JPS5974619A - Zone melting method and equipment therefor - Google Patents

Zone melting method and equipment therefor

Info

Publication number
JPS5974619A
JPS5974619A JP18454782A JP18454782A JPS5974619A JP S5974619 A JPS5974619 A JP S5974619A JP 18454782 A JP18454782 A JP 18454782A JP 18454782 A JP18454782 A JP 18454782A JP S5974619 A JPS5974619 A JP S5974619A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
radiation
rod
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18454782A
Other languages
Japanese (ja)
Inventor
Naoji Yoshihiro
吉広 尚次
Masao Tamura
田村 誠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18454782A priority Critical patent/JPS5974619A/en
Publication of JPS5974619A publication Critical patent/JPS5974619A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a zone melting method and an equipment therefor with good controllability and high productivity by operating zone melting utilizing a radiation from a body heated by radiation of energy beam. CONSTITUTION:A susceptor 1 is made of graphite coated by SiC and heated by high frequency power applied to a water-cooled coil 13 made of copper pipe. A rod shape radiation body 2 is also made of graphite coated by SiC and heated by radiation of CO2 laser 4. The susceptor 1 and a substrate 3 put on the susceptor 1 and the radiation body 2 are placed in a quartz tube 14 whose inside is filled by argon gas introduced from a gas inlet 15. The laser 4 is scanned reciprocally to the horizontal direction through a window 17. The susceptor 1 is transferred together with the substrate 3 and the substrate 3 and the radiation body 2 are transferred relatively to each other. A single-crystal domain of a large area can be formed with good reproducibility.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は絶縁性基体表面に被着された半導体(アモルフ
ァスないし多結晶)薄膜の単結晶化の為に行う帯溶融法
に係シ、特に制御性および量産性に好適な方法および装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a band melting method performed for single crystallization of a semiconductor (amorphous or polycrystalline) thin film deposited on the surface of an insulating substrate. The present invention relates to a method and apparatus suitable for productivity and mass production.

〔従来技術〕[Prior art]

単結晶材料製造方法の一つとして帯溶融(ゾーン・メル
ティング)法はよく知られている。同法は対象とする材
料その他によっていくつかの変種があシ、シリコン単結
晶の主な工業的生産方法の一つである70−ティング・
ゾーン(FIoatingZone )法もその一種で
ある。
Zone melting is a well-known method for producing single crystal materials. There are several variations of this method depending on the target material and other factors.
The zone (FIoating Zone) method is also one of them.

最近、レーザ光線などのエネルギー・ビームを照射する
ことによって、二酸化シリコン等の絶縁膜でおおったシ
リコン単結晶基体上に被着した非晶質ないし多結晶シリ
コンを溶融、再結晶することが可能であることが示され
、まだ、前記二酸化シリコン膜の一部に開口した構造に
おいて、被着した非晶質ないし多結晶シリコン膜の一部
がその開口部において基体単結晶と直接に接触した構造
において、基体単結晶を1種結晶”として、被着した膜
の少なくとも一部を、基体からエピタキシャル的に単結
晶化することが可能なことが示された(例えば、J、 
C,C,Fan他、、 Appl、 PhysLett
、 38.365.1981)。
Recently, it has become possible to melt and recrystallize amorphous or polycrystalline silicon deposited on a silicon single crystal substrate covered with an insulating film such as silicon dioxide by irradiating it with an energy beam such as a laser beam. However, in a structure where a part of the silicon dioxide film is opened, a part of the deposited amorphous or polycrystalline silicon film is in direct contact with the base single crystal at the opening. , it has been shown that it is possible to single-crystallize at least a part of the deposited film epitaxially from the substrate by using the substrate single crystal as a seed crystal (for example, J.
C.C.Fan et al., Appl, PhysLett
, 38.365.1981).

仁の方法の主な困難の一つは照射するエネルギ−・ビー
ムに要求される高度の制御性であり、照射領域の形状、
およびエネルギー密度の分布および絶対値を精度よく制
御する必要があシ、大領域にわたる単結晶化を再現性よ
く行なうのは困難なのが現状である。
One of the main difficulties with Jin's method is the high degree of control required for the applied energy beam, the shape of the irradiated area,
It is necessary to precisely control the distribution and absolute value of energy density, and it is currently difficult to perform single crystallization over a large area with good reproducibility.

