JPS5975115A - Flow rate detector - Google Patents

Flow rate detector

Info

Publication number
JPS5975115A
JPS5975115A JP18631982A JP18631982A JPS5975115A JP S5975115 A JPS5975115 A JP S5975115A JP 18631982 A JP18631982 A JP 18631982A JP 18631982 A JP18631982 A JP 18631982A JP S5975115 A JPS5975115 A JP S5975115A
Authority
JP
Japan
Prior art keywords
flow rate
fluid
diaphragm
detection device
rate detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18631982A
Other languages
Japanese (ja)
Other versions
JPH0336167B2 (en
Inventor
Hiroshi Sato
博 佐藤
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18631982A priority Critical patent/JPS5975115A/en
Publication of JPS5975115A publication Critical patent/JPS5975115A/en
Publication of JPH0336167B2 publication Critical patent/JPH0336167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To improve responsibility and to obtain small-sized, lightweight constitution by providing a diaphragm constituted so that one surface receives the total pressure of fluid increased in velocity by a flow velocity increasing means and the other surface receives the static pressure of the fluid. CONSTITUTION:The diaphragm 11 constituted so that one surface receives the total pressure of the fluid increaseded in velocity by the flow velocity increasing means 20 and the other surface receives the static pressure of the fluid is provided in piping 19. The diaphragm 11 deforms according to the amount the static pressure 1/2XPU<2>, where R is the density and U is the flow velocity. This deformation is transduced into the impedance of a strain detecting element 9 and the impedance is amplified through a differential amplifier to obtain a detection output signal. Therefore, when the density rho of the fluid is known, the flow rate Q is found from the flow velocity U by the parallel processing of an analog correcting circuit or by the squaring arithmetic of a microprocessor through an A/D converter.

Description

【発明の詳細な説明】 この発明は流動流体の流動量をダイヤフラムの受圧変形
量によって計測する、流量検出装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate detection device that measures the flow rate of a flowing fluid based on the amount of pressure deformation of a diaphragm.

従来この種の装置として第1図に示すものがあった。図
に於て(1)はシリコン半導体より成るバルク状発熱体
、(2)はこの発熱体(1)に給電し支持をも兼ねる電
極リード、(3)は電極リード(2)を固持するトラン
ジスタ・パッケージに相当する支持体、(4)は取出し
リード、(5)はステンレススチール製の配管パイプ、
(6)はパイプ(5)の内部を通過する流体である鉱物
油の流れる方向を示す。(7)は差動ブリッジや増巾器
を含む検出回路、(8)は検出出力信号である。
A conventional device of this type is shown in FIG. In the figure, (1) is a bulk heating element made of silicon semiconductor, (2) is an electrode lead that supplies power to the heating element (1) and also serves as support, and (3) is a transistor that holds the electrode lead (2).・Support corresponding to the package, (4) is the extraction lead, (5) is the stainless steel piping,
(6) indicates the flow direction of mineral oil, which is a fluid passing through the inside of the pipe (5). (7) is a detection circuit including a differential bridge and an amplifier, and (8) is a detection output signal.

次に動作について説明する。発熱(4,(1)−1の給
電電力をPin発熱体(1)と鉱物油の間の熱伝達量を
Poutとすると熱平衡状態に於てはPin = Po
ut = h・As・△Tが成立する。ここでhは発熱
体(1)と鉱物油の間の熱伝達率、Asは発熱体(1)
の表面積、△Tは発熱体(1)と鉱物油の間の温度差で
ある。一般にレイノルズ数Reが1く几e (2000
の層流体条件下に於ては熱伝達率りはa、hを定数とす
ると実験公式h=n+b−U’・5で近似できる。ここ
でVは流体の平均流速を意味している。発熱体(1)へ
の給電電力Pinは発熱体(1)の抵抗をRs 、 Q
流をIs 。
Next, the operation will be explained. Heat generation (4, (1) - 1 power supply is Pin and heat transfer amount between heating element (1) and mineral oil is Pout. In thermal equilibrium state, Pin = Po
ut = h・As・ΔT holds true. Here, h is the heat transfer coefficient between the heating element (1) and mineral oil, and As is the heating element (1)
surface area, ΔT is the temperature difference between the heating element (1) and the mineral oil. In general, the Reynolds number Re is 1 (2000
Under laminar fluid conditions, the heat transfer coefficient can be approximated by the experimental formula h=n+b-U'·5, where a and h are constants. Here, V means the average flow velocity of the fluid. The power supply Pin to the heating element (1) is determined by the resistance of the heating element (1) being Rs, Q
Is the flow.

電圧をVsとすればPin = l52− Rs = 
Vs2/]Rs  で表わされる故8発熱体(1)の電
気的インピーダンスを検出回路(7)で計測することに
より、流速■或いは流ff1Qが検出出力信号(8)と
して得られる。発熱体(1)は0.7 X O,7X 
O,15−のシリコンチップでありPを1015C++
+  ドープしたN形の均質材料から成っている。支持
体(3)はTO−46)ランジスタ・パッケージを流用
しており、ステンレス・スチール製のパイプ(5)は0
7671径×30個長あり1発熱体(1)は後方25.
8ffのところに設置されている。
If the voltage is Vs, then Pin = l52- Rs =
By measuring the electrical impedance of the heat generating element (1) expressed by Vs2/]Rs with the detection circuit (7), the flow velocity (2) or the flow ff1Q is obtained as a detection output signal (8). Heating element (1) is 0.7X O, 7X
O,15- silicon chip, P is 1015C++
+ Consists of doped N-type homogeneous material. The support (3) is a TO-46) transistor package, and the stainless steel pipe (5) is
7671 diameter x 30 pieces long 1 heating element (1) is 25.
It is installed at 8ff.

従来の感熱形流量検出装置は以tのように構成されてい
るので、レイノルズ数が2000〜8000の。
Since the conventional heat-sensitive flow rate detection device is constructed as shown below, the Reynolds number is 2,000 to 8,000.

