JPH0143886B2 - - Google Patents

Info

Publication number
JPH0143886B2
JPH0143886B2 JP57148712A JP14871282A JPH0143886B2 JP H0143886 B2 JPH0143886 B2 JP H0143886B2 JP 57148712 A JP57148712 A JP 57148712A JP 14871282 A JP14871282 A JP 14871282A JP H0143886 B2 JPH0143886 B2 JP H0143886B2
Authority
JP
Japan
Prior art keywords
diaphragm
flow rate
heat
rate detector
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57148712A
Other languages
Japanese (ja)
Other versions
JPS5937419A (en
Inventor
Hiroshi Sato
Mikio Betsusho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57148712A priority Critical patent/JPS5937419A/en
Publication of JPS5937419A publication Critical patent/JPS5937419A/en
Publication of JPH0143886B2 publication Critical patent/JPH0143886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳现な説明】 本発明は流動物䜓の流動量を発熱䜓ず流動物䜓
間の熱䌝達を利甚しお怜出する流量怜出噚に関す
るもので、さらに詳しくいえば、発熱䜓ず流動流
䜓間の熱䌝達量から流速乃至流量等、その流動流
䜓の流動量を怜出する感熱圢流量怜出噚に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate detector that detects the flow rate of a fluid object using heat transfer between a heating element and a fluid object. The present invention relates to a heat-sensitive flow rate detector that detects the amount of flowing fluid, such as flow rate or flow rate, based on the amount of heat transfer.

埓来のこの皮の流量怜出噚の䞀䟋を第図に瀺
し説明するず、図においお、はシリコン半導䜓
よりなるバルク状発熱䜓、はこのバルク状発熱
䜓に絊電する機胜ず支持する機胜ずを兌ねる電
極リヌド、はこの電極リヌドを固持するトラ
ンゞスタ・パツケヌゞに盞圓する支持䜓、は取
出しリヌド、はステンレス・スチヌル補の配管
パむプ、はこの配管パむプの内郚を通過する
流䜓であるミネラル・スピリツツ、は取出しリ
ヌドに接続された差動ブリツゞや増幅噚を含む
怜出回路、はこの怜出回路から埗られる怜出
出力信号である。
An example of a conventional flow rate detector of this kind is shown in FIG. 1. In the figure, 1 is a bulk heating element made of a silicon semiconductor, and 2 is a function of supplying power to and supporting the bulk heating element 1. 3 is a support corresponding to a transistor package that holds this electrode lead 2, 4 is an extraction lead, 5 is a stainless steel piping pipe, and 6 is a fluid passing through the inside of this piping pipe 5. 7 is a detection circuit including a differential bridge and an amplifier connected to the extraction lead 4, and 8 is a detection output signal obtained from this detection circuit 7.

このように構成された装眮の動䜜に぀いお説明
する。たず、バルク状発熱䜓ぞの絊電電力を
Pinずし、バルク状発熱䜓ずミネラル・スピリ
ツツの間の熱䌝達量をPoutずするず、熱平衡
状態においおはPinPout・As・ΔTが成立
する。ここで、はバルク状発熱䜓ずミネラ
ル・スピリツツの間の䌝達率、Asはバルク状
発熱䜓の衚面積、ΔTはバルク状発熱䜓ずミ
ネラル・スピリツツの間の枩床差である。
The operation of the device configured in this way will be explained. First, the power to be supplied to the bulk heating element 1 is
If Pin is the amount of heat transfer between the bulk heating element 1 and the mineral spirits 6, then Pout is the amount of heat transferred between the bulk heating element 1 and the mineral spirits 6. In a state of thermal equilibrium, Pin=Pout=h.As.ΔT holds true. Here, h is the transmission rate between the bulk heating element 1 and the mineral spirits 6, As is the surface area of the bulk heating element 1, and ΔT is the temperature difference between the bulk heating element 1 and the mineral spirits 6. .

䞀般にレむノルズ数ReがRe2000の局流
条件䞋においおは、熱䌝達率はを定数ず
するず、実隓公匏・v0.5で近䌌するこ
ずができる。ここで、は流䜓の平均流速を意味
しおいる。
Generally, under laminar flow conditions where the Reynolds number Re is |<Re<2000, the heat transfer coefficient h can be approximated by the experimental formula h=a+b·v 0.5 , where a and b are constants. Here, v means the average flow velocity of the fluid.

そしお、バルク状発熱䜓ぞの絊電電力Pinは
バルク状発熱䜓の抵抗をRs、電流をIs、電圧
をVsずすれば、PinIs2・RsVs2Rsで衚わ
される故、バルク状発熱䜓の電気むンピヌダン
スを怜出回路で蚈枬するこずにより、流䜓の流
速あるいは流量が怜出出力信号ずしお埗ら
れる。
The power Pin supplied to the bulk heating element 1 is expressed as Pin=Is 2・Rs=Vs 2 /Rs, where the resistance of the bulk heating element 1 is Rs, the current is Is, and the voltage is Vs. By measuring the electrical impedance of the bulk heating element 1 with the detection circuit 7, the flow velocity v or flow rate Q of the fluid is obtained as the detection output signal 8.

ここで、バルク状発熱䜓は0.7×0.7×0.15mm3
のシリコンチツプであり、を1015cm-3ドヌプし
た圢の均質材料から成぀おいる。そしお、支持
䜓はTO―46トランゞスタ・パツケヌゞを流甚
しおおり、ステンレス・スチヌル補の配管パむプ
は0.767cm埄×30cm長あり、バルク状発熱䜓
は埌方25.3cmのずころに蚭眮されおいる。
Here, the bulk heating element 1 is 0.7×0.7×0.15mm 3
It is a silicon chip made of N-type homogeneous material doped with 10 15 cm -3 of P. The support body 3 is a TO-46 transistor package, and the stainless steel piping 5 has a diameter of 0.767 cm and a length of 30 cm, and the bulk heating element 1
is located 25.3cm behind.

