JPS5974705A - Double cavity - Google Patents

Double cavity

Info

Publication number
JPS5974705A
JPS5974705A JP18542182A JP18542182A JPS5974705A JP S5974705 A JPS5974705 A JP S5974705A JP 18542182 A JP18542182 A JP 18542182A JP 18542182 A JP18542182 A JP 18542182A JP S5974705 A JPS5974705 A JP S5974705A
Authority
JP
Japan
Prior art keywords
conductor
cavity
cavities
double
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18542182A
Other languages
Japanese (ja)
Inventor
Tamotsu Aihara
相原 保
Shohachi Katayanagi
片柳 正八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP18542182A priority Critical patent/JPS5974705A/en
Publication of JPS5974705A publication Critical patent/JPS5974705A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To select optionally an input coupling degree and to facilitate easy design and control of a tuner by constituting a cavity resonator with a double cavity and ensuring easily the tuning in a wide range of bands with the double cavity. CONSTITUTION:A cavity resonator is formed with an inside cavity 6 formed between a center conductor 4 and a cylindrical intermediate conductor 5 and an outside cavity 8 formed between the conductor 5 and a cylindrical external conductor 7. These cavities 6 and 8 are terminated by short circuit plates 9 and 10 respectively. The plates 9 and 10 can be moved independently of each other toward the axial direction of this double cavity for control of input impedance of both cavities 6 and 8. Furthermore both cavities 6 and 8 share the conductor 5, and the impedances of both cavities are connected in series via the conductor 5. Thus the input coupling degree can be selected optionally for this cavity resonator, and therefore both design and control are facilitated for a tuner.

Description

【発明の詳細な説明】 本発明は空胴共振器、さらに詳しくはインピーダンス可
変範囲を広くするだめに2重構造にしだ空胴共振器に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cavity resonator, and more particularly to a cavity resonator having a double structure in order to widen the variable range of impedance.

空胴共振器とは、よく知られているように、例えば中空
円筒をなす外側導体と中心導体とからなり、入力端まで
の短絡された終端からの距離lを変化させて入力インビ
、−ダンスを調節する。この場合、寸法上の理由によっ
て、低い周波数において同調を取る仁とが困難である。
As is well known, a cavity resonator is made up of an outer conductor and a center conductor that form a hollow cylinder, for example, and the distance l from the short-circuited end to the input end is changed to create an input bias, -dance. Adjust. In this case, tuning at low frequencies is difficult due to size reasons.

本発明の目的は、従来の空胴共振器が有する上記問題点
を解決し、あわせてそれを発振回路等の人出段に用いた
ときに1その入出力結合度を任意に設定することを可能
とする空胴共振器を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the conventional cavity resonator, and also to make it possible to arbitrarily set the degree of input/output coupling when the cavity resonator is used in an output stage such as an oscillation circuit. The object of the present invention is to provide a cavity resonator that makes it possible.

以下図面を参照しながら、本発明を説明する。The present invention will be described below with reference to the drawings.

第1図は従来技術による空胴共振器の一例の概念的断面
図である。
FIG. 1 is a conceptual cross-sectional view of an example of a cavity resonator according to the prior art.

中心導体lと円筒状外側導体2とは、入力端(第1図左
端)から距離lの位置で、短絡板3によって短終されて
いる。そして距離lを変化させるために、上記短絡板3
の位置は矢印の方向に調節可能である。
The center conductor l and the cylindrical outer conductor 2 are short-terminated by a short circuit plate 3 at a distance l from the input end (left end in FIG. 1). Then, in order to change the distance l, the shorting plate 3
The position of is adjustable in the direction of the arrow.

線路が無損失であるとき、特性インピーダンスをZ6と
し、波動の伝播定数をβとすると、入力インピーダンス
Zgは(1)式で与えられる(ここでjは虚数単位)。
When the line is lossless, the characteristic impedance is Z6, and the wave propagation constant is β, the input impedance Zg is given by equation (1) (where j is an imaginary unit).

Zs = j Zo−βl・・・・・・・・・(1)高
周波帯で高出力(例えばIMN以上)を得るためには、
電子管(図示せず)が当然に大形化し、その結果電子管
の出力キャパシティが犬となる。従ってインダクタンス
を小さくするために、(1)式から分るようにlを小さ
くする必要がある。高周波帯域ではlが10cIL程度
になる。また2゜を小さい値いにすることにも構造上限
度があるので、回路の設計が困難となる。とのため調を
取っている。
Zs = j Zo-βl (1) In order to obtain high output (for example, IMN or higher) in the high frequency band,
The electron tube (not shown) naturally becomes larger, and as a result, the output capacity of the electron tube becomes smaller. Therefore, in order to reduce the inductance, it is necessary to reduce l, as seen from equation (1). In the high frequency band, l is about 10 cIL. Furthermore, since there is a structural upper limit to reducing 2°, it becomes difficult to design the circuit. I am keeping track of this.