流れが不安定となる層流から乱流への遷移領域を避けて
、レイノルズ数が2000以下の条件下に設定するよう
になっており、熱伝達率としては低い値を、粒れとして
は層流状態を使わざるを得ない。
In order to avoid the transition region from laminar to turbulent flow where the flow becomes unstable, the Reynolds number is set to 2000 or less, and the heat transfer coefficient is set to a low value, and the grain is set to I have no choice but to use flow state.

更に発熱体(1)となるシリコンチップが均質なバルク
状発熱体であるため、熱容量が大きく熱的平衡状態に達
するための熱的時定数も比較的大きなものになってしま
う。又9発熱体(1)がある程度の大きさを有し、電極
リード(2)と共に流れに撹乱を与える外的要素となっ
てしまうなど流量検出装置として応答性が低くなるばか
りか微少流量乃至は大流量に於て不定定な特性を有する
ものになってぃた。
Furthermore, since the silicon chip serving as the heating element (1) is a homogeneous bulk heating element, the heat capacity is large and the thermal time constant for reaching a thermal equilibrium state is also relatively large. In addition, the heating element 9 (1) has a certain size, and together with the electrode lead (2), it becomes an external element that disturbs the flow, which not only lowers the responsiveness of the flow rate detection device, but also makes it difficult to detect minute flow rates or It had unstable characteristics at large flow rates.

この発明はL記のような従来のものの欠点を除去するた
めになされたもので、流体の流速を増大させるための流
速増大手段と、一方の面がこの手段によって流速を増大
された流体の総圧を、他方の面がL記流体の静圧を受け
るように構成されL記流体の動圧によって受圧変形する
ダイヤフラノ・と、このダイヤフラムの歪を検出する手
段と、を記ダイヤフラムの周縁を支持しかつt記流体の
静圧を導入する手段を有した支持体とをL記流体が通過
する配管中に備えることにより、瞬時に流量計測の可能
な流量検出装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones such as L, and includes a flow rate increasing means for increasing the flow rate of the fluid, and one surface of the present invention has a total flow rate of the fluid whose flow rate is increased by the means. a diaphragm whose other surface is configured to receive the static pressure of the L fluid and deforms under pressure due to the dynamic pressure of the L fluid, and a means for detecting distortion of the diaphragm; An object of the present invention is to provide a flow rate detection device capable of instantaneously measuring the flow rate by providing a support member having a means for supporting and introducing static pressure of the fluid T in a pipe through which the fluid L passes. There is.

以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図において、(9)は埋設されたP形シリコンの不
純物拡散層より成り歪検出手段である歪検出素子、00
は熱酸化等により形成せしめた8i02酸化膜より成る
絶縁層、αυは歪検出素子(9)が配置された中央部が
エツチングにより削られ薄くなったN形シリコン基板ま
り成る受圧ダイヤフラム、 (1]b)はこのダイヤフ
ラム0υの周縁部、@はアルミ電極層。
In FIG. 2, (9) is a strain detection element consisting of a buried P-type silicon impurity diffusion layer and serving as a strain detection means; 00
is an insulating layer made of an 8i02 oxide film formed by thermal oxidation, αυ is a pressure-receiving diaphragm made of an N-type silicon substrate whose central part, where the strain sensing element (9) is arranged, has been etched and thinned; (1) b) is the peripheral edge of this diaphragm 0υ, @ is the aluminum electrode layer.

03はボンディング・ワイヤー、0榎はボンディングポ
スト、OQはガラス半田より成る接着剤層である。
03 is a bonding wire, 0 is a bonding post, and OQ is an adhesive layer made of glass solder.

流体の静圧を導入する手段である導入孔I2υを有した
シリコン基板より成る支持体(16a)とはうけい酸ガ
ラスより成る支持体(46b)とで支持体が構成されて
いる。07)はセラミック、合成樹脂等の一゛気的絶縁
材より成りボンディングポストo4を絶縁支持する絶縁
体、θ印はコバールより成るパッケージ、 OQはハウ
ジング、翰は鉱物油などの流体の流速を増大せしめるた
めの流速増大手段であるノズルである。受圧ダイヤフラ
ム0(ト)は特にシリコンに限られるものではなく半導
体ピエゾ抵抗材料であればシリコンの池GeやIn5b
 、 GaAs等の化合物半導体でも良い。絶縁層OQ
としては8i0□の池Si3N4.Al2O3など電気
的に絶縁性を有する材質であれば構わない。接着剤層(
+71には比較的低温で気密封着させろためシリコンと
熱膨張係数の近いZnO−B203−V2O。
The support is composed of a support (16a) made of a silicon substrate and having an introduction hole I2υ which is a means for introducing static pressure of fluid, and a support (46b) made of silicate glass. 07) is an insulator made of a monolithic insulating material such as ceramic or synthetic resin, which insulates and supports the bonding post O4, θ is a package made of Kovar, OQ is a housing, and a wire is used to increase the flow velocity of fluid such as mineral oil. This is a nozzle that is a means of increasing the flow velocity to increase the flow rate. The pressure-receiving diaphragm 0 (g) is not limited to silicon, but can be made of silicon, Ge or In5b if it is a semiconductor piezoresistive material.
, or a compound semiconductor such as GaAs. Insulating layer OQ
As for 8i0□ pond Si3N4. Any electrically insulating material such as Al2O3 may be used. Adhesive layer (
+71 is ZnO-B203-V2O, which has a coefficient of thermal expansion close to that of silicon, so that it can be hermetically sealed at a relatively low temperature.