しかしながら、この感熱圢流量怜出噚においお
は、レむノルズ数が2000〜3000の、流れが䞍安定
ずなる局流から乱流ぞの遷移領域を避けおレむノ
ルズ数が2000以䞋の条件䞋に蚭定するようにな぀
おおり、熱䌝達率ずしおは䜎い倀を、たた、流れ
ずしおは局流状態を䜿わざるを埗ない。さらに、
発熱䜓ずなるシリコンチツプが均質なバルク状
発熱䜓であるため、熱容量が倧きく熱的平衡状態
に達するための熱的時定数も比范的倧きくな぀お
したうずいう欠点がある。たた、バルク状発熱䜓
がある皋床の倧きさを有し、電極リヌドず共
に流れに撹乱を䞎える倖的芁玠ずな぀おしたうな
ど、流量怜出噚ずしお応答性が䜎くなるばかり
か、埮小流量ないしは倧流量においお䞍安定な特
性を有するものずな぀おいた。
However, this heat-sensitive flow rate detector should be set under conditions where the Reynolds number is 2000 to 3000, avoiding the transition region from laminar flow to turbulent flow where the flow becomes unstable. Therefore, a low value for the heat transfer coefficient and a laminar state for the flow must be used. moreover,
Since the silicon chip serving as the heating element 1 is a homogeneous bulk heating element, it has a drawback that the heat capacity is large and the thermal time constant for reaching a thermal equilibrium state is also relatively large. In addition, the bulk heating element 1 has a certain size and becomes an external element that disturbs the flow together with the electrode lead 2, which not only lowers the responsiveness as a flow rate detector but also causes problems when the flow rate is small or large. It had unstable characteristics depending on the flow rate.

本発明は以䞊の点に鑑み、このような問題を解
決するず共に、かかる欠点を陀去すべくなされた
もので、その目的は、噎流を圢成し、ダむダフラ
ムに衝突せしめ、発熱䜓ず流動流䜓間の熱䌝達ず
ダむダフラムの倉圢量を蚈枬するこずにより、真
の質量流量に近い流量蚈枬が可胜な小圢にしお軜
量で高性胜な流量怜出噚を䜎䟡栌にお実珟するこ
ずができる発熱圢流量怜出噚を提䟛するこずにあ
る。
In view of the above points, the present invention has been made in order to solve such problems and eliminate such drawbacks.The purpose of the present invention is to form a jet flow and make it collide with a diaphragm, thereby creating a gap between a heating element and a flowing fluid. A heat-generating flow rate detector that can measure heat transfer and diaphragm deformation to provide a small, lightweight, high-performance flow rate sensor at a low price that can measure flow rates close to the true mass flow rate. Our goal is to provide the following.

このような目的を達成するため、本発明は流動
流䜓の流路を狭くしお流速を増倧させる絞り、ノ
ズルなどの絞り機構による流速増倧手段ず、この
流速増倧手段の埌方に眮かれ䞊蚘流動流䜓の流速
に応じお受圧倉圢するダむダフラムず、このダむ
ダフラムに埋蚭ないしは接着せる発熱玠子ず、䞊
蚘ダむダフラムに埋蚭ないしは接着せる歪怜出玠
子ず、䞊蚘ダむダフラムの呚瞁郚分を支持しか぀
熱的䞍良導䜓よりなる支持手段ずを備えるように
したもので、以䞋、図面に基づき本発明の実斜䟋
を詳现に説明する。
In order to achieve such an object, the present invention includes a flow rate increasing means using a throttle mechanism such as a throttle or a nozzle that narrows the flow path of the flowing fluid to increase the flow rate, and a flow rate increasing means placed behind the flow rate increasing means to increase the flow rate of the flowing fluid. a diaphragm that deforms under pressure according to the flow velocity of the diaphragm; a heating element embedded in or bonded to the diaphragm; a strain detection element embedded in or bonded to the diaphragm; and a support that supports a peripheral portion of the diaphragm and is made of a thermally poor conductor. Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第図は本発明による発熱圢流量怜出噚の䞀実
斜䟋を瀺す構成図である。この第図においお第
図ず同䞀笊号のものは盞圓郚分を瀺し、は
圢シリコンの䜎抵抗䞍玔物局よりなる発熱玠子、
は同様に圢シリコンの高抵抗䞍玔物局より
なる歪怜出玠子で、これら発熱玠子および歪怜
出玠子は埌述する受圧ダむダフラムに埋蚭な
いしは接着するように構成されおいる。は䞭
倮郚が゚ツチングにより削られ薄くな぀た圢の
シリコン基板よりなる受圧ダむダフラムで、この
受圧ダむダフラムは絞り、ノズルなどの絞り
機構による流速増倧手段の埌方に眮かれ流動流䜓
の流速に応じお受圧倉圢するダむダフラムを構成
しおいる。ここで、この受圧ダむダフラムは
特にシリコンに限られるものではなく、抵抗局を
圢成し埗るものであれば、GeでもInSbGaAsな
どの化合物半導䜓でもよい。
FIG. 2 is a configuration diagram showing an embodiment of the exothermic flow rate detector according to the present invention. In this Figure 2, the same numbers as in Figure 1 indicate corresponding parts, and 9 is P
A heating element made of a low-resistance impurity layer of type silicon,
Similarly, the strain sensing element 10 is made of a high-resistance impurity layer of P-type silicon, and the heating element 9 and the strain sensing element 10 are configured to be embedded or bonded to a pressure receiving diaphragm, which will be described later. Reference numeral 11 denotes a pressure receiving diaphragm made of an N-shaped silicon substrate whose central portion has been etched to make it thinner.This pressure receiving diaphragm 11 is placed behind a flow rate increasing means using a throttle mechanism such as a throttle or nozzle, and is adapted to adjust the flow rate of the flowing fluid. It constitutes a diaphragm that deforms under pressure. Here, the pressure receiving diaphragm 11 is not particularly limited to silicon, but may be made of Ge or a compound semiconductor such as InSb or GaAs as long as it can form a resistance layer.