同様な構造の膜の単結晶化のもう一つの方法は、原理的
には同様に帯溶融法であるが、グラファイトの板状ヒー
タ上に基体を置き、その直上に同じく線状のグラファイ
ト・ヒータを設け、両ヒータに通電、加熱するとともに
、線状ヒータを基体に対して移動させるものである(例
えば1. M、 W。
Another method for single crystallization of a film with a similar structure is the band melting method, which is similar in principle, but the substrate is placed on a graphite plate heater, and a linear graphite heater is placed directly above it. is provided, and both heaters are energized and heated, and the linear heater is moved relative to the base (for example, 1.M, W).

Qeis et ol、 Appl、 Phys、 L
ett、40 (1982)158)。
Qeis et ol, Appl, Phys, L
ett, 40 (1982) 158).

本方法においては、通電したグラファイト・ヒータを導
線とともに精度よく移動しなければならないという、生
産装置としての磯構上の大きな問題があシ、また、基体
の加熱、冷却に伴う時間的損失が大きく、生産のスルー
プットをあげにくいという短所がある。
This method has a major problem in terms of the structure of the production equipment, as the energized graphite heater must be moved with precision along with the conductor, and there is also a large time loss associated with heating and cooling the substrate. , the disadvantage is that it is difficult to increase production throughput.

上述の公知技術のうち、第一の技術、即ちエネルギー・
ビームによる溶融帯形成において、ビームの強に等に要
求される制御性を支配する要因について検討したところ
、主要因の一つは、ビームの照射をうけて高温に加熱さ
れるべき領域の体積、従って熱容量が栖めて小さく、か
つ温度設定の必要な精度が高い(十数百度Cにおいて士
数度C以内)という点に存ることか判った。このため、
ビーム強度の時間的、空間的分布に関し、極めて厳しい
制御がなされなければならなかった。
Among the above-mentioned known technologies, the first one is energy/
When we examined the factors that govern the controllability required for beam strength in forming a molten zone using a beam, we found that one of the main factors is the volume of the area to be heated to a high temperature by beam irradiation, Therefore, it was found that the heat capacity is very small, and the necessary precision of temperature setting is high (within a few degrees Celsius in a range of 10-100 degrees Celsius). For this reason,
Extremely tight control had to be exercised regarding the temporal and spatial distribution of the beam intensity.

公知例に示した第二の技術においては、既述の欠点の他
の主要な問題点として温度分布制御の困難さをあげるこ
とができる。即ち、線(ないし棒)状ヒータは両端を冷
却した端子で保持され、端部側で低温となる。しかるに
、単結晶化すべき領域の温度分布が中心部において凸な
るときは、周辺部における複数の個所において結晶化が
開始し、その相互の方位が異なってそれら結晶化領域が
界合した部分において転位網から成る小傾角粒界をなす
場合があplそのような場所を制御することも極めて困
難であるので、彼に素子形成工程においてそのような場
所に素子が形成され、素子特性上好ましくない影響を与
える場合がある。
In the second technique shown in the known example, a major problem other than the above-mentioned drawbacks is the difficulty in temperature distribution control. That is, a wire (or rod) shaped heater is held by cooled terminals at both ends, and the temperature becomes low on the end side. However, when the temperature distribution of the region to be single crystallized is convex in the center, crystallization starts at multiple locations in the periphery, and the mutual orientations are different, causing dislocations at the part where the crystallized regions meet. In some cases, small-angle grain boundaries consisting of a network are formed.It is extremely difficult to control such locations, so elements may be formed in such locations during the element formation process, which may have an unfavorable effect on device characteristics. may be given.

〔発明の目的〕[Purpose of the invention]

本発明の目的は以上のような短所、欠点のない、制御性
が良く生産性の高い、単結晶被膜の形成のための帯溶融
方法およびその装置を提供することにある。
An object of the present invention is to provide a zone melting method and apparatus for forming a single crystal coating, which is free from the above-mentioned shortcomings and drawbacks, has good controllability, and has high productivity.

〔発明の概要〕[Summary of the invention]

上記目的を達成するだめの本発明の構成は、エネルギー
・ビームの照射によって加熱された物体からの再輻射を
利用して帯溶融を行なうことにある。
The structure of the present invention to achieve the above object is to carry out band melting using re-radiation from an object heated by irradiation with an energy beam.

