JPS5975149A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPS5975149A
JPS5975149A JP57185403A JP18540382A JPS5975149A JP S5975149 A JPS5975149 A JP S5975149A JP 57185403 A JP57185403 A JP 57185403A JP 18540382 A JP18540382 A JP 18540382A JP S5975149 A JPS5975149 A JP S5975149A
Authority
JP
Japan
Prior art keywords
ultrasonic
scanning direction
ultrasonic flaw
probes
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185403A
Other languages
Japanese (ja)
Inventor
Kaname Kawaguchi
川口 要
Makoto Yamamuro
山室 誠
Hiromichi Kasugai
春日井 浩道
Takehiro Uesugi
上杉 武弘
Minoru Otsuka
実 大塚
Mitsutoshi Ogiso
小木曽 光利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Canon Holosonics Inc
Original Assignee
Chubu Electric Power Co Inc
Canon Holosonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Canon Holosonics Inc filed Critical Chubu Electric Power Co Inc
Priority to JP57185403A priority Critical patent/JPS5975149A/en
Publication of JPS5975149A publication Critical patent/JPS5975149A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform efficiently a scan on a sample to be inspected by arraying plural ultrasonic wave probes in the main scanning direction of an ultrasonic wave probe means. CONSTITUTION:A container 13 filled with an ultrasonic wave medium 14 is provided to a probe base 2 which moves the sample 15 to be inspected in a main and a subscanning direction. The lower part of the container 13 is opened and the medium 14 contacts the surface of the sample. Many ultrasonic flaw detecting elements 16 arrayed linearly or zigzag are set in the medium 14 to obtain information on the thickness of the sample by transmitting and receiving ultrasonic waves. The array direction of the ultrasonic flaw detecting elements 16 coincides with the main scanning direction of the probe base 2 and the scanning width is as wide as the array width of the ultrasonic probes, so the movement pitch in the main scanning direction is increased.

Description

【発明の詳細な説明】 本発明は超音波探傷装置に関するものであり、より詳述
するならば超音波探傷における超音波探触子をより効率
よく走査するための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection device, and more specifically, to a device for more efficiently scanning an ultrasonic probe in ultrasonic flaw detection.

最近、石油等の備蓄タンクの腐蝕や溶接部の割れ等の検
査に超音波探傷法が普及しつつあり、漏出による資源の
消失あるいは安全性向上のために種々の方法が試みられ
ている。
Recently, ultrasonic flaw detection has become popular for inspecting corrosion of petroleum storage tanks, cracks in welded parts, etc., and various methods are being tried to prevent the loss of resources due to leakage or to improve safety.

しかし、従来の方法は単1の探触子をいちいち検査個所
に当てて行うものが多く、悪環境の中での検査が多いた
め検査員への負担が多く、このため手抜検査等の弊害も
生じ、さらに検査時間が膨大となるために抜取的な方法
しかとることができずにいたことである。
However, in most conventional methods, a single probe is applied to each inspection point, which places a heavy burden on inspectors as inspections are often conducted in adverse environments. Furthermore, because the testing time required was enormous, only a sampling method could be used.

本発明の目的はこれらの社会的なニーズに答えるべく、
超音波探傷のかなめとなる探触子を多数個配置した部材
を自動的に一定平面内を全面走査することにより、点的
な検査から面的な検査とし検査速度を向」ニさせ、さら
に検査もれをなくし、検査の完全を期するとともに検査
員の負担を軽減する超音波探傷装置を提供することにあ
る。
The purpose of the present invention is to meet these social needs.
By automatically scanning the entire surface of a component in a fixed plane with multiple probes, which are the key to ultrasonic flaw detection, inspection speed can be increased from spot inspection to area inspection, and further inspection can be performed. It is an object of the present invention to provide an ultrasonic flaw detection device that eliminates omissions, ensures completeness of inspection, and reduces the burden on inspectors.