λ 一βE=−β(I!+−)  ・・・・・・・・・ (
2)しかしこの場合でも、回路構成上むりがあり安定性
に問題がある。
λ -βE=-β(I!+-) ・・・・・・・・・(
2) However, even in this case, the circuit structure is unreasonable and there is a problem with stability.

また逆に低い周波数の場合は、キャピテイの長さlが2
〜3tnとなり、操作が極めて不便である。
On the other hand, in the case of low frequencies, the capy length l is 2
~3tn, which is extremely inconvenient to operate.

第2図は本発明に係る空胴共振器の一実施例の概念的断
面図である。
FIG. 2 is a conceptual cross-sectional view of an embodiment of a cavity resonator according to the present invention.

上記空胴共振器は、中心導体4と筒状中間導体5との間
に形成される内側キャビティ6と、上記中間導体5と筒
状外部導体7の中間に形成される外側キャビティ8とで
構成される2重キャピテイ構造を有する(以後本発明に
係る空胴共振器を2重キャビティと呼ぶ。)。上記内側
キャビティ6と外側キャビティ8とは、それぞれ短絡板
9,10によって終端されている。−上記短絡板9,1
0は独立に2重キャピテイの軸方向に移動可能であって
、該短絡板9,10を移動することにより内側キャビテ
ィ6、外側キャビティ8の入力インピーダンスを調節す
ることができる。すなわち内側キャビティ6と外側キャ
ピテイ80入カインピーダンスを、それぞれ(1)式と
同型の関数により設定することができる。
The cavity resonator is composed of an inner cavity 6 formed between the center conductor 4 and the cylindrical intermediate conductor 5, and an outer cavity 8 formed between the intermediate conductor 5 and the cylindrical outer conductor 7. (Hereinafter, the cavity resonator according to the present invention will be referred to as a double cavity.) The inner cavity 6 and the outer cavity 8 are terminated by shorting plates 9 and 10, respectively. -The above shorting plate 9,1
0 can be moved independently in the axial direction of the double cavity, and by moving the shorting plates 9 and 10, the input impedance of the inner cavity 6 and the outer cavity 8 can be adjusted. That is, the impedances entering the inner cavity 6 and the outer cavity 80 can be respectively set by functions of the same type as equation (1).

上記内側キャビティ6と外側キャビティ8とは中間導体
5を共有しているので、それぞれのインピーダンスが中
間導体5を介して直列に接続された配置になっている。
Since the inner cavity 6 and the outer cavity 8 share the intermediate conductor 5, their respective impedances are connected in series via the intermediate conductor 5.

したがって入力端から見た内側キャピテイと外側キャビ
ティのリアクタンスをX、 、 X、とすると、全イン
ピーダンス2は(3)式によって表わされる。
Therefore, if the reactances of the inner cavity and outer cavity viewed from the input end are X, , X, the total impedance 2 is expressed by equation (3).

Z = j Xl + jL   ・・・・・・・・・
 (3)ここにおいてXl、 X、は、短絡板9.10
の位置を移動させることにより、すなわち入力端(第2
図左端) A 、 B ’、 Cと短絡板9.10の間
の距+1!1 tによって、変化させることができる。
Z = j Xl + jL ・・・・・・・・・
(3) Here, Xl, X, is the shorting plate 9.10
In other words, by moving the position of the input end (second
It can be changed by the distance between A, B', C and the shorting plate 9.10 (left end of the figure) +1!1t.

例えばXlが容量リアクタンスXc 、 X、が誘導リ
アクタンスXt、であると、2は(4)式になる。
For example, if Xl is capacitive reactance Xc and X is inductive reactance Xt, then 2 becomes equation (4).

Z = jXc −jXc  ・・・・・−・・・ (
4)またX、 、 X、が共に誘導リアクタンスXL1
 、 Xl2であると、Zは(5)式になる。
Z = jXc −jXc ・・・・・・−・・・ (
4) Also, X, , X, are both inductive reactance XL1
, Xl2, Z becomes equation (5).

Z =jXt、1 + jXt2・・・・・・・・・(
5)第3図、第4図、第5図は、本発明に係る2重キャ
ーピテイをそれぞれ、同調回路、出力回路。
Z = jXt, 1 + jXt2・・・・・・・・・(
5) Figures 3, 4, and 5 show a tuning circuit and an output circuit, respectively, of the dual capacity according to the present invention.