は䞭空郚で、この䞭空郚は䟋えば真空
状態などの䞀定圧力䞋に密封されおおり、ミネラ
ルスピリツツの静圧ず動圧の和である総圧によ
぀お倉圢動䜜するよう構成されおいる。は
SiO2酞化膜絶瞁局で、この酞化膜絶瞁局は
特にSiO2に限らず、電気的絶瞁性を有する材質
ならばSi3N4Al2O3でもよい。はアルミ電
極局で、この電極局に぀いおも特にアルミに
限られる蚳ではなく、AuNiPtなどの公知の
電極材料であ぀おもよい。はボンデむングワ
むダヌ、はボンデむングポスト、は䟋え
ばガラス半田よりなる接着剀局で、この接着剀局
には比范的䜎枩で気密封着させるためシリコ
ンず熱膚匵係数の近いZnO―B2O3―V2O5系のガ
ラス半田を採甚しおいるが、この他An―Siなど
の合金や゚ポキシ系、シリコン系等の合成暹脂を
甚いたものでもよい。は䟋えばほうけい酞ガ
ラスよりなる支持台で、この支持台は受圧ダ
むダフラムず熱膚匵係数の近い材質が望たし
く、たた近いものならほうけい酞ガラスに限られ
るものではなく、セラミツク材でもよい。このセ
ラミツク材ずしおはコヌデむラむトゞルコン
リチアなどの磁噚が適圓である。そしお、この支
持台は受圧ダむダフラムの呚瞁郚分を支
持し熱的䞍良導䜓よりなる支持手段を構成しおい
る。
Reference numeral 12 denotes a hollow portion, which is sealed under a constant pressure such as a vacuum state, and is configured to deform due to the total pressure that is the sum of static pressure and dynamic pressure of the mineral spirits 6. ing. 13 is
This oxide film insulating layer 13 is not limited to SiO 2 , but may be Si 3 N 4 or Al 2 O 3 as long as it is made of an electrically insulating material. Reference numeral 14 denotes an aluminum electrode layer, and this electrode layer 14 is not particularly limited to aluminum, but may be made of known electrode materials such as Au, Ni, and Pt. 15 is a bonding wire, 16 is a bonding post, and 17 is an adhesive layer made of glass solder, for example. ZnO--B 2 O, which has a coefficient of thermal expansion similar to that of silicon, is attached to this adhesive layer 17 for airtight sealing at a relatively low temperature. 3 -V 2 O 5- based glass solder is used, but alloys such as An--Si, or synthetic resins such as epoxy and silicon may also be used. Reference numeral 18 denotes a support base made of, for example, borosilicate glass. This support base 18 is preferably made of a material with a coefficient of thermal expansion close to that of the pressure receiving diaphragm 11, and if it is similar, it is not limited to borosilicate glass, but may also be a ceramic material. . This ceramic material includes cordierite, zircon,
Porcelain such as Lithia is suitable. The support stand 18 supports the peripheral portion of the pressure receiving diaphragm 11 and constitutes support means made of a thermally poor conductor.

はコバヌルよりなるパツケヌゞ、はセ
ラミツクなどの電気的絶瞁材よりなるボンデむン
グポストを絶瞁支持する絶瞁䜓、はハり
ゞング、はノズルで、このノズルは流動
流䜓の流路の断面積を狭くしお流速を増倧させる
絞り機構による流速増倧手段を構成しおいる。
19 is a package made of Kovar, 20 is an insulator made of an electrically insulating material such as ceramic, which insulates and supports the bonding post 16, 21 is a housing, and 22 is a nozzle. A flow rate increasing means is constituted by a throttle mechanism that increases the flow rate by narrowing the tube.

そしお、流動流䜓ずしおはミネラルスピリツツ
を甚いおいるが、本発明は特にこれに限定され
るものではなく、燃料油をはじめ氎、空気など殆
んどの流䜓に適甚可胜であり、特に絶瞁性流䜓に
向いおいる。たた、非絶瞁性流䜓にもアルミ電極
局やボンデむングワむダヌ、ボンデむン
グポストに絶瞁膜を被芆凊理するこずによ぀
お十分適甚可胜である。
Although mineral spirits 6 is used as the flowing fluid, the present invention is not limited to this, and can be applied to most fluids such as fuel oil, water, and air, and is particularly suitable for insulating properties. Suitable for fluids. Furthermore, it is fully applicable to non-insulating fluids by coating the aluminum electrode layer 14, bonding wire 15, and bonding post 16 with an insulating film.

前述したずころから明らかなように、受圧ダむ
ダフラムは半導電性材料によ぀お構成され、
たた、この受圧ダむダフラムはシリコン材に
お構成され、その受圧ダむダフラムは第図
に瀺すように、その䞭倮郚分が呚瞁郚分に比べ薄
くな぀た構造である。そしお、発熱玠子はその
受圧ダむダフラムの薄くな぀た郚分に配さ
れ、この発熱玠子は受圧ダむダフラムの䞭
倮郚に配されおおり、たた、この発熱玠子を䞍
玔物拡散局ずし、受圧ダむダフラム䞭に埋蚭
せる構造ずな぀おいる。
As is clear from the above, the pressure receiving diaphragm 11 is made of a semiconductive material,
Further, the pressure receiving diaphragm 11 is made of a silicon material, and as shown in FIG. 2, the pressure receiving diaphragm 11 has a structure in which the center portion thereof is thinner than the peripheral portion. The heating element 9 is arranged in the thinned part of the pressure receiving diaphragm 11, and this heating element 9 is arranged in the center of the pressure receiving diaphragm 11. Also, this heating element 9 is used as an impurity diffusion layer, and the pressure receiving diaphragm 11 is The structure is such that it can be buried inside 11.

そしお、歪怜出玠子を䞍玔物拡散局ずし、
受圧ダむダフラム䞭に埋蚭せる構造ずな぀お
おり、この歪怜出玠子は受圧ダむダフラム
の薄くな぀た郚に配され、たた、この歪怜出玠
子は受圧ダむダフラムの薄くな぀た郚分
の呚瞁に配されおいる。
Then, the strain detection element 10 is made into an impurity diffusion layer,
The strain detection element 10 is embedded in the pressure receiving diaphragm 11.
The strain sensing element 10 is arranged at the periphery of the thinned part of the pressure receiving diaphragm 11.

぀ぎにこの第図に瀺す実斜䟋の動䜜に぀いお
説明する。たず、ミネラル・スピリツツはノズ
ルで増速され、噎流ずな぀お受圧ダむダフラ
ムに衝突する。そしお、この噎流の䞀郚ある
いは党郚が発熱玠子に衝突し䞋蚘(1)匏で衚わさ
れる冷华熱䌝達が行なわれる。
Next, the operation of the embodiment shown in FIG. 2 will be explained. First, the mineral spirits 6 are accelerated by the nozzle 22 and collide with the pressure receiving diaphragm 11 in the form of a jet stream. Then, part or all of this jet collides with the heating element 9, and cooling heat transfer is performed as expressed by the following equation (1).

PinPout0.94Pr0.4ReD0.5 ・As・ΔT 
(1) ここで、はノズル埄、Prはプラントル数、
ReDはレむノルズ数、は熱䌝導率である。な
お、Pinは絊電電力であり、Poutは熱䌝達量であ
る。これを倉圢するず、 Pin0.94Pr0.4UjΜ・0.5 ・・As・ΔT 
(2) 0.94Pr0.4ρUjΌD0.5 ・・As・ΔT 
(3) ずなる。ここで、Ujは噎出速床であり、Μは動
粘性係数、Όは粘性係数である。
Pin=Pout=0.94Pr 0.4 ReD 0.5 k/D ・As・ΔT
(1) Here, D is the nozzle diameter, Pr is the Prandtl number,
ReD is Reynolds number and k is thermal conductivity. Note that Pin is the power supply, and Pout is the amount of heat transfer. Transforming this, Pin=0.94Pr 0.4 (U j /Μ・D) 0.5・k・As・ΔT 
(2) =0.94Pr 0.4 (ρU j /ÎŒD) 0.5・k・As・ΔT 
(3) becomes. Here, U j is the ejection velocity, Îœ is the kinematic viscosity coefficient, and ÎŒ is the viscosity coefficient.