系のガラス半田を採用しているがこのaAu −Siな
どの合金やエポキシ系、シリコン系等の合成樹脂接着剤
であっても良い。流量検出装置としての使用温度範囲や
適用される流体に応じて選択されるべきもので、不溶性
を有するなど適用されろ流体に対して化学的且つ物理的
に安定であることと広い使用温度範囲に対しては少なく
とも受圧ダイヤフラムαのと熱膨張率の近い耐熱性接着
剤である方が望ましい。支持体(16R) 、 (t6
b)は残留熱応力とその温度依存性おら受圧ダイヤフラ
ム0υと熱膨張係数をそろえる必要があるが、熱膨張係
数の近いものであればシリコン材やはうけい酸ガラスに
限られるものではなく、ぞの池のガラス材、′f2いは
コープイライト、ジルコン、リチアなどの磁器セラミッ
ク材であっても良い。流動流体として鉱物油を用いてい
るが特にこれに限定される訳ではなくガソリン、灯油等
の燃料油をはじめ水、空気。
Although glass solder based on this type is used, alloys such as aAu-Si, or synthetic resin adhesives such as epoxy and silicone may also be used. It should be selected according to the operating temperature range and the fluid to which it will be used as a flow rate detection device, and should be chemically and physically stable with respect to the fluid to which it is applied, such as insolubility, and can be used in a wide operating temperature range. In contrast, it is preferable to use a heat-resistant adhesive having a coefficient of thermal expansion at least close to that of the pressure-receiving diaphragm α. Support (16R), (t6
For b), due to residual thermal stress and its temperature dependence, it is necessary to match the thermal expansion coefficient with the pressure receiving diaphragm 0υ, but it is not limited to silicon materials or silicate glass as long as the thermal expansion coefficient is similar. It may also be a porcelain ceramic material such as Zonoike glass material, 'f2, copierite, zircon, or lithia. Although mineral oil is used as the fluid, it is not limited to this, and fuel oils such as gasoline and kerosene, as well as water and air can be used.

都市ガス、N2等殆んどの流体に適用可能であり。Applicable to most fluids such as city gas and N2.

特に絶縁性流体に向いている。Particularly suitable for insulating fluids.

非絶縁性流体にも電極@(2)やボンディング・ワイヤ
ー03.ボンディングポスト0→に絶縁膜を被覆処理す
ることによって充分適用可能である。
Non-insulating fluids can also be used with electrodes (2) and bonding wires 03. This method can be sufficiently applied by coating the bonding post 0→ with an insulating film.

次に動作について説明する。鉱物油はノズル(ホ)で増
速され、噴流となって受圧ダイヤフラムαυに衝突する
。受圧ダイヤフラム0υの噴流と衝突せる面には鉱物油
の動圧と静圧の和である総圧が印加される。一方、受圧
ダイヤフラムαηの反対側の面には導入孔Q])を介し
て静圧が印加される。受圧ダイヤフラム01)はρを密
度、Uを流速とすれば動圧1に’OU2に順じた変形を
することになる。この変形はフルブリッジ構成の歪検出
素子(9)のインピーダンスに変換されて差動増巾器を
通して増巾され検出出力信号となる。このような検出方
法は公知の半導体拡散膨圧力検出器に多く採用されてい
るものであり線形な変換特性を有しているので動圧量i
ρU2を直接に計測することになる。従って。
Next, the operation will be explained. The mineral oil is accelerated by the nozzle (E), becomes a jet, and collides with the pressure receiving diaphragm αυ. A total pressure, which is the sum of the dynamic pressure and static pressure of the mineral oil, is applied to the surface of the pressure receiving diaphragm 0υ that collides with the jet stream. On the other hand, static pressure is applied to the opposite surface of the pressure receiving diaphragm αη via the introduction hole Q]). The pressure receiving diaphragm 01) deforms according to the dynamic pressure 1'OU2, where ρ is the density and U is the flow velocity. This deformation is converted into the impedance of the distortion detection element (9) having a full bridge configuration, and is amplified through a differential amplifier to become a detection output signal. This type of detection method is often adopted in known semiconductor diffusion pressure detectors, and has linear conversion characteristics, so the amount of dynamic pressure i
ρU2 will be directly measured. Therefore.

流体の密度pが既知の場合はアナログ補正回路で平方処
理を施こすかψ変換器を通してマイクロプロセッサで平
方演算することにより流速Uから流量Qを求めることが
できる。流体の密度ρが未知の場合には別に密度検出器
を設は割算処理をしたのち平方をとることによって流量
を割り出すことができる。支持体(16a)と(16b
)間で熱膨張係数が多少異なっているのでその分熱応力
を発生することになるが支持体(16B )で熱応力の
相当分が吸収されて受圧ダイヤフラムαηには殆んど影
響を及ぼさないようになっている。このように支持体(
16a)は静圧の導入という役割だけでなく熱応力に基
づく温度依存性を改善する役割も果たしておりこの実施
例のように受圧ダイヤフラム01)と同一材料にて構成
する意味は太きい。支持体(16a)と支持体(16b
)間の接合面積を小さくすることで熱応力の全エネルギ
ー量を押さえるようにもなっている。
If the density p of the fluid is known, the flow rate Q can be determined from the flow rate U by performing squaring with an analog correction circuit or by performing squaring with a microprocessor through a ψ converter. If the density ρ of the fluid is unknown, the flow rate can be determined by separately installing a density detector, performing division processing, and then taking the square. Supports (16a) and (16b
) The coefficient of thermal expansion is slightly different between the two, which will generate thermal stress, but the support (16B) absorbs a considerable portion of the thermal stress and has almost no effect on the pressure receiving diaphragm αη. It looks like this. In this way, the support (
16a) plays not only the role of introducing static pressure but also the role of improving temperature dependence due to thermal stress, and it is significant that it is made of the same material as the pressure receiving diaphragm 01) as in this embodiment. Support body (16a) and support body (16b
) The total energy of thermal stress is also suppressed by reducing the bonding area between the two.