本発明の概念図を第1図に示す。1はサセプタであって
、通常の抵抗加熱、高周波加熱、ランプ加熱などの方法
によ)加熱される。サセプタ1の表面かられずかに離れ
て、棒状の輻射体2が設けられる。この際、サセプタ1
と棒状輻射体との間隔は、帯溶融をうける基体3が十分
に通過しうるものでなければならない。棒状輻射体はエ
ネルギー・ビーム4によシ加熱される。このエネルギー
・ビームは単一の源による事も、複数の源ないし種類に
よる事も全く同様に適用される。また、エネルギー・ビ
ームとして電子線、イオン線等の粒子線を用いる場合に
は、通常、少なくとも棒状輻射体2およびビーム通路4
を含む空間を真空とすることが一般的であるが、真空容
器の開口部からビームを、開口部に近接してガス雰囲気
中に置いた棒状輻射体に向けて照射することが肝要であ
る。
A conceptual diagram of the present invention is shown in FIG. Reference numeral 1 denotes a susceptor, which is heated by conventional methods such as resistance heating, high frequency heating, lamp heating, etc. A rod-shaped radiator 2 is provided slightly away from the surface of the susceptor 1. At this time, susceptor 1
The distance between the rod-shaped radiator and the rod-shaped radiator must be such that the substrate 3 to be subjected to band melting can sufficiently pass therethrough. The rod-shaped radiator is heated by the energy beam 4. This energy beam applies equally well whether it comes from a single source or from multiple sources or types. Further, when a particle beam such as an electron beam or an ion beam is used as the energy beam, usually at least the rod-shaped radiator 2 and the beam path 4 are used.
Although it is common to make the space containing a vacuum vacuum, it is important to irradiate the beam from the opening of the vacuum container toward a rod-shaped radiator placed in a gas atmosphere close to the opening.

エネルギー・ビームは帯状に成形して照射してもよいし
、また棒状輻射体の長手方向に沿って走査して行なって
もよい。但し後者の方法による場合、棒状輻射体上面の
温度の時間的変化の大きさが、帯溶融による再結晶の際
の許容温度差内に収まるように、棒状輻射体の熱容量、
エネルギー・ビーム照射位置等と関連して、その走査の
周波数乃至速度を決定するのが適当である。
The energy beam may be formed into a band shape and irradiated, or may be irradiated by scanning along the longitudinal direction of the rod-shaped radiator. However, when using the latter method, the heat capacity of the rod-shaped radiator,
It is appropriate to determine the scanning frequency or speed in relation to the energy beam irradiation position and the like.

第2図(a)〜(C)は、本発明の説明をよシ明確にす
るため、エネルギー・ビーム照射強度分布、および棒状
輻射体上面の温度分布の例を示したものである。図(C
)は図(a)の棒状輻射体の長手方向断面である。エネ
ルギー・ビームの棒状輻射体の長手方向における平均強
度分布は曲線7のようであった。
2A to 2C show examples of the energy beam irradiation intensity distribution and the temperature distribution on the upper surface of the rod-shaped radiator in order to clearly explain the present invention. Figure (C
) is a longitudinal cross-section of the rod-shaped radiator in Figure (a). The average intensity distribution of the energy beam in the longitudinal direction of the bar-shaped radiator was as shown by curve 7.

ビームの照射位置は、棒状輻射体の上面にやや近い破線
9の位置を中心としておυ、その垂直方向強度分布は図
(C)の曲線12のようであった。またこのとき棒状輻
射体下面の温度分布として図(b)の曲線8を得ること
ができた。すなわち、基板周辺部をやや高い温度としう
るような温度分布を実現することが可能である。
The irradiation position of the beam was centered at the position of the broken line 9, which was somewhat close to the top surface of the rod-shaped radiator, and its vertical intensity distribution was as shown by the curve 12 in Figure (C). In addition, at this time, a curve 8 shown in FIG. 8(b) could be obtained as the temperature distribution on the lower surface of the rod-shaped radiator. In other words, it is possible to realize a temperature distribution that allows the peripheral portion of the substrate to have a slightly higher temperature.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図および第4図によって
説明する。第3図は本実施例に使用した装置の主要部分
の略図であり、原理的には前述の第1図と同様である。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. FIG. 3 is a schematic diagram of the main parts of the apparatus used in this example, and is similar in principle to FIG. 1 described above.