䞊蚘(2)匏で流䜓の枩床に䟝存するのは、プラン
トル数Pr、熱䌝導率、動粘性係数Μ、流䜓ず
発熱玠子の枩床差ΔTである。そしお、熱線に
おいお公知の定枩床差動䜜をさせおやれば、 0.94・As・ΔTD0.5 が定数ずなり、ある䞀定枩床䞋においお発熱玠子
ぞの投入電力絊電電力Pinが噎出速床Uj 1/2
に比䟋するずいう、非線圢関係が成立するこずに
なる。
In the above equation (2), the Prandtl number Pr, the thermal conductivity k, the kinematic viscosity coefficient Îœ, and the temperature difference ΔT between the fluid and the heating element 9 depend on the temperature of the fluid. Then, if a known constant temperature difference operation is performed in the hot wire, 0.94・As・ΔT/D 0.5 becomes a constant, and under a certain constant temperature, the input power (supply power) Pin to the heating element 9 becomes the ejection speed U j 1/2
This means that a nonlinear relationship exists, that is, it is proportional to .

䞀般に、液䜓では流䜓の枩床が高くなるず、プ
ラントル数Prず動粘性係数Μが䜎䞋し、熱䌝導
率はあたり倉わらない。たた、気䜓では流䜓の
枩床が高くなるず、動粘性係数Μず䌝導率が䞊
昇し、プラントル数Prはあたり倉わらない。し
たが぀お、䞊蚘(2)匏に準じお、流䜓が液䜓の堎合
も気䜓の堎合も䞀般には液䜓ではプラントル数
Prず動粘性係数Μが気䜓では動粘性係数Μず熱
䌝導率が投入電力絊電電力Pinの枩床䟝存
性を盞殺する効果があり、狭い䜿甚枩床範囲にお
いおは定枩床差動䜜以倖の、䟋えば枩床怜出玠子
を付加するなどの枩床補償をする必芁はない。
Generally, in a liquid, as the temperature of the fluid increases, the Prandtl number Pr and the kinematic viscosity coefficient Μ decrease, and the thermal conductivity k does not change much. Furthermore, in the case of a gas, as the temperature of the fluid increases, the kinematic viscosity coefficient Μ and conductivity k increase, but the Prandtl number Pr does not change much. Therefore, according to equation (2) above, whether the fluid is liquid or gas, in general, the Prandtl number is
When Pr and the kinematic viscosity coefficient Μ are gases, the kinematic viscosity coefficient Μ and thermal conductivity k have the effect of offsetting the temperature dependence of the input power (supplied power) Pin, and in a narrow operating temperature range, other than constant temperature difference operation, For example, there is no need to perform temperature compensation such as adding a temperature detection element.

しかしながら、䞊蚘盞殺効果にも限りがあり、
䜿甚枩床範囲が広い堎合には、別に枩床怜出玠子
を蚭け、流䜓の枩床に察しお特性補償を斜しおや
るのが望たしい。
However, there is a limit to the above-mentioned offsetting effect.
When the operating temperature range is wide, it is desirable to provide a separate temperature detection element and perform characteristic compensation for the temperature of the fluid.

そしお、噎流の衝突は冷华熱䌝達に加えお受圧
ダむダフラムに圧力を及がし、受圧ダむダフ
ラムを倉圢させる。この倉圢は前述の劂く、
流䜓の単䜍䜓積圓たりの運動゚ネルギヌに盞圓す
る動圧ず流䜓の単䜍䜓積圓たりの䜍眮゚ネルギヌ
に盞圓する静圧の和である総圧に基づいおいる。
したが぀お、ピトヌ・ベンチナリ管の組み合わせ
の原理ず同様に他のいずれの堎所での流䜓の静圧
倀が既知であれば、動圧1/2ρU2 jを求めるこずが
できる。
The collision of the jets exerts pressure on the pressure receiving diaphragm 11 in addition to the cooling heat transfer, causing the pressure receiving diaphragm 11 to deform. As mentioned above, this transformation is
It is based on the total pressure, which is the sum of dynamic pressure, which corresponds to kinetic energy per unit volume of fluid, and static pressure, which corresponds to potential energy per unit volume of fluid.
Therefore, similar to the principle of Pitot-Venture tube combination, if the static pressure value of the fluid at any other location is known, the dynamic pressure 1/2ρU 2 j can be determined.

䞀方、歪怜出玠子は公知の半導䜓拡散圢圧
力怜出噚に倚く採甚されおいる個の玠子でフル
ブリツゞを構成しおおり、線圢な圧力倉換特性を
有しおいる。したが぀お、動圧1/2ρU2 jの特性が
そのたた差動増幅噚などの怜出回路の出力ずしお
蚈枬される。
On the other hand, the strain detection element 10 constitutes a full bridge with four elements that are often employed in known semiconductor diffusion type pressure detectors, and has linear pressure conversion characteristics. Therefore, the characteristics of the dynamic pressure 1/2ρU 2 j are directly measured as the output of a detection circuit such as a differential amplifier.

以䞊のように、発熱玠子を甚いた冷华熱䌝達
により密床補正された質量流量ρUjが、歪怜出玠
子を甚いた圧力倉換によりρU2 jが求たるの
で、怜出回路郚分で適圓な挔算凊理を斜しおやれ
ば、曎に真の質量流量に近いものを蚈枬するこず
ができる。そしお、気泡の混入した液䜓流や液滎
の混入した気䜓流のような盞流の堎合にも流速
を決定する関数関係が通りあるので、真の質量
流量を蚈枬するこずができる。
As mentioned above, since the mass flow rate ρUj density-corrected by cooling heat transfer using the heating element 9 is determined as ρU 2 j by pressure conversion using the strain detection element 10, appropriate arithmetic processing is performed in the detection circuit section. By doing so, it is possible to measure something even closer to the true mass flow rate. Even in the case of a two-phase flow such as a liquid flow containing bubbles or a gas flow containing droplets, there are two functional relationships that determine the flow velocity, so the true mass flow rate can be measured.