受圧ダイヤフラム0])付近の流れはノズルに)によっ
てレイノルズ数8000以七の乱流域に設定されており
測定流量範囲で常に乱流状態が保持され1−流と乱流の
遷移領域に入ることはなく安定した出力が得られる。鉱
物油(6)の流れは受圧ダイヤフラム0υに衝突した後
90度曲げられ排出されるようになっており従来のもの
と比べはるかに小形、軽量という利点を有している。加
えて、噴流の衝突エネルギーや受圧ダイヤフラム0υ近
傍で発生する渦によってゴミその池の付着物がつき難く
特性に経時変化が少なく耐久性に優れているっ又、第2
図に示したように本検出器の取りつけ、交換は簡単であ
る。半導体材料を応用しているので量産性に優れており
安価で以tのまうに高性能なものが得られる。ここでは
N形シリコン基板について説明したがP形についても同
様に実現できる。
The flow near the pressure receiving diaphragm (0]) is set in a turbulent region with a Reynolds number of 8000 or more by the nozzle), and the turbulent state is always maintained within the measured flow rate range, and it never enters the transition region between 1-flow and turbulent flow. stable output can be obtained. After the flow of mineral oil (6) collides with the pressure receiving diaphragm 0υ, it is bent 90 degrees and discharged, and has the advantage of being much smaller and lighter than conventional ones. In addition, due to the impact energy of the jet and the vortices generated near 0υ of the pressure-receiving diaphragm, it is difficult for dirt and deposits to adhere to the pond, and the characteristics do not change over time and are excellent in durability.
As shown in the figure, this detector is easy to install and replace. Since it uses semiconductor materials, it is excellent in mass production and can be produced at low cost and with much higher performance. Although an N-type silicon substrate has been described here, the same can be realized for a P-type silicon substrate as well.

第8図はこの発明の池の実施例で、支持体(16b)が
1つの場合を示しており、支持体(16b)に導入孔Q
υが穿孔されている。
FIG. 8 shows an embodiment of the pond according to the present invention, in which there is one support (16b), and the support (16b) has an introduction hole Q.
υ is perforated.

第2図と比べて熱応力の影響が大きいが製作工程が減る
分だけ安価でJ)りより小形なものを実現することがで
きる。このように導入孔Qηは受圧ダイヤフラム0ηの
裏面に静圧を導入する構造であればよく受圧ダイヤフラ
ムαつの一部に設けても良い。
Although the influence of thermal stress is greater than that shown in Fig. 2, it is possible to realize a smaller product at a lower cost since the manufacturing process is reduced. In this way, the introduction hole Qη may be provided in a part of the pressure receiving diaphragm α as long as it has a structure that introduces static pressure to the back surface of the pressure receiving diaphragm 0η.

第4図はこの発明の池の実施例で、歪検出素子(9)を
受圧ダイヤフラムαυtに積層せる構成とし。
FIG. 4 shows an embodiment of the present invention, in which a strain detection element (9) is stacked on a pressure receiving diaphragm αυt.

才だ、流体の静圧の導入口Qυを受圧ダイヤフラムαη
の中央部に比べ厚くなった周縁部(nb)に直接設けた
場合を示している。この場合、ダイヤフラムの周縁部(
11h)も支持体の一部と考えてよい。
The inlet Qυ of the static pressure of the fluid is connected to the pressure receiving diaphragm αη.
This figure shows the case where it is provided directly at the peripheral edge (nb), which is thicker than the center. In this case, the peripheral edge of the diaphragm (
11h) may also be considered as part of the support.

歪検出素子(9)は公知の抵抗線歪ゲージ乃至半導体歪
ゲージである。受圧ダイヤフラム(II)は膜体を構成
可能な弾性材料であるステンレススチールなどの金属材
やシリコンなどの半導体より構成される。00はこの受
圧ダイヤフラム0◇の全面或いは一部を被覆し電気的絶
縁材料より成る絶縁1−である。
The strain detection element (9) is a known resistance wire strain gauge or semiconductor strain gauge. The pressure receiving diaphragm (II) is made of a metal material such as stainless steel, which is an elastic material capable of forming a membrane body, or a semiconductor such as silicon. 00 is an insulation 1- which covers the entire surface or a part of this pressure receiving diaphragm 0◇ and is made of an electrically insulating material.

絶縁層01の材質としては金属酸化膜や耐熱性1躇分子
膜或イハ840 、8iQ、 、 MgF2. CaF
2. Zn8などの蒸着薄膜などである。
The material of the insulating layer 01 may be a metal oxide film, a heat-resistant monomolecular film, or IHA840, 8iQ, MgF2. CaF
2. This may be a vapor-deposited thin film such as Zn8.

基本的には動作は第8.第4図と変わりはない。Basically, the movement is the 8th. There is no difference from Figure 4.

半導体を使わない場合は温度依存性を小さくできるので
広い範囲で使用する場合や高温流体に対しては有利であ
る。歪検出素子(9)が直接流体に晒されるので絶縁層
OQと同様の材料によってコーティング処理を歪検出素
子(9) 、 電極層(6)、ボンディング・ワイヤー
(至)、ボンディングポスト04などに施すのが望まし
い。また静圧の導入口01)を受圧ダイヤフラム0ηの
周縁部に直接設けたことにより製作工程が減り、製作し
やすくなる。
If a semiconductor is not used, the temperature dependence can be reduced, which is advantageous when used over a wide range or for high-temperature fluids. Since the strain sensing element (9) is directly exposed to the fluid, the strain sensing element (9), electrode layer (6), bonding wire (to), bonding post 04, etc. are coated with the same material as the insulating layer OQ. is desirable. Further, by providing the static pressure inlet 01) directly on the peripheral edge of the pressure receiving diaphragm 0η, the number of manufacturing steps is reduced and manufacturing becomes easier.

第5図はこの発明の池の実施例で、温度補償のための温
度検出素子(イ)を受圧ダイヤフラノ= (+1>に設
置した場合を示している。この温度検出素子(イ)はシ
リコン基板より成ろ受圧ダイヤフラムαυ内に構成され
た不純物拡散層であり、受圧ダイヤフラム0υの変形応
力を受けない様この受圧ダイヤフラノ・Opの周縁部に
配はされている。
Figure 5 shows an embodiment of the pond of this invention, in which a temperature detection element (A) for temperature compensation is installed at the pressure receiving diaphragm = (+1>).This temperature detection element (A) is made of silicon. This is an impurity diffusion layer formed within the pressure receiving diaphragm αυ made of a substrate, and is arranged at the peripheral edge of the pressure receiving diaphragm Op so as not to receive the deformation stress of the pressure receiving diaphragm 0υ.

