを越える配線長の場合には光変換方式の
方が有利であるとの比較をなすことができる。答を言え
ば、現在の5〜4μmルールの製造技術では、上記のL
りninは1+mn程度であり、一方、実際の配線長は
これより長く、将来に亘っての集積密度向上に伴うLm
inの低下や、配線長しが更に長くなっていくことをも
考え併せると、光電変換時間を要しても尚、TDo≦T
DI8  となる。更に集積回路の線幅が1μm以下と
なると配線の浮遊容量Cwは線幅の微細化に比例して小
さくなることは期待できず、配線の単位長さの遅れは1
1tm以下の微細化では改善度は少ない。一方、光変換
伝送方式は微細化の約2乗に比例して遅れ時間が小さく
なるから、結局、殆んどの配線長に対して光変換方式の
力が有利と見ることができる。
Therefore, as is obvious from the two series of equations, the signal transmission time delay due to the conventional electrical signal depends on the length of the wiring,
On the other hand, since the signal converted into an optical signal does not depend on the wiring length, assuming the same manufacturing technology, up to what wiring length the conventional method is faster, or conversely, up to a minimum wiring length of L47tin. It can be compared that the optical conversion method is more advantageous when the wiring length exceeds the above. The answer is that with the current 5-4 μm rule manufacturing technology, the above L
On the other hand, the actual wiring length is longer than this, and Lm will increase as the integration density increases in the future.
Considering the decrease in in and the further increase in wiring length, even if photoelectric conversion time is required, TDo≦T
It becomes DI8. Furthermore, when the line width of an integrated circuit becomes 1 μm or less, the stray capacitance Cw of the wiring cannot be expected to decrease in proportion to the miniaturization of the line width, and the delay of the unit length of the wiring is 1 μm or less.
The degree of improvement is small in miniaturization of 1 tm or less. On the other hand, since the optical conversion transmission method reduces the delay time in proportion to the square of the miniaturization, it can be seen that the power of the optical conversion method is advantageous for most wiring lengths.

このように、従来配線方式にくらべると、本発明者がこ
こで勘案した光変換方式の方が優れていると結論付は得
る。
In this way, it can be concluded that the optical conversion method considered here by the present inventor is superior to the conventional wiring method.

こうした知見乃至原理に基づく本発明の一つの実施例が
第1図に示しである。
One embodiment of the present invention based on these findings and principles is shown in FIG.

基板/は、従来の半導体集積回路構造におけると同様、
半導体結晶乃至絶縁物基板層上に半導体層を積層して成
る基板で良く、これに従来と同様、単位の半導体集積回
路を複数個形成して良い。但し、各単位回路自体は本発
明が直接にこれを規定するものではないので、図示及び
説明を省略する。
As in the conventional semiconductor integrated circuit structure, the substrate/
The substrate may be formed by laminating a semiconductor layer on a semiconductor crystal or insulator substrate layer, and a plurality of unit semiconductor integrated circuits may be formed on this as in the conventional case. However, since the present invention does not directly define each unit circuit itself, illustration and description thereof will be omitted.

基板/の表面上には、一般に、集積回路の電気的配線部
分や素子間分離等のために絶縁膜コが設けられているが
、この第一の実施例では、この絶縁膜aをその上に形成
される光導波路3の一種のクラッド層として利用してい
る。従って、絶縁膜コが光導波路3を設ける部位に形成
されていない場合には、本発明のために意図的にこの絶
縁膜乃至クラツド膜、或いはまた反射膜を別滝形成して
も良いことは勿論、基板/の方の屈折率が形成する光導
波路3のそれより小さければ、光導波路3は基板l上に
直接に形成することもできる。
Generally, an insulating film a is provided on the surface of the substrate for electrical wiring of an integrated circuit, isolation between elements, etc., but in this first embodiment, this insulating film a is provided on the surface of the substrate. It is used as a kind of cladding layer of the optical waveguide 3 formed in the. Therefore, if the insulating film is not formed in the area where the optical waveguide 3 is provided, the insulating film, cladding film, or reflective film may be formed separately for the purpose of the present invention. Of course, if the refractive index of the substrate 1 is smaller than that of the optical waveguide 3 to be formed, the optical waveguide 3 can also be formed directly on the substrate l.