入力回路の一部に用いた実施例である。第3図ないし第
5図においてA、B、Cは第2図の中心導体、中間導体
、外部導体の入力端であり、A−8間の回路素子は内側
キャビティの、B・6間の回路素子は外側キャビティの
インピーダンスを表わす。
This is an example in which it is used as part of an input circuit. In Figures 3 to 5, A, B, and C are the input terminals of the center conductor, intermediate conductor, and outer conductor in Figure 2, and the circuit element between A and 8 is the circuit between B and 6 in the inner cavity. The element represents the impedance of the outer cavity.

第3図の同調回路において、高い周波数のときには内側
キャビティ6を容量リアクタンス(−jXc)として動
作させ、外側キャビティ8を誘導リアクタンス(jXL
)として動作させる。
In the tuned circuit shown in Fig. 3, at high frequencies, the inner cavity 6 operates as a capacitive reactance (-jXc), and the outer cavity 8 operates as an inductive reactance (jXL
).

すなわち内側キャビティ6は(α+nλ/4)領域で動
作させ(n:奇整数、α:小位相角)、外側キャビティ
をインダクティプ領域すな・ゎちλ/4領域で動作させ
る。いま、同調に必要な誘導リアクタンスを+jXt、
oトーjると、jXt、o=j XL −j XCとす
れば必要なインピーダンスを得ることができる。このよ
うに必要なインダクタンスXLOより大きなインダクタ
ンスXLを用いて回路を設計することができる。また低
い周波数においては内側キャビティ6をインダクタンス
XL1、外側キャビティ8をインダクタンスXL2とす
るとξ外より、必要なインダクタンスXLOは2つのイ
ンダクタンスの和とすることができる。
That is, the inner cavity 6 is operated in the (α+nλ/4) region (n: odd integer, α: small phase angle), and the outer cavity is operated in the inductive region, that is, the λ/4 region. Now, the inductive reactance required for tuning is +jXt,
The required impedance can be obtained by setting jXt, o=j XL -j XC. In this way, a circuit can be designed using an inductance XL larger than the required inductance XLO. Furthermore, at low frequencies, if the inner cavity 6 has an inductance XL1 and the outer cavity 8 has an inductance XL2, the necessary inductance XLO can be the sum of the two inductances from ξ.

jXLo =  jXLl +  jXbz   ・・
・・川・・ (カさちに・内側キャビティ6と外側キャ
ビティ8のリアクタンスは(1)式と同型の式で表わさ
れるので、特性インピーダンスを適当な値いに選び、内
側キャビティ6と外側キャビティ8の特性インピーダン
スに差をつけることにょ抄、同軸キャビティの長さを適
当な値いに設計することもできる。
jXLo = jXLl + jXbz...
... River... (Kasachini) The reactance of the inner cavity 6 and the outer cavity 8 is expressed by the same formula as equation (1), so by selecting an appropriate value for the characteristic impedance, the inner cavity 6 and the outer cavity 8 are In addition, the length of the coaxial cavity can be designed to an appropriate value in order to differentiate the characteristic impedance of the two.

第4図と第5図のように出力回路あるいは入力回路とし
て利用するときは、中間導体5を中間端子Bとして引き
出す。内側キャビティ6と外側キャピテイ8とは直列に
接続されているので、内側キャビティ6と外側キャビテ
ィ8のリアクタンスLl、 L、の比を適当に変化させ
ることにより、第4図の出力回路においては出力結合度
を、第5図の入力回路においては入力結合度を容易に調
節することができる。
When used as an output circuit or an input circuit as shown in FIGS. 4 and 5, the intermediate conductor 5 is drawn out as an intermediate terminal B. Since the inner cavity 6 and the outer cavity 8 are connected in series, by appropriately changing the ratio of the reactance Ll, L of the inner cavity 6 and the outer cavity 8, the output coupling can be achieved in the output circuit of FIG. In the input circuit of FIG. 5, the input coupling degree can be easily adjusted.

以上説明したように、本発明の2重キャピテイは広帯域
において同調を容易に取ることができ、かつ入出力結合
度を任意に選ぶことが可能であるので、同調器の設計お
よび調整が非常に容易となる。すなわち2重キャビティ
の寸法を極端に大きくしたり、極端に小さくすることを
避けることができる。
As explained above, the dual cavity of the present invention can be easily tuned over a wide band, and the degree of input/output coupling can be arbitrarily selected, making it extremely easy to design and adjust the tuner. becomes. That is, it is possible to avoid making the dimensions of the double cavity extremely large or small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による空胴共振器の概念的断面図、第
2図は2重キャビティの概念的断面図、第3図はそれを
共振回路の一部に用いた使用例、第4図は出力回路に用
いた使用例、第5図は入力回路に用いた使用例である。 4・・・・・・中心導体、  5・・・・・・中間導体
、6・・・・・・内側キャビティ1 7・・・・・・外部導体、 8・・・・・・外側キャビティ、 9.10・・・・・・短絡板。 @1図
Figure 1 is a conceptual cross-sectional view of a conventional cavity resonator, Figure 2 is a conceptual cross-sectional view of a double cavity, Figure 3 is an example of its use as part of a resonant circuit, and Figure 4 is a conceptual cross-sectional view of a cavity resonator according to the prior art. is an example of use in an output circuit, and FIG. 5 is an example of use in an input circuit. 4... Center conductor, 5... Middle conductor, 6... Inner cavity 1 7... Outer conductor, 8... Outer cavity, 9.10...Short circuit board. @Figure 1