サセプタ1v′1SiCkコートしたグラファイト製で
あシ、銅パイプによる水冷コイル13に引加された高周
波電力によって加熱される。この方式は通常のエピタキ
シャル成長用装置に一般的に用いられるものであシ、本
実施例に用いた装置ではサセプタ1を13000まで安
定に加熱することが可能であった。棒状輻射体2も同じ
<SiCコートしだグラファイトであシ、その加熱は0
02レーザ4を照射することによって行われる。サセプ
タおよびその上に置かれた基体3、それに棒状輻射体2
は、石英管14の中に設置され、内部はガス導入口15
よシ導入されたアルゴン・ガスで満される。ガスは、い
わゆる開管式に、約2t/mの流量で連続的に流入され
、流出口16から流出する。
The susceptor 1v'1 is made of graphite coated with SiCk and is heated by high frequency power applied to a water cooling coil 13 made of a copper pipe. This method is commonly used in ordinary epitaxial growth equipment, and the equipment used in this example was able to stably heat the susceptor 1 to 13,000 ℃. The rod-shaped radiator 2 is also the same <SiC coated graphite, its heating is 0
This is done by irradiating the 02 laser 4. A susceptor, a base 3 placed on it, and a rod-shaped radiator 2
is installed in a quartz tube 14, and the inside has a gas inlet 15.
Filled with argon gas, which was then introduced. Gas is continuously introduced at a flow rate of about 2 t/m in a so-called open pipe manner, and then exits from the outlet 16.

C02レーザ・ビームは光学系を通って200cm/s
以下の速度で水平方向に往復走査が可能となっておシ窓
17を通して照射される。最大出力100WのC02レ
ーザを用い、断面積約11喘2、長さ20Crnの上記
棒状輻射体の中心部13111771をほぼ2000C
の温度に昇温することができる。
C02 laser beam passes through the optical system at 200cm/s
It is possible to reciprocate in the horizontal direction at the following speed and irradiate through the window 17. Using a C02 laser with a maximum output of 100W, the center part 13111771 of the above rod-shaped radiator with a cross-sectional area of about 11cm2 and a length of 20Cr was heated to about 2000C.
The temperature can be raised to .

基体3と棒状輻射体2とは相対運動によシ基体上の溶融
体を移動せしめることが必要であるが、本装置ではサセ
プタ1を基板3とともに移動する方式を採用した。目的
に応じ各種の移動形態を選ぶことが必要であることは勿
論である。
Although it is necessary to move the molten material on the substrate through relative motion between the substrate 3 and the rod-shaped radiator 2, this apparatus adopts a method in which the susceptor 1 is moved together with the substrate 3. It goes without saying that it is necessary to select various forms of movement depending on the purpose.

以上が本発明の原理に基づく装置の一例であるが、次に
本装置によるSi単結晶基体表面に被着した5iOz膜
上に堆積した多結晶Siの単結晶化について述べる。基
体の詳細な構造は第4図に示すとおりである。直径75
8、厚さ400μm1表面方位<1’00>のS+単結
晶基体19上に形成されだ熱酸化膜20の厚さは5QQ
nm、低圧CVD法によシ該膜20上に堆積した多結晶
Si膜21の厚さは、550nmである。基体表面はさ
らに、低圧CVD法によって被着した、1.5μmの厚
さのSiO2膜22で僚われている。多結晶5i21と
基体単結晶5i19とは、基体周辺部で、熱酸化膜20
を除去した部分で、互いに接している。
The above is an example of an apparatus based on the principle of the present invention.Next, description will be given of the single crystallization of polycrystalline Si deposited on a 5iOz film deposited on the surface of a Si single crystal substrate using this apparatus. The detailed structure of the base is as shown in FIG. Diameter 75
8. The thickness of the thermal oxide film 20 formed on the S+ single crystal substrate 19 with a thickness of 400 μm and a surface orientation of <1'00> is 5QQ.
The thickness of the polycrystalline Si film 21 deposited on the film 20 by the low pressure CVD method is 550 nm. The substrate surface is further covered with a 1.5 μm thick SiO2 film 22 deposited by low pressure CVD. The polycrystal 5i21 and the base single crystal 5i19 have a thermal oxide film 20 in the peripheral part of the base.
The removed parts are in contact with each other.