光導波路3の一端には、成る単位回路の送信部Ej、j
=1+2+5.・・・が、他端にはこの単位回路からの
信号を受ける他の斤位回路の受信部Di。
At one end of the optical waveguide 3, there is a transmitting section Ej,j of a unit circuit consisting of
=1+2+5. . . ., but at the other end is a receiving section Di of another circuit that receives the signal from this unit circuit.

i=1.2,5.・・・が設けられる。各単位回路は、
必要に応じて、複数個の送信部、受信部を有して良い。
i=1.2,5. ... will be established. Each unit circuit is
A plurality of transmitters and receivers may be provided as necessary.

各送信部、受信部の具体的構成例は図示のようなものが
ある。送信部EjK就いては、基板/上に発光ダイオー
ド、半導体レーザ等の電気光変換発光素子4/、を設け
れば良く、その活性領域乃至発光部6が光導波路、ゴ内
へ光I−を一出射できるように配置する。この発光素子
≠を駆動するだめの電極領域jは図示のように基板表面
中に形成することができる。
Specific configuration examples of each transmitter and receiver are shown in the figure. For the transmitting section EjK, an electro-optic conversion light emitting element 4/ such as a light emitting diode or a semiconductor laser may be provided on the substrate, and its active region or light emitting section 6 transmits light I- into the optical waveguide. Place it so that it can be fired once. The electrode region j for driving this light emitting element≠ can be formed in the substrate surface as shown in the figure.

一方、受信部Diとしての受光素子10は、例えば基板
表面部分に設けた第一領域7と、この周辺の基板/の部
分としての第二領域/σとの間でpn接合を形成するよ
うにして構成でき、第一領域7をこの受信部を持つ巣位
回路の所定の電気信号入力端子に接続すれば当該領域7
に生ずる電位変化を情報信号として検出することができ
る。尚、光導波路3ば、この受信部に対して光を導くた
めに、基板側に向けて折れ下がった形状に構成されてい
る。この折れ下がった端部や、送信部側の端部での光洩
れを特に防ぐため、当該端部周面に反射膜とを伺してい
るが、光の進行方向に対する光導波路端部の角度が臨界
角以上である場合には全反射が起こるので、特には反射
膜rを要しないこともある。これは、用いる光の波長に
整合する間隔の格子を光導波路端部に設ける場合に就い
ても言える。
On the other hand, the light-receiving element 10 as the receiving part Di is configured to form a pn junction between, for example, a first region 7 provided on the surface of the substrate and a second region /σ as a portion of the substrate around the first region 7. If the first region 7 is connected to a predetermined electric signal input terminal of a signal positioning circuit having this receiving section, the region 7 can be configured as follows.
The potential change that occurs can be detected as an information signal. The optical waveguide 3 is bent toward the substrate in order to guide light to the receiving section. In order to especially prevent light leakage at this bent end and the end on the transmitter side, a reflective film is provided around the end. When is greater than or equal to the critical angle, total internal reflection occurs, so a reflective film r may not be particularly required. This also applies to the case where a grating with a spacing matching the wavelength of the light used is provided at the end of the optical waveguide.

捷た、光導波路3の断面寸法が、用いる光の波長に対し
て十分大きい場合は、光導波路内の光波の伝搬状態は幾
何光学的に表わされ、従って発光部と受光部を結ぶ光導
波路は必ずしも直線的でなくてよい。例えばいくつかの
折れ線が連結されたような状態に光導波路を設けること
もできる。ただし、この場合、光が導波路より洩れない
ように、必要に応じて光導波路の外側に光反射膜等を設
ければ効率の良い伝送ができる。
If the cross-sectional dimension of the twisted optical waveguide 3 is sufficiently large compared to the wavelength of the light used, the propagation state of the light wave within the optical waveguide is represented by geometrical optics, and therefore the optical waveguide connecting the light emitting part and the light receiving part is does not necessarily have to be linear. For example, an optical waveguide can be provided in a state in which several bent lines are connected. However, in this case, efficient transmission can be achieved by providing a light reflecting film or the like on the outside of the optical waveguide as necessary to prevent light from leaking from the waveguide.