以下、本発明を添付した図面を使用して説明する。第1
図中、1は側板で、この側板1には探触台2を、Y方向
に移動させるためのネジ林3.4が回転自在に取り伺け
られている。
Hereinafter, the present invention will be explained using the accompanying drawings. 1st
In the figure, reference numeral 1 denotes a side plate, and a screw thread 3.4 for moving the probe table 2 in the Y direction is rotatably provided in the side plate 1.

5は側板lに固定yれたモーターで、ネジ林3に直接接
続すると共に、ネジ林4にプーリー7を介して接続して
いる。このモーター5は間欠的に作動して探触台2を一
定のピッチでY方向に移動させる。8はネジ林3.4に
回転不能に取り伺けられたY方向移動子でネジ林3,4
の回転によってY方向に送られる。9はY方向移動子に
固定されたネジ林でY方向移動子8に固定されたモータ
ー10によって回転される。
Reference numeral 5 denotes a motor fixed to the side plate 1, which is directly connected to the screw thread 3 and also connected to the thread thread 4 via a pulley 7. This motor 5 operates intermittently to move the probe table 2 in the Y direction at a constant pitch. 8 is a Y-direction mover attached to Nejibayashi 3.4 in a non-rotatable manner.
is sent in the Y direction by the rotation of . 9 is a screw thread fixed to the Y-direction mover 8, and is rotated by a motor 10 fixed to the Y-direction mover 8.

このモーター10もやはり一定のピッチで町次的に作動
される。
This motor 10 is also operated periodically at a constant pitch.

11はネジ林9に回転不能に取り付けられたX方向移動
子でネジ棒9の回転によってX方向に移動する。この移
動子11はネジ林9を介してY方向移動子8に接続して
いるため当然Y方向移動子8の移動によってY方向にも
移動する。このX方向移動子11に探触台2が固定され
ている6探触台2は矢印で示す如く移動する様にモータ
ー5゜10の作動は制御されている。
Reference numeral 11 denotes an X-direction mover that is non-rotatably attached to the screw forest 9 and is moved in the X-direction by the rotation of the threaded rod 9. Since this mover 11 is connected to the Y-direction mover 8 via the screw thread 9, it naturally moves in the Y-direction as well by the movement of the Y-direction mover 8. The operation of the motors 5 and 10 is controlled so that the probe stand 2 is fixed to the X-direction mover 11 and moves as shown by the arrow.

この探触台2の詳細は第2図に示されている。Details of this probe stand 2 are shown in FIG.

第2図中12は車輪で移動子11の移動にともなって探
触台2の移動を容易にするためのものである。13は超
音波媒質、例えば水14が満たされた容器である。この
容器の下方は開放されており、従って水14は被検体表
面15に接している。又、この容器は探触台とX、Y方
向には一体として移動するが」二下方向すなわち、被検
体15方向には独立して移動可能である。16は直線状
若しくは千鳥状に配列された多数個の超音波探触子であ
る。この超音波探触子列は水14中に位置し、超音波を
発信し、又受信して、被検体の厚さに関する情報を得る
。第3図には千鳥状配列された超音波探触子の一例が示
されている。この超音波探触子列の列方向は第1図のX
方向に一致している。従って探触台2がX方向に移動し
た際、超音波探触子列の列幅だけのY方向のスキャン幅
が得られる。従って、探触台2のY方向移動ピッチはほ
ぼ超音波探触子列幅が取れる。この為、単一超音波探触
子に比べて粗いピッチでY方向の走査が可能になる。
Reference numeral 12 in FIG. 2 denotes wheels for facilitating the movement of the probe table 2 as the mover 11 moves. 13 is a container filled with an ultrasonic medium, for example water 14. The lower part of this container is open, so that the water 14 is in contact with the surface 15 of the subject. Further, although this container moves integrally with the probe table in the X and Y directions, it can move independently in the two downward directions, that is, in the direction of the subject 15. Reference numeral 16 denotes a large number of ultrasonic probes arranged in a linear or staggered manner. This array of ultrasound probes is located in the water 14 and emits and receives ultrasound waves to obtain information regarding the thickness of the object. FIG. 3 shows an example of ultrasonic probes arranged in a staggered manner. The row direction of this ultrasonic probe row is X in Figure 1.
consistent with the direction. Therefore, when the probe stand 2 moves in the X direction, a scan width in the Y direction equal to the row width of the ultrasonic probe array is obtained. Therefore, the moving pitch of the probe stand 2 in the Y direction can be approximately equal to the width of the row of ultrasonic probes. Therefore, it is possible to scan in the Y direction at a coarser pitch than with a single ultrasonic probe.