第図に瀺す実斜䟋においおは、流䜓の流れは
受圧ダむダフラムに衝突した埌、90床曲げら
れお排出されるように構成されおいる。したが぀
お、発熱郚での熱容量は小さく、msecオヌダヌ
の高速応答も可胜である。たた、受圧ダむダフラ
ム付近での流れはノズルによ぀おレむノ
ルズ数3000以䞊の乱流域にあり、枬定流量範囲で
垞に乱流状態になるよう蚭定されおいるので、安
定した出力が埗られるばかりか、埓来のものに比
しおはるかに小圢軜量ずいう利点を有する。曎
に、噎流の衝突゚ネルギヌや受圧ダむダフラム
近傍で発生する枊のため、“ゎミ”その他の付
着物が぀き難く、特性に経時倉化が少なく、耐久
性に優れおいる。たた、第図に瀺したように、
この流量怜出噚の取り付け亀換は容易な構造ずな
぀おいる。
In the embodiment shown in FIG. 2, the fluid flow is configured such that after colliding with the pressure receiving diaphragm 11, the fluid flow is bent 90 degrees and discharged. Therefore, the heat capacity in the heat generating part is small, and high-speed response on the order of milliseconds is possible. In addition, the flow near the pressure receiving diaphragm 11 is in a turbulent region with a Reynolds number of 3000 or more due to the nozzle 22, and is set to always be in a turbulent state within the measured flow rate range, so not only can a stable output be obtained. It has the advantage of being much smaller and lighter than conventional ones. Furthermore, the collision energy of the jet and the pressure receiving diaphragm 1
Since the vortices are generated in the vicinity of 1, "dust" and other deposits are difficult to adhere to, the characteristics change less over time, and the material is excellent in durability. Also, as shown in Figure 2,
This flow rate detector has a structure that allows easy installation and replacement.

さらに、たた、半導䜓材料を応甚しおいるの
で、量産性に優れおおり、安䟡で高性胜なものが
実珟できる。ここでは、圢シリコン基板を䟋に
ず぀お説明したが、圢に぀いおも党く同様なこ
ずが蚀える。
Furthermore, since semiconductor materials are applied, it is excellent in mass production and can be produced at low cost and with high performance. Although the explanation has been given here by taking an N-type silicon substrate as an example, the same can be said for a P-type silicon substrate as well.

第図は本発明の他の実斜䟋を瀺す構成図で、
発熱玠子ず歪怜出玠子ずを受圧ダむダフラ
ム䞊に積局、すなわち、接着せる構成ずした
堎合の䞀䟋を瀺すものである。
FIG. 3 is a configuration diagram showing another embodiment of the present invention,
This shows an example of a structure in which a heat generating element 9 and a strain detecting element 10 are laminated on a pressure receiving diaphragm 11, that is, are bonded.

この第図においお第図ず同䞀笊号のものは
盞圓郚分を瀺し、は受圧ダむダフラムの
党面あるいは䞀郚を被芆し、電気的熱的絶瞁材
料よりなる絶瞁膜である。この絶瞁膜の材質
ずしおは金属酞化膜や耐熱性高分子膜あるいは
SiOSiO2MgF2CaF2ZnSなどの蒞着薄膜
などである。
In FIG. 3, the same reference numerals as in FIG. 2 indicate corresponding parts, and 23 is an insulating film that covers the entire surface or a part of the pressure receiving diaphragm 11 and is made of an electrically and thermally insulating material. The material of this insulating film 23 may be a metal oxide film, a heat-resistant polymer film, or
These include vapor-deposited thin films of SiO, SiO 2 , MgF 2 , CaF 2 , ZnS, etc.

そしお、発熱玠子は積局可胜な感枩抵抗材料
であるサヌミスタや炭玠皮膜あるいはSnO2や
TiO2の酞化物薄膜、あるいはPtAuPdなどの
貎金属薄膜、あるいはTiCrZrMoTa
のような金属薄膜、あるいはNi―CrAu―
CrCr―Tiマンガンなどの合金薄膜よりなる。
たた、歪怜出玠子ずしおは公知の抵抗線歪ゲ
ヌゞ半導䜓歪ゲヌゞが甚いられる。たた、これ
ら発熱玠子および歪怜出玠子を積局する受
圧ダむダフラムは膜䜓を構成可胜な磁性材料
であるステンレス・スチヌルなどの金属やシリコ
ンなどの半導䜓より構成されおいる。
The heating element 9 is made of a thermistor, carbon film, SnO 2 , etc., which is a stackable temperature-sensitive resistance material.
TiO 2 oxide thin film, or noble metal thin film such as Pt, Au, Pd, or Ti, Cr, Zr, Mo, Ta,
Metal thin film such as W, or Ni-Cr, Au-
It consists of a thin film of alloys such as Cr, Cr-Ti, and manganese.
Further, as the strain detection element 10, a known resistance wire strain gauge or semiconductor strain gauge is used. Further, the pressure receiving diaphragm 11 on which the heating element 9 and the strain sensing element 10 are stacked is made of a metal such as stainless steel, which is a magnetic material capable of forming a membrane, or a semiconductor such as silicon.

前述したずころから明らかなように、受圧ダむ
ダフラムは金属材料によ぀お構成され、この
受圧ダむダフラムは第図に瀺すように、そ
の䞭倮郚分が呚瞁郚分に比べ薄くな぀た構造であ
る。そしお、発熱玠子は受圧ダむダフラム
の面䞊に接着せる構造で、か぀その受圧ダむダフ
ラムの䞭倮郚分に配されおいる。たた、歪怜
出玠子も受圧ダむダフラムの面䞊に接着
せる構造である。
As is clear from the foregoing, the pressure receiving diaphragm 11 is made of a metal material, and as shown in FIG. 3, the pressure receiving diaphragm 11 has a structure in which the central portion is thinner than the peripheral portion. The heating element 9 is a pressure receiving diaphragm 11.
The pressure receiving diaphragm 11 has a structure that can be adhered onto the surface of the pressure receiving diaphragm 11. Further, the strain detection element 10 is also bonded onto the surface of the pressure receiving diaphragm 11.

぀ぎにこの第図に瀺す実斜䟋の動䜜を説明す
る。この第図に瀺す実斜䟋においおは第図ず
は玠子の補法や材質が異な぀おいるが、基本的に
はその動䜜は前述の第図に瀺す実斜䟋ず倉わり
なく、第図に瀺す実斜䟋ず殆んど同様な動䜜を
する。
Next, the operation of the embodiment shown in FIG. 3 will be explained. In the embodiment shown in FIG. 3, the manufacturing method and material of the element are different from those in FIG. 2, but the operation is basically the same as in the embodiment shown in FIG. It operates almost the same as the embodiment shown.

ここで、第図ず倉わるのはこの第図に瀺す
実斜䟋では第図に瀺す実斜䟋に比しお冷华熱䌝
達の応答性が改善されるこずである。
Here, the difference from FIG. 2 is that in the embodiment shown in FIG. 3, the responsiveness of cooling heat transfer is improved compared to the embodiment shown in FIG.