以上が第一の実施例であるが、光導波路の断面寸法が光
導波路内の光の波長と同程度にまで微細化してくると、
光導波路内の光の伝搬状態が幾何光学で表わすことがで
きなくなり、光導波路も簡単には屈曲させ得なくなるこ
とが考えられる。これに対処するには、より高精度な加
工技術及びより高品質な光導波路材料が要求され、シス
テム全体としての歩留シが低下し、従ってコストの低減
化が困難となるおそれもある。
The above is the first example, but as the cross-sectional dimension of the optical waveguide becomes finer to the same extent as the wavelength of the light inside the optical waveguide,
It is conceivable that the propagation state of light within the optical waveguide cannot be represented by geometrical optics, and that the optical waveguide cannot be easily bent. To deal with this, more precise processing techniques and higher quality optical waveguide materials are required, which may reduce the yield of the entire system and therefore make it difficult to reduce costs.

第2図は、このような昧題をも克服できる実施例である
。対応する図中の符号は第−実施例中の構成子に対応す
る構成子を示すが、第2図(a)中に光導波路3を採シ
出して平面図的に示すように、この実施例では、第一実
施例の一つの送信部、受信部対に各専用のストライプ状
の光導波路ではなく、共通光導波路構造としての面状の
光導波路3を用いており、この面状光導波路3の周側壁
の複数個所に、との光導波路で連絡を取り合うべき各単
位回路の送信部Ei、受信部Diを臨ませている。
FIG. 2 shows an embodiment that can overcome this problem. The reference numerals in the corresponding figures indicate components corresponding to the components in the first embodiment, but as shown in a plan view with the optical waveguide 3 taken out in FIG. In this example, a planar optical waveguide 3 as a common optical waveguide structure is used instead of the striped optical waveguide dedicated to each of the transmitter and receiver pairs in the first embodiment. The transmitting section Ei and the receiving section Di of each unit circuit, which are to communicate with each other via optical waveguides, are exposed at a plurality of locations on the circumferential side wall of 3.

図示の場合は、三つの送信部E、〜E8と受信部1)+
 = Dsを簡単のために示しておシ、夫々一つづつが
対となって、大略三角形状の面状光導波路3の各頂点に
各対が配されている。各頂点は、一対の送信部、受信部
が臨み易いように角を落とされているため、見方によっ
ては面状導波路3は一つ簡きに短辺、長辺が入れ子にk
った六角形状とも見え、その各短辺部分に各送イハ、受
信部対が臨んでいるとも言える、。
In the case shown, there are three transmitters E, ~E8 and a receiver 1)+
=Ds is shown for the sake of simplicity, and each pair forms a pair, and each pair is arranged at each vertex of the approximately triangular planar optical waveguide 3. Each vertex is rounded so that the pair of transmitting and receiving sections can be easily viewed, so depending on how you look at it, the planar waveguide 3 can be easily viewed as one short side and one long side nested.
It looks like a hexagonal shape, and it can be said that each pair of transmitting and receiving sections face each short side.

勿論、面状光導波路形状はこれに限らず任意であり、単
量回路数乃至送信、受信部数も必要に応じての任意の問
題である。
Of course, the shape of the planar optical waveguide is not limited to this and is arbitrary, and the number of single circuits and the number of transmitting and receiving sections are also arbitrary depending on the need.

各送信部、受信部を構成する発光素子≠、受光素子IO
は、第2図(b)の断面端面図に示すように、第1図に
示したと同様の適宜構成で良い。
Light-emitting element ≠, light-receiving element IO that constitutes each transmitter and receiver
As shown in the cross-sectional end view of FIG. 2(b), the structure may be the same as that shown in FIG. 1.

寸だ、例えば、このような光導波路構成では、発光部グ
に指向性を持たせて特定の受光素子にのみ光を送っても
良いし、第2図(α)中、矢印■で示すように、無指向
性発光ダイオードを用いる等して、総ての受光素子/θ
・・・に送信するようにしても良い。その光信号を受信
し、情報として用いるかどうかは各単位回路:の選択に
まかせて良い。
For example, in such an optical waveguide configuration, the light emitting part may be given directivity to send light only to a specific light receiving element, or it may be possible to send light only to a specific light receiving element, as shown by the arrow ■ in Figure 2 (α). In addition, by using non-directional light emitting diodes, all light receiving elements /θ
It is also possible to send the information to... Whether or not to receive the optical signal and use it as information can be left to the selection of each unit circuit.