一般に電気抵抗率は電荷を運ぶキャリア濃度とモヒリテ
ィの積にまって決定されるが、シリコンなどの半導体材
料では常温付近に於ても両者の温度による値の変化は大
きく、歪検出六子(9)の温度依存性が問題になること
が多い。例えば自動車用途のように広い温度範囲に於て
流量計測をしようという場合には、この実施例のまうに
別に温度補償用の素子を設けてやる必要がある。つまり
、歪検出素子(Q)の電気的インピーダンス変化分のう
ち温度に止る項だけ取り除いてピエゾ効果に因づく変形
応力項だけを取り出すまうにしなければならない。この
実施例のように変形応力の印加されない部分に例えば感
温抵抗材料で構成された温度検出素子(イ)を配し、差
動増巾器筒?含む検出回路で増巾することにより、広い
温度範囲でも主催な測定ができる。また、このような温
度検出素子(イ)を形成するには、単にマスクパターン
が異なるぐらいで価格への影響も少なく容易に実現でき
る。なお、温度検出素子(イ)はシリコン材の不純物拡
散層。
In general, electrical resistivity is determined by the product of charge carrier concentration and mobility, but in semiconductor materials such as silicon, the value of both changes significantly with temperature even at room temperature, and strain detection Rokuko (9) temperature dependence is often a problem. For example, when measuring flow rate over a wide temperature range, such as in automobile applications, it is necessary to provide a temperature compensation element separately from this embodiment. In other words, it is necessary to remove only the temperature-related term from the electrical impedance change of the strain sensing element (Q) to extract only the deformation stress term due to the piezo effect. As in this embodiment, a temperature detection element (A) made of, for example, a temperature-sensitive resistance material is placed in a portion where deformation stress is not applied, and a differential amplifier tube is used. By amplifying the detection circuit included, it is possible to perform measurements over a wide temperature range. In addition, forming such a temperature detection element (a) can be easily realized by simply using different mask patterns, with little impact on cost. The temperature detection element (a) is an impurity diffusion layer of silicon material.

サーミスタなどの!感温半導体等を用いて構成してもよ
い。
Such as thermistors! It may also be constructed using a temperature-sensitive semiconductor or the like.

第6図はこの発明の他の実施例で、ノズル(20a )
FIG. 6 shows another embodiment of the present invention, in which the nozzle (20a)
.

(20b) 、受圧ダ(−? 7 ラA (ll&)、
(llb) 、 Ni検出素子(図示せず)、支持体(
16a) 、 (x6b)等+コ、J: ッテ構成され
る流量検出装置が2細部列に配設された場合を示してい
る。また図示していないが、温度補償のための温度検出
手段も設けると望ましい。図において、@はシール用の
Oリング、(ハ)は検出量f洛を構成する電子部品を載
せるための回路基板、@はノズル(20a) 、 (2
0b)より注入された鉱物油(6)を排出するための排
出孔、に)はボンディングポストQ4を回路基板(ハ)
に固定し、電気的結線を施す為の半田剤である7図示し
たようにノズル(20a) 、 (2ob)はパッケー
ジ(至)と一体となった構造となっており。
(20b), pressure receiving da (-? 7 la A (ll&),
(llb), Ni detection element (not shown), support (
16a), (x6b), etc.+C, J: This shows a case where the flow rate detection devices configured as shown in FIG. Although not shown, it is desirable to also provide temperature detection means for temperature compensation. In the figure, @ is an O-ring for sealing, (c) is a circuit board for mounting electronic components that make up the detection amount f, and @ is a nozzle (20a), (2
0b) A discharge hole for discharging the injected mineral oil (6) from the bonding post Q4 to the circuit board (c)
As shown in Figure 7, the nozzles (20a) and (2ob) are integrated with the package (to).

絞り径が違っている。排出孔(ハ)も同様にパッケージ
(至)に穿孔されたものであり、配管しは直列に配設さ
れ類似の構成を採った。2つの流量検出装置によって1
つの流量検出装置を構成している。この実施例に於ては
、ノズル(20a )とノズル(2ob)の絞り径が異
なっているので1例えば気泡の混入等の相状態の変化が
める場合の流量についても、L記2つの流量検出装置の
出力を比較してやることで求めることができる。即ち、
同一の動圧量計測原理には基づくものの異なった関数関
係にある複数個の流量検出装置を一体乃至はそれに近い
状態で直列或いは並列に配設することによって真の質量
流量計測を実現することができる。また一方の流量検出
部が破損せるような場合に於ても一応温度補正された流
量計測は可能であり1本発明の流量検出器がセンサとし
てのキーパーツとなるまうなシステムに於てもシステム
の動作を停止させることなく運用することが出来る。な
お、この実施例ではノズル(20a) 、 (20b)
の絞り径を違えることによって、複数個の流量増大手段
によって発生する動圧量が各々流体の流速に対し異なる
関数関係にするようにしたが2例えば流速増大手段(イ
)と受圧ダイヤフラム0ηとの間隔が各々異なるように
する等池の方法によってもよい。
The aperture diameter is different. The discharge hole (c) was also drilled in the package (to), and the piping was arranged in series and had a similar configuration. 1 by two flow rate detection devices
It consists of two flow rate detection devices. In this embodiment, since the orifice diameters of the nozzle (20a) and the nozzle (2ob) are different, the flow rate when detecting a change in the phase state, such as the inclusion of air bubbles, is also controlled by the two flow rate detection devices shown in L. It can be found by comparing the outputs of That is,
True mass flow rate measurement can be achieved by arranging multiple flow rate detection devices that are based on the same dynamic pressure measurement principle but have different functional relationships in series or parallel as one unit or in a similar state. can. In addition, even if one of the flow rate detection parts is damaged, it is possible to measure the flow rate with temperature correction. It can be operated without stopping the operation. In addition, in this example, the nozzles (20a) and (20b)
By changing the diameter of the orifice, the amount of dynamic pressure generated by the plurality of flow rate increasing means is made to have a different functional relationship with the flow velocity of the fluid. It is also possible to use a similar method in which the intervals are different.