以上 一実施例について説明をしたが本発明の目的を達
成するには以下のような構成でも可能である。
Although one embodiment has been described above, the following configuration is also possible in order to achieve the object of the present invention.

第4図はX方向の走査範囲を可変にする場合の一つの配
置を示したものであり、側板20はそれぞれ磁石21で
各ステップ移動用ネジ3.4がほぼ平行となるように固
定される。ステップ移動用モーター5はぼぼ同期してま
わり、探触台2をY方向にステップ移動させる。
FIG. 4 shows one arrangement in which the scanning range in the X direction is made variable, and the side plates 20 are fixed with magnets 21 so that the step movement screws 3.4 are approximately parallel to each other. . The step movement motor 5 rotates almost synchronously to move the probe table 2 in steps in the Y direction.

X方向走査移動はガイド軸22を探触台2に一端を回転
自在に取りつけられた摺動部材A」が移動するように配
置され、その部材上に固定されたチェーン固定部材24
に両端を固定したチェーン25を走査移動用モーター1
0の動力を伝達するためのスプロケット24を介して行
なっている。
The scanning movement in the X direction is carried out by moving the guide shaft 22 to the probe table 2 through a sliding member "A" whose one end is rotatably attached, and a chain fixing member 24 fixed on the member.
Motor 1 for scanning movement moves chain 25 with both ends fixed to
This is done via a sprocket 24 for transmitting zero power.

本発明に関してはこれら駆動系に関してはネジやチェー
ンに限定するものでなく、探触台の車輪を駆動する方法
、ラックとピニオンギヤ−による方法、ワイヤ他を巻取
る方法等が適用され、また、駆動用モーター走査移動の
場合は搬送用架台に、ステップ移動の場合はメネジ部材
上に配置することもできる。
In the present invention, these drive systems are not limited to screws and chains, but methods that drive the wheels of the probe table, methods that use rack and pinion gears, methods that wind wires, etc. are applicable, and In the case of motor scanning movement, it can be placed on a conveyance frame, and in the case of step movement, it can be placed on a female screw member.

また、接触媒質保持容器としては第2図の弾性体ででき
たブレード状のものを圧接する方法に加えて、第5図の
ように、比較的重量のある枠部26にスポンジ状の弾性
体27を取付けある程度変形を与える高さに枠部を位置
させる車輪28及び車軸29を配置してもよい。
As a couplant holding container, in addition to the method of pressing a blade-shaped object made of an elastic material as shown in FIG. 2, as shown in FIG. Wheels 28 and axles 29 may be arranged to position the frame portion at a height that provides some degree of deformation when the wheels 27 are attached.

さらに、第6図のように枠部30に回転自在な弾性材で
できたローラー31を車軸32で枠部に固定した機構を
とることもてきる。
Furthermore, as shown in FIG. 6, a mechanism may be used in which a rotatable roller 31 made of an elastic material is fixed to the frame part 30 by an axle 32.

また探触子も独立したものを複数個使用するばかりでは
なく短冊型の探触子を数多く並べた、いわゆるアレー型
探触子を使用することも可能である。
In addition to using a plurality of independent probes, it is also possible to use a so-called array type probe in which a large number of strip-shaped probes are arranged.