この実施例のように、光導波路を面状とすれば、その断
面寸法はその中の光波の波長より十分大きくとることが
でき、先の制約は回避できる。
If the optical waveguide is planar as in this embodiment, its cross-sectional dimension can be made sufficiently larger than the wavelength of the light wave therein, and the above restriction can be avoided.

尚、第2図(b)中には、既存の技術で形成され、所定
機能を電気信号を取扱うことによシ営む半導体集積回路
/ハ・・を模式的に併示している。
Incidentally, FIG. 2(b) also schematically shows a semiconductor integrated circuit (c) which is formed using existing technology and which performs a predetermined function by handling electrical signals.

第一、第二実施例を問わず、光導波路の材料としては、
その中の光波の吸収がないか、又はあっても極く少ない
ものが望ましい。例えば、その中の光波のエネルギより
十分大きなバンドギャップをもつ材料が良い。
Regardless of the first or second embodiment, the material for the optical waveguide is as follows:
It is desirable that there is no absorption of light waves, or even if there is, there is very little absorption of light waves. For example, a material with a bandgap sufficiently larger than the energy of the light wave in it is preferable.

次に、材料、製法的な観点から望ましい具体例に言い及
ぶ。
Next, we will discuss specific examples that are desirable from the viewpoints of materials and manufacturing methods.

基板lがシリコンである時には、発光素子グとしては、
このシリコン基板上に液相乃至気相エピタキシャル法、
MBE等でエピタキシャル成長のTiJ能なGrzPに
発光中心としてNU子を導入した緑色発光ダイオードと
か、ZsN原子O原子を導入した赤色発光ダイオードを
用い、これに適わしい光導波路3としては、不純物の添
加されていないGaP ’it用いると良い。G、Pの
光導波路を通る光のエネルギは当該G、Pのバンドギャ
ップよりも小さいので望ましくない光吸収を避けること
ができる。
When the substrate l is silicon, the light emitting element g is as follows:
On this silicon substrate, liquid phase or vapor phase epitaxial method,
A green light-emitting diode in which NU molecules are introduced as a luminescent center into TiJ-capable GrzP epitaxially grown by MBE or the like, or a red light-emitting diode in which ZsN atoms and O atoms are introduced are used, and as an optical waveguide 3 suitable for this, an impurity-doped one is used. It is better to use GaP 'it that is not available. Since the energy of light passing through the G and P optical waveguides is smaller than the band gap of the G and P, undesirable light absorption can be avoided.

また、基板/上の絶縁膜λに開口を開け、GaPをエピ
タキシャル成長させると、開口上にはGaPの単結晶を
成長でき、絶縁膜上には多結晶又はアモルファスGa、
Pが成長する。そして開口上に形成されたGσ、P単結
晶中に前述したN原子、Zy*原子及びO原子を選択的
に導入すれば、発光素子及び受光素子と光導波路を一体
化して形成でき、別々に形成した場合における発光、受
光素子の各個と光導波路との位置合せの工程を省略する
ことができる。発光メカニズムはGaP中にpn接合を
形成するとか領域jとGaPの接合面からキャリアを注
入するヘテロ構造によるとかがある。
Furthermore, if an opening is made in the insulating film λ on the substrate and GaP is epitaxially grown, a single crystal of GaP can be grown on the opening, and polycrystalline or amorphous Ga,
P grows. If the aforementioned N atoms, Zy* atoms, and O atoms are selectively introduced into the Gσ, P single crystal formed above the aperture, the light emitting element, the light receiving element, and the optical waveguide can be formed integrally, and they can be formed separately. When formed, the step of aligning each of the light emitting and light receiving elements and the optical waveguide can be omitted. The light emission mechanism may be due to the formation of a pn junction in GaP or a heterostructure in which carriers are injected from the junction surface between region j and GaP.