一多結晶Siの単結、J、i、化は次のように行われる
The formation of single polycrystalline Si into J,i is carried out as follows.

基体をサセプタ上に置き、棒状輻射体が基体周縁かられ
ずかに外れるようにサセプタを位置する。
The base is placed on a susceptor, and the susceptor is positioned so that the rod-shaped radiator is slightly removed from the periphery of the base.

次に高周波電源をオンとし、電力を加温して、基板表面
温度が1210±2Cとなるように調整する。
Next, the high frequency power source is turned on, and the power is heated to adjust the substrate surface temperature to 1210±2C.

この加熱に要する時間は、はぼ2分であった。基板表面
の温度の安定を確認の後、レーザをオンとし、棒状輻射
体の温度を、第2図の分布において中央における極小値
1780±2C1又周辺における極太値を中央極小値よ
り40高くなるよう設定した。この間、芽囲気はサセプ
タの昇温に先立ってアルゴン・ガスに置換しである。ガ
ス流量は約2t/ni、rである。また、棒状輻射体と
基体表面との間隔は2.5脳に設定しである。
The time required for this heating was approximately 2 minutes. After confirming that the temperature of the substrate surface is stable, the laser is turned on, and the temperature of the rod-shaped radiator is adjusted so that the minimum value at the center of the distribution in Fig. 2 is 1780 ± 2C1, and the extreme value at the periphery is 40 degrees higher than the central minimum value. Set. During this time, the surrounding air was replaced with argon gas prior to raising the temperature of the susceptor. The gas flow rate is approximately 2t/ni,r. Further, the distance between the rod-shaped radiator and the base surface is set to 2.5 mm.

以上の条件下でサセプタを2. Orrvn / sの
定速で移動し、基形を棒状輻射体の下を通過させたとこ
ろ、基体表面に形成した多結晶Siを安定に単結晶化す
ることができた。
Under the above conditions, 2. When the substrate was moved at a constant speed of Orrvn/s and passed under the rod-shaped radiator, polycrystalline Si formed on the surface of the substrate could be stably turned into a single crystal.

他の実施例は、溶融石英上に被着した多結晶Siに関す
るものである。
Another example involves polycrystalline Si deposited on fused silica.

直径75咽、厚さ500μmの溶融石英板の表面を研摩
傷の残留を避けつつ慎重に鏡面研摩した後、低圧CVD
法にょシ厚さ500 nmの多結晶Si(平均粒径約0
.15μm)を被着しさらに同じく低圧CVD法によシ
2μmの厚さの5f02膜を被着したものを基体とした
The surface of a fused silica plate with a diameter of 75mm and a thickness of 500μm was carefully polished to a mirror finish while avoiding residual polishing scratches, and then subjected to low-pressure CVD.
Polycrystalline Si with a thickness of 500 nm (average grain size approximately 0)
.. A 5f02 film having a thickness of 2 μm was further deposited using the same low-pressure CVD method to form a substrate.

前実施例と同様にサセプタ上に基体を置く等の設定を行
なった後、次のように温度設定を行なった。サセプタ温
度1130±2C,棒状輻射体温度1850±3tT0
雰囲気および棒状輻射体と基体表面との距離は前実施例
と同様とした。
After setting the substrate on the susceptor as in the previous example, the temperature was set as follows. Susceptor temperature 1130±2C, rod-shaped radiator temperature 1850±3tT0
The atmosphere and the distance between the rod-shaped radiator and the substrate surface were the same as in the previous example.

基体を移動速度2.4 tan / Sで棒状輻射体の
下を通過させたところ、基体中央部に50 X 30w
m2程度の団好な単結晶領域を形成することができた。
When the base body was passed under a bar-shaped radiator at a moving speed of 2.4 tan/S, a 50 x 30 w beam was observed in the center of the base body.
A compact single crystal region of about m2 in size could be formed.

との結果は、結晶粒のサイズに関して前述の従来例1に
よる場合の100倍程度、従来例2による場合の10倍
程度の改善を示すものであシ、本発明の有効性を示すも
のである。
These results show an improvement of about 100 times as much as in the case of conventional example 1 and about 10 times as much as that in conventional example 2 in terms of grain size, which shows the effectiveness of the present invention. .