これは、絶瞁膜で受圧ダむダフラムず
発熱玠子ずが熱的にも絶瞁されるので、受圧ダ
むダフラムぞの熱流のリヌクが抌えられおい
るためである。
This is because the pressure receiving diaphragm 11 and the heating element 9 are thermally insulated by the insulating film 23, so that leakage of heat flow to the pressure receiving diaphragm 11 is suppressed.

たた、発熱玠子にサヌミスタなどの高い抵抗
枩床係数の材料を甚いるこずにより、出力を増倧
させ、差動増幅噚などの倖郚怜出回路に察する負
担を軜枛させるこずができる。
Further, by using a material with a high temperature coefficient of resistance such as a thermistor for the heating element 9, the output can be increased and the burden on an external detection circuit such as a differential amplifier can be reduced.

第図は本発明の曎に他の実斜䟋を瀺す構成図
である。この第図においお第図ず同䞀郚分に
は同䞀笊号を付しお説明を省略する。
FIG. 4 is a block diagram showing still another embodiment of the present invention. In FIG. 4, parts that are the same as those in FIG. 2 are given the same reference numerals and explanations will be omitted.

第図ず異なる点は、流䜓の静圧を受圧ダむダ
フラムこの第図に瀺す実斜䟋が第図に瀺す実
斜䟋ず異なる点は、流䜓の静圧を受圧ダむダフラ
ムの裏面ぞ導入する導入口を蚭けたこず
であり、この導入口は支持台を介しお流
䜓が導入されるように構成されおいる。なお、そ
の他の構成は第図に瀺す実斜䟋ず党く同様にな
぀おいる。
The embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 2 in that the static pressure of the fluid is introduced into the back surface of the pressure receiving diaphragm 11. This is because a port 24 is provided, and this inlet port 24 is configured so that fluid is introduced through the support base 18. Note that the other configurations are completely similar to the embodiment shown in FIG.

このように構成された流量怜出噚においお、た
ず、ミネラル・スピリツツず衝突する受圧ダむ
ダフラムの衚面には前述の劂く流䜓の総圧が
印加されるが、受圧ダむダフラムの裏面には
流䜓の静圧が印加されるので、その受圧ダむダフ
ラムの倉圢量は流䜓の有する動圧1/2ρU2 jに
䟝存するこずになる。
In the flow rate detector configured in this way, first, the total pressure of the fluid is applied to the surface of the pressure receiving diaphragm 11 that collides with the mineral spirits 6, as described above, but the static pressure of the fluid is applied to the back surface of the pressure receiving diaphragm 11. Since pressure is applied, the amount of deformation of the pressure receiving diaphragm 11 depends on the dynamic pressure 1/2ρU 2 j of the fluid.

したが぀お、第図および第図に瀺す実斜䟋
のように、他の静圧蚈枬手段によらず、盎接動圧
を蚈枬するこずができる。そしお、この動䜜の基
本原理はピトヌ静圧管のそれに類するものであ
り、極めお狭い局所空間にお実珟するこずができ
るこずになる。このように、盎接動圧量を蚈枬す
る点を陀いおはその他動䜜は第図に瀺す実斜䟋
に準ずるので、ここでの説明を省略する。
Therefore, as in the embodiments shown in FIGS. 2 and 3, dynamic pressure can be directly measured without using other static pressure measuring means. The basic principle of this operation is similar to that of a pitot static pressure tube, and can be realized in an extremely narrow local space. In this way, except for directly measuring the amount of dynamic pressure, the other operations are similar to those of the embodiment shown in FIG. 2, so a description thereof will be omitted here.

以䞊のように、この第図に瀺す実斜䟋におい
おは、狭い空間を利甚するだけで、盞流たで含
めた質量蚈枬が可胜ずなり、小圢・軜量・安䟡な
怜出噚で高性胜な流量怜出噚を実珟するこずがで
きる。
As described above, in the embodiment shown in Fig. 4, mass measurement including up to two-phase flow is possible just by using a narrow space, and high-performance flow rate detection is possible using a small, lightweight, and inexpensive detector. can be realized.

第図は本発明の曎にたた他の実斜䟋を瀺す構
成図である。この第図においお第図ず同䞀郚
分には同䞀笊号を付しお説明を省略する。
FIG. 5 is a block diagram showing still another embodiment of the present invention. In FIG. 5, the same parts as in FIG. 2 are given the same reference numerals, and their explanation will be omitted.

この第図に瀺す実斜䟋が第図に瀺す実斜䟋
ず異なる点は、受圧ダむダフラムの䞋方に導
入口を蚭けたこずであり、この導入口を
介しおミネラル・スピリツツの静圧が受圧ダむ
ダフラムの裏面に掛かるように構成されおい
る。そしお、このような導入口の圢成法は公
知の゚ツチングプロセスに基づいおおり、容易に
埗られる。
The difference between the embodiment shown in FIG. 5 and the embodiment shown in FIG. It is configured such that pressure is applied to the back surface of the pressure receiving diaphragm 11. The method for forming such an inlet 24 is based on a known etching process and can be easily obtained.

この第図に瀺す実斜䟋における受圧ダむダフ
ラムに係る郚分のみ抜出しお拡倧した図を第
図に瀺す。この第図は受圧ダむダフラム
を䞋方より盎芖した底面図で、この図では個の
導入口が゚ツチングにより穿孔されおいる。
FIG. 6 shows an enlarged view of only the portion related to the pressure receiving diaphragm 11 in the embodiment shown in FIG. 5. This figure 6 shows the pressure receiving diaphragm 11.
This is a bottom view when viewed directly from below, and in this figure, four inlet ports 24 are bored by etching.

このように構成された流量怜出噚においお、そ
の基本的な動䜜は第図に瀺す実斜䟋ず同様であ
るが、導入口が受圧ダむダフラムの近傍
にある分だけ正味の動圧量を怜出するこずができ
る。そしお、導入口による䞍連続性の圱響も
応力が膜厚の乗で利くこずず、導入口が極小で
ある点に加えお、歪怜出玠子を導入口か
ら避けるように配するこずにより殆んど無芖する
こずができる。
The basic operation of the flow rate detector configured as described above is the same as that of the embodiment shown in FIG. can do. In addition to the fact that the stress is affected by the discontinuity caused by the introduction port 24 as the square of the film thickness and that the introduction port is extremely small, the strain detection element 10 is arranged so as to avoid the introduction port 24. Therefore, it can be almost ignored.