発光素子部分のGaP上にG〜■tt 1−ヶPの成長
を行えば、発光波長は導波路に用いるGaPのバンドギ
ャップエネルギより小さくなシ同様に光吸収が生じない
。更にInの量が増加した場合はレーザダイオードが形
成できる。レーザ発光はp形GaP/p又はn形Gaz
 In 1−、Pz4 形GaPのへテロ構造で可能と
なる。
If G~tt 1-P is grown on the GaP in the light emitting element portion, the emission wavelength is smaller than the bandgap energy of GaP used for the waveguide, and no light absorption occurs. If the amount of In is further increased, a laser diode can be formed. Laser emission is p-type GaP/p or n-type Gaz
This is possible with a heterostructure of In 1-, Pz4 type GaP.

以上、詳記したが、本発明によれは、同一基板乃至チッ
プ上に構成された半導体集積回路の配線による信号伝送
遅れを小さくシ、微細化による性能向上を十分に発揮で
き、単位回路間の信号伝送の高速化、全体システムの高
機能化が可能である。
As described in detail above, according to the present invention, it is possible to reduce the signal transmission delay due to the wiring of semiconductor integrated circuits configured on the same substrate or chip, to fully demonstrate the performance improvement due to miniaturization, and to improve the performance between unit circuits. It is possible to increase the speed of signal transmission and improve the functionality of the entire system.

また、第2図示のような面構造の導波路の場合は、発光
素子を指向性の少ないLEDで構成して集積光バス機能
を実現することもできる。すなわち、この面状導波路の
端部に信号送端としての発光素子、信号受端としての受
光素子を必要個数結合しておけば任意の送端から任意の
受端へ、従来の電気信号パスラインを用いたときの信号
遅れよシはるかに小さい遅れで、信号の送信が可能とな
る。
Further, in the case of a waveguide having a planar structure as shown in the second figure, an integrated optical bus function can be realized by configuring the light emitting elements with LEDs having little directivity. In other words, by connecting the required number of light emitting elements as signal sending ends and light receiving elements as signal receiving ends to the ends of this planar waveguide, a conventional electrical signal path can be established from any sending end to any receiving end. Signals can be transmitted with much smaller delays than when using lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(cL)は本発明第一の実施例の平面図的な概略
構成図、第1図(b)は第1図(α)中のX−X線に沿
う断面端面図、第2図(0,)は第二実施例の平面図的
な要部概略構成図、第2図(b)は第2図(a)中のX
−X線に沿う断面端面図、である。 図′中、lは基板、3は光導波路、≠は発光素子、IO
は受光素子、Eiは送信部、Piは受信部、である。
FIG. 1(cL) is a plan view schematic diagram of the first embodiment of the present invention, FIG. 1(b) is a cross-sectional end view taken along line X-X in FIG. 1(α), and FIG. Figure (0,) is a plan view schematic diagram of the main parts of the second embodiment, and Figure 2 (b) is the X in Figure 2 (a).
- a cross-sectional end view taken along the X-ray; In the figure, l is the substrate, 3 is the optical waveguide, ≠ is the light emitting element, IO
is a light receiving element, Ei is a transmitter, and Pi is a receiver.

Claims (4)

【特許請求の範囲】[Claims] (1)それぞれ半導体電子素子を含んで成る複数の即位
回路を同一の基板上に形成し、成る単位回路中の送信部
から別の単位回路中の受信部へ信号情報を伝送する伝送
路を有する半導体集積回路構造であって、 上記送信部を電気光変換発光素子で、上記受信部を光電
気変換受光素子で構成すると共に、上記伝送路を光導波
路で構成したことを特徴とする半導体集積回路構造。
(1) A plurality of coronation circuits, each including a semiconductor electronic element, are formed on the same substrate, and have a transmission path for transmitting signal information from a transmitter in one unit circuit to a receiver in another unit circuit. A semiconductor integrated circuit having a semiconductor integrated circuit structure, characterized in that the transmitting section is composed of an electro-optical conversion light emitting element, the receiving section is composed of a photoelectric conversion light-receiving element, and the transmission path is composed of an optical waveguide. structure.
(2)光導波路は、一対の送信部と受信部に専用のもの
であることを特徴とする特許請求の範囲(1)に記載の
構造。
(2) The structure according to claim (1), wherein the optical waveguide is dedicated to a pair of transmitter and receiver.
(3)光導波路は、複数対の送信部と受信部に共通のも
のであることを特徴とする特許請求の範囲(りに記載の
構造。
(3) The structure according to claim 1, wherein the optical waveguide is common to a plurality of pairs of transmitting sections and receiving sections.
(4)送信部の発光素子は無指向性であることを特徴と
する特許請求の範囲(3)に記載の構造。
(4) The structure according to claim (3), wherein the light emitting element of the transmitter is non-directional.
JP57187044A 1982-10-25 1982-10-25 Semiconductor integrated circuit structure Granted JPS5975656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187044A JPS5975656A (en) 1982-10-25 1982-10-25 Semiconductor integrated circuit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187044A JPS5975656A (en) 1982-10-25 1982-10-25 Semiconductor integrated circuit structure