Claims (1)

【特許請求の範囲】 (11外部導体の内部に中間導体があり、該中間導体の
内部に中心導体が配設されている構造を有し、上記中心
導体と上記中間導体とによって内側キャビティを構成し
、上記中間導体と外側導体とによって外側キャビティを
構成し、さらに上記内側キャビティと外側キャビティを
終端するために、上記中間導体と上記中心導体とを短絡
する短絡板と、上記中間導体と上記外側導体とを短絡す
る短絡板とが、キャビティの軸方向にそれぞれ独立に移
動可能に配設されている2重キャビティ。 (2)上記中心導体と上記中間導体と上記外部導体とが
同心円筒体であることを特徴とする特許請求の範囲第1
項記載の2重キャピテイ。
[Claims] (11) It has a structure in which an intermediate conductor is provided inside the outer conductor, and a center conductor is disposed inside the intermediate conductor, and the center conductor and the intermediate conductor constitute an inner cavity. The intermediate conductor and the outer conductor constitute an outer cavity, and further, in order to terminate the inner cavity and the outer cavity, a shorting plate short-circuits the intermediate conductor and the center conductor, and a short circuit plate that short-circuits the intermediate conductor and the outer conductor. A double cavity in which a shorting plate that shorts the conductor is arranged so as to be movable independently in the axial direction of the cavity. (2) The center conductor, the intermediate conductor, and the outer conductor are concentric cylinders. The first claim characterized in that
Double capacity as described in section.
JP18542182A 1982-10-22 1982-10-22 Double cavity Pending JPS5974705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18542182A JPS5974705A (en) 1982-10-22 1982-10-22 Double cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18542182A JPS5974705A (en) 1982-10-22 1982-10-22 Double cavity

Publications (1)

Publication Number Publication Date
JPS5974705A true JPS5974705A (en) 1984-04-27

Family

ID=16170491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18542182A Pending JPS5974705A (en) 1982-10-22 1982-10-22 Double cavity

Country Status (1)

Country Link
JP (1) JPS5974705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444103A (en) * 1987-08-11 1989-02-16 Denki Kogyo Co Ltd Tem mode cavity resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444103A (en) * 1987-08-11 1989-02-16 Denki Kogyo Co Ltd Tem mode cavity resonator

Similar Documents

Publication Publication Date Title
EP1217685B1 (en) Ring resonator and antenna
US4619001A (en) Tuning systems on dielectric substrates
US8164401B2 (en) Tunable artificial dielectrics
JPH05199003A (en) Adjustable resonator device and filter with said resonator device
CN107403982A (en) Broadband variable band-pass filter based on step impedance resonator and preparation method thereof
US2181901A (en) Resonant line
US2157855A (en) Tuning system for ultra-high-frequency radio apparatus
US4184123A (en) Double-tuned output circuit for high power devices using coaxial cavity resonators
US2549789A (en) Tank circuit apparatus
US4034320A (en) High power coaxial cavity resonator tunable over a broad band of frequencies
JPS5974705A (en) Double cavity
JP2007174519A (en) Microwave circuit
Liang et al. Hybrid resonator microstrip line electrically tunable filter
US4039982A (en) Coaxial cavity radio frequency tuning circuit having a toroidal-shaped electrode to effect tuning
US3105941A (en) Parametric amplifier with balanced self-resonant diodes
JP3309454B2 (en) Ring resonator
JP2718984B2 (en) Resonator and filter using the resonator
US2867726A (en) Radio frequency generator
CN116846351A (en) Push-pull power amplifying circuit
CN210326063U (en) Dual-mode dielectric strip resonator and differential dual-passband filter comprising same
US3444485A (en) Single adjustment,variable selectivity-constant frequency coaxial transmission line filter
US2594895A (en) High-frequency short-circuiting arrangement
WO1992012546A1 (en) Dielectric filter
US2807745A (en) Isolation of radio frequency losses in oscillator and wave guide systems
JPH0136281B2 (en)