なお、を記実施例では流量増大手段としてノズル(イ)
を用いた場合を示したが、オリフィス、べνチュリ等で
もよい。
In addition, in the described embodiment, a nozzle (A) is used as a flow rate increasing means.
Although the case is shown in which an orifice, a vent, etc. are used, it is also possible.

また2、l:記実施例では支持体(16a) 、 (t
6b)をシリコン基板やはうけい酸ガラスにより構成し
たが。
In addition, 2.l: In the example described above, the support (16a), (t
6b) was constructed from a silicon substrate or silicate glass.

多孔質材で構成しても同様の効果を得ることができる。A similar effect can be obtained by using a porous material.

また、ヒ記実施例では支持体(16a) 、 (16b
)を一体構造としたが、複数個の支持体を幾可学的対称
となるように例えば同一円周tに配置してダイヤフラム
Ql)をそれらのtに支持するようにしてもよい以上の
ように、この発明によれば流体の流速を増大させるため
の流速増大手段と、一方の面がこの手段によって流速を
増大された流体の総圧を。
In addition, in Example 1, supports (16a) and (16b
) has been made into an integral structure, but it is also possible to arrange a plurality of supports geometrically symmetrically, for example, on the same circumference t, and to support the diaphragm Ql) on those t. According to the invention, there is provided a flow rate increasing means for increasing the flow rate of the fluid, and one surface has a total pressure of the fluid whose flow rate is increased by the means.

他方の面がh記流体の静圧を受けるように構成されt記
流体の動圧によって受圧変形するダイヤプラムと、この
ダイヤプラムの歪を検出する手段と。
A diaphragm whose other surface is configured to receive the static pressure of the h fluid and is deformed by the dynamic pressure of the t fluid, and means for detecting distortion of the diaphragm.