Publications (2)

Publication Number Publication Date
JPS5975656A true JPS5975656A (en) 1984-04-28
JPH0517712B2 JPH0517712B2 (en) 1993-03-09

Family

ID=16199188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187044A Granted JPS5975656A (en) 1982-10-25 1982-10-25 Semiconductor integrated circuit structure

Country Status (1)

Country Link
JP (1) JPS5975656A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170958A (en) * 1987-01-09 1988-07-14 Agency Of Ind Science & Technol Optoelectronic
US4847848A (en) * 1987-02-20 1989-07-11 Sanyo Electric Co., Ltd. Semiconductor laser device
US4945391A (en) * 1986-05-06 1990-07-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor device housing with laser diode and light receiving element
US4989067A (en) * 1989-07-03 1991-01-29 General Electric Company Hybrid interconnection structure
US5016253A (en) * 1989-04-12 1991-05-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US5627923A (en) * 1993-09-16 1997-05-06 Hitachi, Ltd. Three-dimensional opto-electric integrated circuit using optical wiring
JP2651509B2 (en) * 1990-06-29 1997-09-10 フォトニック インテグレイション リサーチ,インコーポレイテッド Optoelectronic device having optical waveguide on metallized substrate and method of forming the optical waveguide
JPH11330503A (en) * 1998-04-10 1999-11-30 Fr Telecom Photoelectron engineering method for signal process and its embodiment and application
WO2003096437A3 (en) * 2002-05-06 2004-02-05 Intel Corp Silicon and silicon-germanium light-emitting device, methods and systems
US6897430B2 (en) 2000-12-28 2005-05-24 Canon Kabushiki Kaisha Semiconductor device, optoelectronic board, and production methods therefor
US6928205B2 (en) 2002-08-02 2005-08-09 Canon Kabushiki Kaisha Optical waveguide device, layered substrate and electronics using the same
JP2009020391A (en) * 2007-07-13 2009-01-29 Fuji Xerox Co Ltd Optical waveguide and optical module
WO2013111173A1 (en) * 2012-01-23 2013-08-01 株式会社日立製作所 Semiconductor light receiving element and light receiver
JPWO2013111173A1 (en) * 2012-01-23 2015-05-11 株式会社日立製作所 Semiconductor light receiving element and optical receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797221B2 (en) * 2000-02-21 2011-10-19 ソニー株式会社 Optoelectronic integrated circuit device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846278A (en) * 1971-10-06 1973-07-02
JPS5429989A (en) * 1977-08-10 1979-03-06 Nec Corp Photo semiconductor integrated circuit
JPS5624984A (en) * 1979-08-08 1981-03-10 Nec Corp Light and electric hybrid integrated circuit
JPS5715465A (en) * 1980-07-02 1982-01-26 Fujitsu Ltd Large scale optical integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846278A (en) * 1971-10-06 1973-07-02
JPS5429989A (en) * 1977-08-10 1979-03-06 Nec Corp Photo semiconductor integrated circuit
JPS5624984A (en) * 1979-08-08 1981-03-10 Nec Corp Light and electric hybrid integrated circuit
JPS5715465A (en) * 1980-07-02 1982-01-26 Fujitsu Ltd Large scale optical integrated circuit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945391A (en) * 1986-05-06 1990-07-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor device housing with laser diode and light receiving element
JPS63170958A (en) * 1987-01-09 1988-07-14 Agency Of Ind Science & Technol Optoelectronic
US4847848A (en) * 1987-02-20 1989-07-11 Sanyo Electric Co., Ltd. Semiconductor laser device
US5016253A (en) * 1989-04-12 1991-05-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US4989067A (en) * 1989-07-03 1991-01-29 General Electric Company Hybrid interconnection structure
JP2651509B2 (en) * 1990-06-29 1997-09-10 フォトニック インテグレイション リサーチ,インコーポレイテッド Optoelectronic device having optical waveguide on metallized substrate and method of forming the optical waveguide
US5627923A (en) * 1993-09-16 1997-05-06 Hitachi, Ltd. Three-dimensional opto-electric integrated circuit using optical wiring
JPH11330503A (en) * 1998-04-10 1999-11-30 Fr Telecom Photoelectron engineering method for signal process and its embodiment and application
US6936808B2 (en) 2000-12-28 2005-08-30 Canon Kabushiki Kaisha Semiconductor device, optoelectronic board, and production methods therefor
US6897430B2 (en) 2000-12-28 2005-05-24 Canon Kabushiki Kaisha Semiconductor device, optoelectronic board, and production methods therefor
US7141778B2 (en) 2000-12-28 2006-11-28 Canon Kabushiki Kaisha Semiconductor device, optoelectronic board, and production methods therefor
US6924510B2 (en) 2002-05-06 2005-08-02 Intel Corporation Silicon and silicon/germanium light-emitting device, methods and systems
WO2003096437A3 (en) * 2002-05-06 2004-02-05 Intel Corp Silicon and silicon-germanium light-emitting device, methods and systems
US7169631B2 (en) 2002-05-06 2007-01-30 Intel Corporation Silicon and silicon/germanium light-emitting device, methods and systems
US6928205B2 (en) 2002-08-02 2005-08-09 Canon Kabushiki Kaisha Optical waveguide device, layered substrate and electronics using the same
JP2009020391A (en) * 2007-07-13 2009-01-29 Fuji Xerox Co Ltd Optical waveguide and optical module
WO2013111173A1 (en) * 2012-01-23 2013-08-01 株式会社日立製作所 Semiconductor light receiving element and light receiver
US20150001581A1 (en) * 2012-01-23 2015-01-01 Hitachi, Ltd. Semiconductor light receiving element and light receiver
JPWO2013111173A1 (en) * 2012-01-23 2015-05-11 株式会社日立製作所 Semiconductor light receiving element and optical receiver