以」―説明したように、はぼ−線状に配置した探触子群
を走査し探傷を行うために、従来行っていた点あたりの
探傷に比べて士数倍に探傷速度が向」ニされ、あわせて
装置にて設定された範囲については機械的に正確な走査
を行うため探傷もれを防ぐことか可能となる。
As explained above, since flaw detection is performed by scanning a group of probes arranged in a horizontal line, the flaw detection speed is increased several times compared to the conventional flaw detection per point. In addition, since the range set by the device is mechanically and precisely scanned, it is possible to prevent flaw detection from being omitted.

更に、ここでは超音波探傷信号については詳記しなかっ
たが、一般的な傾向として、ここで採用している探触子
と被検物の間に媒質特に水を用いた。いわゆる水浸法は
被検物との超音波の伝播を良くし、その間でのマサツ等
の抵抗もないため高速走査が可能となる。
Further, although the ultrasonic flaw detection signals were not described in detail here, as a general trend, a medium, particularly water, was used between the probe employed here and the object to be inspected. The so-called water immersion method improves the propagation of ultrasonic waves between the object and the object, and there is no resistance such as bumps between the objects, making high-speed scanning possible.

この結果、検査時間は約1/20程度とすることができ
、しかも、探触子と被検輪間を人為的に圧接するような
作業が不要となり、タンク底板などの過酷な作業環境に
おける作業者の精神的また肉体的な負担を軽減させ検査
能率とともに検査の質的向上をはたしている。
As a result, the inspection time can be reduced to about 1/20, and there is no need to manually press the probe and the wheel to be tested, allowing work to be done in harsh working environments such as tank bottom plates. This reduces the mental and physical burden on people and improves testing efficiency and quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波探傷装置を示す図、第2図は第
1図の探触台の説明する図、第3図は第1図の探触子の
列を示す図、第4図は本発明の他の一実施例を示す図、
第5図は第1図の容器と異なる構成の容器を示す図、 第6図は更に異なる構成の容器を示す図である。 出願人 中部電力株式会社 キャノン・ホロソニックス株式会社
FIG. 1 is a diagram showing the ultrasonic flaw detection apparatus of the present invention, FIG. 2 is a diagram explaining the probe stand of FIG. 1, FIG. 3 is a diagram showing the row of probes of FIG. The figure shows another embodiment of the present invention,
FIG. 5 is a diagram showing a container with a different configuration from the container in FIG. 1, and FIG. 6 is a diagram showing a container with a still different configuration. Applicant Chubu Electric Power Co., Inc. Canon Holosonics Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)超音波探触手段を被検物体に対して相対的に主走
査方向及び副走査方向に沿って移動させ前記被検物体を
面積的に走査し、前記被検物体の傷を検出する超音波探
傷装置に於いて、前記超音波探触手段は複数個の超音波
探触子から構成され、この複数個の超音波探触子は主走
査方向に沿って配列され、かつ、前記主走査方向の移動
ピッチは前記複数個の超音波探触子によって照射される
主走査方向の大きにほぼ等しいことを特徴とする超音波
探傷装置。 (2、特許請求の範囲第1項の超音波探傷装置に於いて
、前記複数個の超音波探触子は直線状若しくは千鳥状に
配列されていることを特徴とする超音波探傷装置。 (3)特許請求の範囲第1項の超音波探傷装置に於いて
、前記複数個の超音波探傷子は下面が前記被検物体表面
に接している超音波媒質保持容器中の媒質に接触してい
ることを特徴とする超音波探傷装置。 (4)特許請求の範囲第3項の超音波探傷装置に於いて
、前記超音波媒質保持容器は前記超音波探傷子の主、副
走査方向には一体として移動し、被検体表面方向へは別
体として移動することを特徴とする超音波探傷装置。
[Scope of Claims] (1) The ultrasonic probe is moved relative to the object to be inspected along the main scanning direction and the sub-scanning direction to area-scan the object to be inspected; In an ultrasonic flaw detection device for detecting flaws on an object, the ultrasonic probe means is composed of a plurality of ultrasonic probes, and the plurality of ultrasonic probes are arranged along the main scanning direction. and a movement pitch in the main scanning direction is approximately equal to a magnitude in the main scanning direction of irradiation by the plurality of ultrasonic probes. (2. The ultrasonic flaw detection device according to claim 1, wherein the plurality of ultrasonic probes are arranged in a linear or staggered manner. ( 3) In the ultrasonic flaw detection device according to claim 1, the plurality of ultrasonic flaw detectors are in contact with a medium in an ultrasonic medium holding container whose lower surface is in contact with the surface of the test object. (4) In the ultrasonic flaw detection device according to claim 3, the ultrasonic medium holding container is located in the main and sub-scanning directions of the ultrasonic flaw detector. An ultrasonic flaw detection device that moves as one unit and moves as a separate unit toward the surface of an object to be inspected.
JP57185403A 1982-10-22 1982-10-22 Ultrasonic flaw detector Pending JPS5975149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185403A JPS5975149A (en) 1982-10-22 1982-10-22 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185403A JPS5975149A (en) 1982-10-22 1982-10-22 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPS5975149A true JPS5975149A (en) 1984-04-27