を記ダイヤフラムの周縁を支持しかつt記流体の静圧を
導入する手段を有した支持体とをt記流体が通過する配
管中に備えたので、極めて小形、軽量でしかも応答性の
優れた高性能な流量検出装置が安価にて得られる効果が
ある。
A support body supporting the periphery of the diaphragm and having a means for introducing static pressure of the fluid t is provided in the piping through which the fluid t passes, resulting in an extremely small and lightweight design with excellent responsiveness. This has the effect of providing a high-performance flow rate detection device at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の流量検出装置を一部切欠いて内部を示す
斜視図、第2図はこの発明の一実施例による流量検出装
置を示す断面図、第8図ないし第6図はこの発明の他の
実施例による流量検出装置を示す断面図である。 図において、(9)は歪検出手段、αηはダイヤフラム
、 (11b)はダイヤフラA(7)周縁部、  (l
sa) 、 (16b) i、を支持体、0*は配管、
 elJ 、 (20a)、(20b)は流速増大手段
、C1)は流体の静圧を導入する手段、に)は温度検出
手段でゐろ。 なお1図中同一行号は同一または相当部分を示すものと
する。 第6図 手続補正書 2、発明の名称 流量検出装置 3、補正をする者 事件との関係   特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称(601)   三菱電機株式会社代表者片山仁
八部 4、代理人 住 所     東京都千代11区丸の内二丁口2番3
壮三菱電機株式会社内 ’  +]i+1゜ 2.パ″・ 。 5、補正の対象 明細書の特許請求の範囲および発明の詳細な説明の欄 6、補正の内容 (1)明細書の特許請求の範囲を別紙のとおり訂正する
。 (2)明細書第4頁第12行の「層流体条件下」を「層
流条件下」に訂正する。 (3)同第4頁第14行の「h=a+b −U  Jを
「h=a+b−VJに訂正する。 (4)同第5頁第12行の「粒れ」を「流れ」に訂正す
る。 (5)同第5頁第20行の「不定定」を「不安定」に訂
正する。 (6)同第7頁第14行の「In5b」を「InSb 
Jに訂正する。 (7)同第8頁第8行の「おら」を「から」に訂正する
。 (8)同第14頁第2行の「正確」を「圧縮」に訂正す
る。 (9)同第16頁第14行の「幾可学」を「幾何学」に
訂正する。 7、 添付書類の目録 補正後の特許請求の範囲を記載した書面1通 以  上 特許請求の範囲 (1)流体の流速を増大させるための流速増大手段と、
一方の面がこの手段によつ゛C流速を増大された流体の
総圧を、他方の面が上記流体の静圧を受けるように溝部
され上記流体の動圧によって受圧変形するダイヤフラム
と、このダイヤフラムの歪を検出する手段と、上記ダイ
ヤフラムの周縁を支持しかつ上記流体の静圧を導入する
手段を有した支持体とを上記流体が通過する配管中1こ
備えた流量検出装置。 (2)受圧変形するダイヤフラムとして半導電性材料を
用いたことを特徴とする特許請求の範囲第1項記載の流
量検出装置。 (3)受圧変形するダイヤフラムとしてシリコン材を用
いたことを特徴とする特許請求の範囲第2項記載の流量
検出装置。 (4)受圧変形するダイヤフラムをその中央部分が周縁
部分に比べ薄くなった構造としたことを特徴とする特許
請求の範囲第1項ないし第8項の何れかに記載の流量検
出装置。 (5)受圧変形するダイヤフラムをその中央部分が周縁
部分に比べ薄くな・つた構造とし、かつ上記ダイヤフラ
ムの周縁部分に静圧の導入孔を設けたことを特徴とする
特許請求の範囲第4項記載の流量検出装置。 (6)支持体としてシリコン材を用いたことを特徴とす
る特許請求の範囲第8項記載の流量検出装置。 (7)支持体として多孔質材料を用いたことを特徴とす
る特許請求の範囲第1項ないし第5項の何れかに記載の
流量検出装置。 (8)ダイヤフラムの周縁を支持する支持体が、同一面
上で幾何学的対称になるよう1こ配設された複数個の支
持体より構成されることを特徴とする特許請求の範囲第
1項ないし第6項の何れかに記載の流量検出装置。 (9)温度補償のための温度を検出する手段を有するこ
とを特徴とする特許請求の範囲第1項ないしは第8項の
何れかに記載の流量検出装置。 (10流体が通過する配管中に、流速増大手段と、ダイ
ヤフラムと、歪検出素子と、支持体よりなる流量検出装
置を複数個、流線方向に対して直列あるいは並列に配置
し、かつ上記複数個の流速増大手段によって発生する動
圧量が各々上記流体の流速に対して異なる関数関係にあ
ることを特徴とする流量検出装置。 o9温度補償のための温度を検出する手段を有すること
を特徴とする特許請求の範囲第10項記載の流量検出装
置。
FIG. 1 is a perspective view showing the inside of a conventional flow rate detection device with a portion cut away, FIG. 2 is a sectional view showing a flow rate detection device according to an embodiment of the present invention, and FIGS. FIG. 7 is a sectional view showing a flow rate detection device according to another embodiment. In the figure, (9) is the strain detection means, αη is the diaphragm, (11b) is the periphery of diaphragm A (7), (l
sa), (16b) i is the support, 0* is the piping,
elJ, (20a) and (20b) are flow velocity increasing means, C1) is means for introducing static pressure of fluid, and C1) is temperature detecting means. Note that the same line numbers in each figure indicate the same or corresponding parts. Figure 6 Procedural amendment 2, name of invention Flow rate detection device 3, relationship with the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Representative of Mitsubishi Electric Corporation Person: Jin Hachibe 4, Katayama, Agent Address: 2-3 Marunouchi 2-chome, Chiyo 11-ku, Tokyo
So Mitsubishi Electric Co., Ltd. +]i+1゜2. 5. Scope of Claims and Detailed Description of the Invention in the Specification Subject to Amendment Column 6, Contents of the Amendment (1) The scope of claims in the Specification will be corrected as shown in the attached sheet. (2) Specification "Under laminar fluid conditions" on page 4, line 12 of the book is corrected to "laminar flow conditions." (3) Correct “h=a+b −U J” in line 14 of page 4 to “h=a+b−VJ.” (4) Correct “grain” to “flow” in line 12 of page 5. do. (5) On page 5, line 20, "indeterminate" is corrected to "unstable." (6) Change “In5b” on page 7, line 14 to “InSb”
Correct to J. (7) Correct "ora" to "kara" on page 8, line 8. (8) "Accurate" in the second line of page 14 is corrected to "compression." (9) Correct "geometry" in line 14 of page 16 to "geometry". 7. One or more documents stating the scope of claims after the amendment to the list of attached documents Claims (1) Flow rate increasing means for increasing the flow rate of fluid;
A diaphragm having a groove formed so that one surface receives the total pressure of the fluid whose flow velocity has been increased by this means and the other surface receiving the static pressure of the fluid and is deformed by the dynamic pressure of the fluid; A flow rate detection device comprising: a means for detecting distortion of the diaphragm; and a support having means for supporting the peripheral edge of the diaphragm and introducing static pressure of the fluid, in a pipe through which the fluid passes. (2) The flow rate detection device according to claim 1, wherein a semiconductive material is used as the diaphragm that deforms under pressure. (3) The flow rate detection device according to claim 2, wherein a silicon material is used as the diaphragm that deforms under pressure. (4) The flow rate detection device according to any one of claims 1 to 8, characterized in that the diaphragm that deforms under pressure has a structure in which a central portion thereof is thinner than a peripheral portion. (5) Claim 4, characterized in that the diaphragm that deforms under pressure has a tapered structure in which the center portion thereof is thinner than the peripheral portion, and a static pressure introduction hole is provided in the peripheral portion of the diaphragm. The flow rate detection device described. (6) The flow rate detection device according to claim 8, characterized in that a silicon material is used as the support. (7) The flow rate detection device according to any one of claims 1 to 5, characterized in that a porous material is used as the support. (8) Claim 1, characterized in that the support supporting the periphery of the diaphragm is composed of a plurality of supports arranged geometrically symmetrically on the same plane. 6. The flow rate detection device according to any one of items 6 to 6. (9) The flow rate detection device according to any one of claims 1 to 8, characterized in that it has means for detecting temperature for temperature compensation. (10 A plurality of flow rate detection devices each consisting of a flow rate increasing means, a diaphragm, a strain detection element, and a support are arranged in series or in parallel with respect to the flow line direction in a pipe through which the fluid passes, and A flow rate detection device characterized in that the amount of dynamic pressure generated by each of the flow rate increasing means has a different functional relationship with the flow rate of the fluid.O9 A flow rate detection device characterized in that it has a means for detecting temperature for temperature compensation. A flow rate detection device according to claim 10.