Also Published As

Publication number Publication date
JPH0517712B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JPS5975656A (en) Semiconductor integrated circuit structure
US5101460A (en) Simultaneous bidirectional optical interconnect
US5268973A (en) Wafer-scale optical bus
US5061027A (en) Solder-bump attached optical interconnect structure utilizing holographic elements and method of making same
US5424573A (en) Semiconductor package having optical interconnection access
US5889903A (en) Method and apparatus for distributing an optical clock in an integrated circuit
US5335361A (en) Integrated circuit module with devices interconnected by electromagnetic waves
US6587605B2 (en) Method and apparatus for providing optical interconnection
US9761746B2 (en) Low voltage avalanche photodiode with re-entrant mirror for silicon based photonic integrated circuits
TWI436114B (en) Transmitter module and receiver module with optical waveguide structure
JP2001036197A (en) Optoelectronic integrated device and drive method therefor, optical wiring system using the device, and arithmetic processor with the device
US5191219A (en) Information processing apparatus including a planar optical waveguide
US8428401B2 (en) On-chip optical waveguide
US7460743B2 (en) Diffusion and laser photoelectrically coupled integrated circuit signal line
US20150280403A1 (en) Vertical integration of a hybrid optical source
US4832433A (en) Fiber-optic feed network using series/parallel connected light emitting opto-electronic components
JP3326418B2 (en) Resonant photodetector
JP3684112B2 (en) Opto-electric hybrid board, driving method thereof, and electronic circuit device using the same
CN114503360B (en) Terahertz device
JP2001042171A (en) Active optical wiring device
JP2000101103A (en) Optical interconnection device
JP4797221B2 (en) Optoelectronic integrated circuit device
JP2725169B2 (en) Transmitter module for optical interconnection
JP2001042145A (en) Opto-electric wiring board
JP2004523900A (en) Semiconductor device for transmitting photoelectron signals and method for manufacturing such a semiconductor device