Family

ID=16170177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185403A Pending JPS5975149A (en) 1982-10-22 1982-10-22 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS5975149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046572A (en) * 2002-11-27 2004-06-05 이기준 supersonic checking machin
KR101139592B1 (en) * 2010-08-11 2012-04-27 한국수력원자력 주식회사 longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046572A (en) * 2002-11-27 2004-06-05 이기준 supersonic checking machin
KR101139592B1 (en) * 2010-08-11 2012-04-27 한국수력원자력 주식회사 longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same

Similar Documents

Publication Publication Date Title
JP5663382B2 (en) Rotating array probe system for nondestructive inspection
KR101045524B1 (en) An automated ultrasonic scanner for dissimilar metal weld
US7950297B2 (en) Nondestructive inspection heads for components having limited surrounding space
US3977236A (en) Apparatus and method for ultrasonic fastener hole inspection
US3910124A (en) Non-destructive testing procedures
US5710378A (en) Inspection tool for detecting cracks in jet pump beams of boiling water reactor
US3575043A (en) Elongate element ultrasonic inspection system
CN111380880B (en) Diffraction device and method for nondestructive testing of crystal orientation uniformity inside workpiece
KR102606272B1 (en) Turbine blade dovetail non-destructive testing conveying device using phased array ultrasonic detection method
JPS5975149A (en) Ultrasonic flaw detector
EP1798550B1 (en) Device for inspecting the interior of a material
CN2692665Y (en) Nondestrctive detection mechanical device for detecting defect in long and thin rod
JP2003057215A (en) Automatic ultrasonic flaw detection method and apparatus of welded section
JPH05133942A (en) Trackless type ultrasonic flaw detection running device
JPS61164152A (en) Inspecting installation
JPH05507562A (en) Method and apparatus for ultrasonic testing of plate materials using a rotating test head
JPH0815478A (en) Ultrasonic flaw detector and ultrasonic probe for pressure vessel nozzle
KR102607481B1 (en) Non-destructive testing device for turbine blade dovetail using Phase array ultrasound detection method
Maes et al. Appendix VIII qualification of manual phased array UT for piping
CN214703446U (en) Nonmetal pressure vessel detection device based on acoustic emission detection technology
KR100441961B1 (en) Tracking Device for Automatic Ultrasonic Inspection on Horizontal Tube of Boiler
RU187834U1 (en) EMA installation for industrial automated ultrasonic monitoring of metal products
JPS6047958A (en) Water immersion type ultrasonic flaw detection apparatus
JPH10246793A (en) Inspection method and device for welding part of nuclear fuel rod end plug
JPS6219753A (en) Jig for ultrasonic flaw detection