Claims (9)

【特許請求の範囲】[Claims] (1)流体の流速を増大させるための流速増大手段と、
一方の面がこの手段によって流速を増大された流体の総
圧を、他方の面がL記流体の静圧を受けるように構成さ
れL記流体の動圧によって受圧変形するダイヤフラムと
、このダイヤフラムの歪を検出する手段と、上記ダイヤ
フラムの周縁を支持しかつL記流体の静圧を導入する手
段を有した支持体とをt記流体が通過する配管中に備え
た流量検出装置。
(1) a flow rate increasing means for increasing the flow rate of the fluid;
A diaphragm is configured such that one surface receives the total pressure of the fluid whose flow velocity has been increased by this means, and the other surface receives the static pressure of the L fluid, and is deformed by the dynamic pressure of the L fluid. A flow rate detection device comprising: a means for detecting strain; and a support having a means for supporting the periphery of the diaphragm and introducing static pressure of the fluid L, in a pipe through which the fluid t passes.
(2)受圧変形するダイヤフラムとして半導電性材料を
用いたことを特徴とする特許請求の範囲第1項記載の流
量検出装置。
(2) The flow rate detection device according to claim 1, wherein a semiconductive material is used as the diaphragm that deforms under pressure.
(3)受圧変形するダイヤフラムとしてシリコン材を用
いたことを特徴とする特許請求の範囲第2項記載の流量
検出装置。
(3) The flow rate detection device according to claim 2, wherein a silicon material is used as the diaphragm that deforms under pressure.
(4)受圧変形するダイヤフラムなその中央部分が周縁
部分に比べ薄くなった構造としたことを特徴とする特許
請求の範囲第1項ないし第8項の何れかに記載の流量検
出装置k 。
(4) The flow rate detection device k according to any one of claims 1 to 8, characterized in that the central portion of the diaphragm that deforms under pressure is thinner than the peripheral portion.
(5)受圧変形するダイヤフラムをその中央部分が周縁
部分に比べ薄くなった構造とし、かつt記ダイヤフラム
の周縁部分に静圧の導入孔を設けたことを特徴とする特
許請求の範囲第4項記載の流量検出装置。
(5) The diaphragm that deforms under pressure has a structure in which the center portion thereof is thinner than the peripheral portion, and a static pressure introduction hole is provided in the peripheral portion of the diaphragm (t). The flow rate detection device described.
(6)支持体としてシリコン材を用いたことを特徴とす
る特許請求の範囲第8項記載の流量検出装置。
(6) The flow rate detection device according to claim 8, characterized in that a silicon material is used as the support.
(7)支持体として多孔質材料を用いたことを特徴とす
る特許請求の範囲第1項ないしは第5項の何れかに記載
の流量検出装置。
(7) The flow rate detection device according to any one of claims 1 to 5, characterized in that a porous material is used as the support.
(8)ダイヤフラムの周縁を支持する支持体が、同一面
tで幾可学的対称になるように配設された複数個の支持
体より構成されることを特徴とする特許請求の範囲第1
項ないし始6項の何れかに記載の流量検出装置。
(8) Claim 1, characterized in that the support that supports the periphery of the diaphragm is composed of a plurality of supports that are arranged geometrically symmetrically on the same plane t.
The flow rate detection device according to any one of Items 6 to 6.
(9)温度補償のための温度を検出する手段を有するこ
とを特徴とする特許請求の範囲第1項ないしは第8項の
何れかに記載の流量検出装置。 00流体が通過する配管中に、流速増大手段と。 ダイヤプラムと、歪検出素子と、支持体よりなる流量検
出装置を複数個、流線方向に対して直列あるいは並列に
配置し、かつt記複数個の流速増大手段によって発生す
る動圧量が各々L記流体の流速に対し異なる関数関係に
あることを特徴とする流量検出装置。 0υ温度補償のための温度全検出する手段を有すること
を特徴とする特許請求の範囲第10項記載の流量検出装
置。
(9) The flow rate detection device according to any one of claims 1 to 8, characterized in that it has means for detecting temperature for temperature compensation. In the piping through which the 00 fluid passes, there is a flow rate increasing means. A plurality of flow rate detection devices each including a diaphragm, a strain detection element, and a support are arranged in series or in parallel with respect to the flow line direction, and the amount of dynamic pressure generated by the plurality of flow rate increasing means is A flow rate detection device characterized in that it has a different functional relationship with respect to the flow velocity of a fluid indicated by L. 11. The flow rate detection device according to claim 10, further comprising means for detecting the entire temperature for 0υ temperature compensation.
JP18631982A 1982-10-22 1982-10-22 Flow rate detector Granted JPS5975115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18631982A JPS5975115A (en) 1982-10-22 1982-10-22 Flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18631982A JPS5975115A (en) 1982-10-22 1982-10-22 Flow rate detector

Publications (2)

Publication Number Publication Date
JPS5975115A true JPS5975115A (en) 1984-04-27
JPH0336167B2 JPH0336167B2 (en) 1991-05-30

Family

ID=16186247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18631982A Granted JPS5975115A (en) 1982-10-22 1982-10-22 Flow rate detector

Country Status (1)

Country Link
JP (1) JPS5975115A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737214A (en) * 1980-08-19 1982-03-01 Omron Tateisi Electronics Co Flow measuring device utilizing semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737214A (en) * 1980-08-19 1982-03-01 Omron Tateisi Electronics Co Flow measuring device utilizing semiconductor

Also Published As

Publication number Publication date
JPH0336167B2 (en) 1991-05-30

Similar Documents

Publication Publication Date Title
US4576050A (en) Thermal diffusion fluid flow sensor
US20210116281A1 (en) Thermal Fluid Flow Sensor
US8939012B2 (en) Thermal conductivity detector and gas chromatograph using same
EP1333255B1 (en) Flow sensor
JP4307738B2 (en) Pressure sensor
US6666088B2 (en) Accelerometer without proof mass
JPH07103837A (en) Sensor for detecting physical amount
US4713970A (en) Thermal diffusion fluid flow sensor
US11768093B2 (en) Flow sensing device
JP2003329697A (en) Flow sensor
JPS5975115A (en) Flow rate detector
JP3210530B2 (en) Thermistor flow rate sensor
JPS595919A (en) Heat sensitive type flow rate detector
JPH0143886B2 (en)
JPH04295768A (en) Fluid detector
JP2619735B2 (en) Heat flow sensor
JPS62226031A (en) Pressure sensor unit
JP3456647B2 (en) Liquid flow sensor
JP3423083B2 (en) Flow meter sensor
JP2003106884A (en) Airflow sensor
JPS6063421A (en) Thermal flow rate detector
JPH04295767A (en) Fluid detector
JPH056328U (en) Flowmeter
JP2005227228A (en) Diaphragm type sensor
JPS63241313A (en) Flow sensor