前述したずころから明らかなように、第図お
よび第図に瀺す実斜䟋においおは、受圧ダむダ
フラムの䞀方の面が流動流䜓の総圧を受ける
ように構成され、他方の面が流動流䜓の静圧を受
けるように構成されおおり、その流動流䜓の動圧
によ぀お受圧ダむダフラムは受圧倉圢される
ように構成されおいる。
As is clear from the foregoing, in the embodiment shown in FIGS. 4 and 5, one surface of the pressure receiving diaphragm 11 is configured to receive the total pressure of the flowing fluid, and the other surface is configured to receive the total pressure of the flowing fluid. The pressure receiving diaphragm 11 is configured to receive static pressure, and is configured to be deformed by the dynamic pressure of the flowing fluid.

なお、この構成は第図および第図に瀺す実
斜䟋においおも導入口を蚭けるこずにより適甚す
るこずができる。
Note that this configuration can also be applied to the embodiments shown in FIGS. 2 and 3 by providing an inlet.

以䞊の説明から明らかなように、本発明によれ
ば、耇雑な手段を甚いるこずなく発熱玠子ず歪怜
出玠子を同䞀ダむダフラム䞊に圢成せしめるずい
う簡単な構成によ぀お、真の質量蚈枬が可胜な小
圢でか぀軜量で高性胜な流量怜出噚を䜎䟡栌にお
実珟できるので、実甚䞊の効果は極めお倧であ
る。たた、噎流の衝突゚ネルギヌや受圧ダむダフ
ラム近傍で発生する枊のためごみ、その他の付着
物が぀き難く特性に倉化が少なく耐久性に優れお
いるず共に、怜出噚の取り付け、亀換が容易であ
るずいう利点を有し、か぀盞流たで含めた質量
流量蚈枬が可胜になるずいう点においお極めお有
効である。
As is clear from the above description, according to the present invention, true mass measurement is possible with a simple configuration in which a heating element and a strain sensing element are formed on the same diaphragm without using complicated means. Since a small, lightweight, and high-performance flow rate detector can be realized at a low cost, the practical effects are extremely large. In addition, due to the impact energy of the jet and the vortices generated near the pressure receiving diaphragm, it is difficult for dust and other deposits to adhere to it, resulting in less change in characteristics and excellent durability.In addition, the detector is easy to install and replace. The present invention is extremely effective in that it enables mass flow measurement including up to two-phase flow.

【図面の簡単な説明】[Brief explanation of drawings]

第図は埓来の感熱圢流量怜出噚の䞀䟋を瀺す
構成図、第図は本発明による感熱圢流量怜出噚
の䞀実斜䟋を瀺す構成図、第図は本発明の他の
実斜䟋を瀺す構成図、第および第図は本発明
の曎に他の実斜䟋を瀺す構成図、第図は第図
の実斜䟋における受圧ダむダフラムに係る郚分を
拡倧しお瀺した説明図である。   ミネラル・スピリツツ、  発熱玠
子、  歪怜出玠子、  受圧ダむダフ
ラム、  支持台、  ノズル。
Fig. 1 is a block diagram showing an example of a conventional heat-sensitive flow rate detector, Fig. 2 is a block diagram showing an embodiment of a heat-sensitive flow rate detector according to the present invention, and Fig. 3 is a block diagram showing another embodiment of the present invention. FIGS. 4 and 5 are configuration diagrams showing still other embodiments of the present invention, and FIG. 6 is an explanatory diagram showing an enlarged portion of the pressure-receiving diaphragm in the embodiment of FIG. 5. be. 6... Mineral spirits, 9... Heat generating element, 10... Strain detection element, 11... Pressure receiving diaphragm, 18... Support stand, 22... Nozzle.

Claims (1)

【特蚱請求の範囲】  発熱䜓ず流動流䜓間の熱䌝達量から流速乃至
流量の流動流䜓の流動量を怜出する感熱圢流量怜
出噚においお、前蚘流動流䜓の流路の断面積を狭
くしお流速を増倧させる絞り機構による流速増倧
手段ず、この流速増倧手段の埌方に眮かれ前蚘流
動流䜓の流速に応じお受圧倉圢するダむダフラム
ず、このダむダフラムに埋蚭乃至は接着せる発熱
玠子ず、前蚘ダむダフラムに埋蚭乃至は接着せる
歪怜出玠子ず、前蚘ダむダフラムの呚瞁郚分を支
持しか぀熱的䞍良導䜓よりなる支持手段ずを備え
たこずを特城ずする感熱圢流量怜出噚。  受圧倉圢するダむダフラムを半導電性材料に
したこずを特城ずする特蚱請求の範囲第項蚘茉
の感熱圢流量怜出噚。  受圧倉圢するダむダフラムをシリコン材にし
たこずを特城ずする特蚱請求の範囲第項蚘茉の
感熱圢流量怜出噚。  受圧倉圢するダむダフラムを該ダむダフラム
の䞭倮郚分が呚瞁郚分に比べ薄くな぀た構造ずす
るこずを特城ずする特蚱請求の範囲第項たたは
第項蚘茉の感熱圢流量怜出噚。  発熱玠子をダむダフラムの薄くな぀た郚分に
配するようにしたこずを特城ずする特蚱請求の範
囲第たたは第項の䜕れかに蚘茉の感熱圢
流量怜出噚。  発熱玠子をダむダフラムの䞭倮郚に配するよ
うにしたこずを特城ずする特蚱請求の範囲第項
蚘茉の感熱圢流量怜出噚。  発熱玠子を䞍玔物拡散局ずしダむダフラム䞭
に埋蚭せる構造ずしたこずを特城ずする特蚱請求
の範囲第たたは第項の䜕れかに
蚘茉の感熱圢流量怜出噚。  歪怜出玠子を䞍玔物拡散局ずしダむダフラム
䞭に埋蚭せる構造ずしたこずを特城ずする特蚱請
求の範囲第たたは第項の䜕
れかに蚘茉の感熱圢流量怜出噚。  歪怜出玠子をダむダフラムの薄くな぀た郚分
に配するようにしたこずを特城ずする特蚱請求の
範囲第たたは第項の䜕
れかに蚘茉の感熱圢流量怜出噚。  歪怜出玠子をダむダフラムの薄くな぀た郚
分の呚瞁に配するようにしたこずを特城ずする特
蚱請求の範囲第項蚘茉の感熱圢流量怜出噚。  受圧倉圢するダむダフラムを金属材料にお
構成したこずを特城ずする特蚱請求の範囲第項
蚘茉の感熱圢流量怜出噚。  受圧倉圢するダむダフラムを該ダむダフラ
ムの䞭倮郚分が呚瞁郚分に比べ薄くな぀た構造ず
するこずを特城ずする特蚱請求の範囲第項蚘
茉の感熱圢流量怜出噚。  発熱玠子をダむダフラム面䞊に接着せる構
造ずなしか぀該ダむダフラムの䞭倮郚分に配する
構造ずしたこずを特城ずする特蚱請求の範囲第
項たたは第項蚘茉の感熱圢流量怜出噚。  歪怜出玠子をダむダフラム面䞊に接着せる
構造ずしたこずを特城ずする特蚱請求の範囲第
たたは第項の䜕れかに蚘茉の感熱圢
流量怜出噚。  受圧倉圢するダむダフラムの䞀方の面が流
動流䜓の総圧を受けるように構成され、他方の面
が前蚘流動流䜓の静圧を受けるように構成されお
おり、該流動流䜓の動圧によ぀お受圧倉圢するよ
う構成されるこずを特城ずする特蚱請求の範囲第

たたは第項の䜕れかに蚘茉の
感熱圢流量怜出噚。
[Claims] 1. In a heat-sensitive flow rate detector that detects the flow velocity or flow rate of a flowing fluid from the amount of heat transfer between a heating element and a flowing fluid, the cross-sectional area of the flow path of the flowing fluid is narrowed. A flow velocity increasing means using a throttle mechanism that increases the flow velocity, a diaphragm placed behind the flow velocity increasing means and deforming under pressure according to the flow velocity of the flowing fluid, a heating element embedded in or bonded to the diaphragm, and a heating element embedded in or bonded to the diaphragm. 1. A heat-sensitive flow rate detector comprising a strain detecting element that is buried or bonded, and supporting means that supports a peripheral portion of the diaphragm and is made of a thermally poor conductor. 2. The heat-sensitive flow rate detector according to claim 1, wherein the diaphragm that deforms under pressure is made of a semiconductive material. 3. The heat-sensitive flow rate detector according to claim 2, wherein the diaphragm that deforms under pressure is made of silicone material. 4. The heat-sensitive flow rate detector according to claim 2 or 3, wherein the diaphragm that deforms under pressure has a structure in which a central portion of the diaphragm is thinner than a peripheral portion. 5. A heat-sensitive flow rate detector according to any one of claims 2, 3, or 4, characterized in that the heating element is disposed in a thinned portion of the diaphragm. 6. The heat-sensitive flow rate detector according to claim 5, characterized in that the heating element is disposed in the center of the diaphragm. 7. A heat-sensitive flow rate detector according to any one of claims 2, 3, 4, 5, or 6, characterized in that the heating element is an impurity diffusion layer and is embedded in a diaphragm. 8. The heat-sensitive flow rate detection according to any one of claims 2, 3, 4, 5, 6, or 7, characterized in that the strain detection element is an impurity diffusion layer and is embedded in a diaphragm. vessel. 9. The thermosensitive type according to claim 2, 3, 4, 5, 6, 7 or 8, characterized in that the strain detection element is arranged in a thinned part of the diaphragm. Flow rate detector. 10. The heat-sensitive flow rate detector according to claim 9, characterized in that the strain detection element is disposed around the periphery of the thinned portion of the diaphragm. 11. The heat-sensitive flow rate detector according to claim 1, wherein the diaphragm that deforms under pressure is made of a metal material. 12. The heat-sensitive flow rate detector according to claim 11, wherein the diaphragm that deforms under pressure has a structure in which a central portion of the diaphragm is thinner than a peripheral portion. 13 Claim 1 characterized in that the heating element is arranged in the center of the diaphragm without having a structure in which the heating element is bonded on the diaphragm surface.
The heat-sensitive flow rate detector according to item 1 or 12. 14 Claim 1 characterized in that the strain detection element is structured to be bonded onto the diaphragm surface.
1. The heat-sensitive flow rate detector according to any one of Items 1, 12 and 13. 15 One surface of the diaphragm that deforms under pressure is configured to receive the total pressure of the flowing fluid, the other surface is configured to receive the static pressure of the flowing fluid, and the diaphragm is configured to receive the total pressure of the flowing fluid, and the diaphragm is configured to receive the static pressure of the flowing fluid. Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 characterized in that it is configured to deform under pressure.
1, 12, 13 or 14.
JP57148712A 1982-08-25 1982-08-25 Heat sensitive type flow rate detector Granted JPS5937419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148712A JPS5937419A (en) 1982-08-25 1982-08-25 Heat sensitive type flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148712A JPS5937419A (en) 1982-08-25 1982-08-25 Heat sensitive type flow rate detector

Publications (2)

Publication Number Publication Date
JPS5937419A JPS5937419A (en) 1984-02-29
JPH0143886B2 true JPH0143886B2 (en) 1989-09-25

Family

ID=15458906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148712A Granted JPS5937419A (en) 1982-08-25 1982-08-25 Heat sensitive type flow rate detector

Country Status (1)

Country Link
JP (1) JPS5937419A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524634B4 (en) * 1995-07-06 2006-03-30 Robert Bosch Gmbh Device for measuring the mass of a flowing medium
JP4791017B2 (en) * 2004-10-20 2011-10-12 株匏䌚瀟山歊 Flowmeter
JP5062652B2 (en) * 2006-02-07 2012-10-31 アズビル株匏䌚瀟 Sensor mounting structure and flow sensor mounting structure
JP7064460B2 (en) * 2019-02-25 2022-05-10 セミコンダクタヌ株匏䌚瀟 Package type flow sensor

Also Published As

Publication number Publication date
JPS5937419A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
US20220333966A1 (en) Thermal fluid flow sensor
GB2558895B (en) A thermal fluid flow sensor
US6460411B1 (en) Flow sensor component
US7536908B2 (en) Micromachined thermal mass flow sensors and insertion type flow meters and manufacture methods
JP4307738B2 (en) Pressure sensor
US20090158838A1 (en) Mems structure for flow sensor
EP1333255B1 (en) Flow sensor
JPH1123338A (en) Thermosensitive flow-rate detecting element and flow-rate sensor using the same
US11768093B2 (en) Flow sensing device
JPH0143886B2 (en)
JP3210530B2 (en) Thermistor flow rate sensor
JPS595919A (en) Heat sensitive type flow rate detector
Yu et al. A micro channel integrated gas flow sensor for high sensitivity
KR100292799B1 (en) Micro Flow / Flow Sensors with Membrane Structure, and Flow / Flow Measurement Methods Using Them
JP2619735B2 (en) Heat flow sensor
JP3456647B2 (en) Liquid flow sensor
JPH0336167B2 (en)
JP3016424B2 (en) Flow sensor
JPH04295767A (en) Fluid detector
JPS6063421A (en) Thermal flow rate detector
JPH056328U (en) Flowmeter
JPS60171420A (en) Thermosensitive type flow rate detector
JPH0674801A (en) Air flow rate measuring device
JPH01239464A (en) Semiconductor flow velocity sensor