以上の実施例において、基体と棒状輻射体との相対的移
動はサセプタごと基体を移動して行なったが、棒状輻射
体は既述のとおり小形軽量でかつ他の部品ア・ら独立せ
しめることができるため、上記実施例中の装置の如くエ
ネルギー・ビームを基体表面に平行に棒状輻射体忙人射
する方式において、輻射体の移動によυこれを行なう機
構を構成することは容易であり、上記実施例とほぼ同等
の結果をうることかできた。また、棒状輻射体を固定と
する方式の装置において、これを照射するエネルギー・
ビームの入射方向は、上記実施例に示した基体表面に平
行に・限定されるものでないことは明らかであろう。
In the above embodiments, the relative movement between the base and the rod-shaped radiator was carried out by moving the base together with the susceptor, but as mentioned above, the rod-shaped radiator is small and lightweight, and can be made independent from other parts. Therefore, in a system in which an energy beam is emitted from a bar-shaped radiator in parallel to the surface of the substrate, as in the apparatus in the above embodiment, it is easy to construct a mechanism that does this by moving the radiator. Almost the same results as in the above example could be obtained. In addition, in a device that uses a fixed rod-shaped radiator, the energy that irradiates it
It will be clear that the direction of incidence of the beam is not limited to being parallel to the substrate surface as shown in the above embodiments.

尚本発明の原理に基づく装置が単に帯溶融のみでなく、
半導体装置製造工程における他の熱処理工程に適用しう
ろことも明らかである。
It should be noted that the apparatus based on the principles of the present invention is not only capable of belt melting;
It is also obvious that the present invention can be applied to other heat treatment steps in the semiconductor device manufacturing process.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、所望の分布を設けつつ安定
に温度分布を制御しつつ基体表面に被着した半導体薄膜
の帯溶融が行なえるので、大面積の単結晶領域を再現性
よく形成することができ、工程の経済性を大巾に改善で
きる他、装置の構成が、各部分間の相対運動を機構的に
容易にするようなものであるので、必要な部分の移動に
関しても精度の良い機構を安価に構成することができる
という効果がある。
As described above, according to the present invention, it is possible to perform band melting of the semiconductor thin film deposited on the substrate surface while providing a desired distribution and stably controlling the temperature distribution, thereby forming a large-area single crystal region with good reproducibility. In addition to greatly improving the economics of the process, the construction of the device mechanically facilitates relative movement between each part, so accuracy can be improved with respect to the movement of the necessary parts. This has the effect that a good mechanism can be constructed at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例としての装置主要部の
断面図、同図(b)は鳥かん図、第2図は本発明を説明
するための棒状輻射体長平方向の断面図と同方向のエネ
ルギー・ビーム強度および温度分布を示すグラス、およ
び同方向と直交する方向のエネルギー・ビーム強度を示
すグラフ、第3図は本発明の他の実施例に用いた装置の
断面図、第4図は第3図に用いた基体の拡大断面図であ
る。 1°°°サセプタ、2・・・棒状輻射体、3・・・基体
、4・・・エネルギー・ビーム入射方向、訃・・エネル
ギー・ビーム強度および温度を示す軸、6・・・位置(
長手方向)軸、7・・・エネルギー・ビーム強度、8・
・・温度、9・・・基体周縁の位fit、10・・・エ
ネルギー・ビーム強度を示す軸、11・・・垂直方向の
位置を示す軸、12・・・垂直方向のエネルギー・ビー
ム強度、13・・・水冷式高周波コイル、14・・・石
英管、15・・・ガス導入口、16・・・ガス排出口、
17・・・レーザ用窓、18・・・基体移動装置、19
・・・単結晶sj基体、20・・・熱酸化5102膜、
21・・・多結晶si膜、22・・・CvD SiO2
膜。 纂 3  図 ■ 4 図
FIG. 1(a) is a cross-sectional view of the main part of a device as an embodiment of the present invention, FIG. 1(b) is a bird's eye view, and FIG. A glass showing the energy beam intensity and temperature distribution in the same direction, and a graph showing the energy beam intensity in a direction perpendicular to the same direction, FIG. 3 is a cross-sectional view of the device used in another embodiment of the present invention, FIG. 4 is an enlarged sectional view of the base used in FIG. 3. 1°°° Susceptor, 2... Rod-shaped radiator, 3... Substrate, 4... Energy beam incident direction, End... Axis indicating energy beam intensity and temperature, 6... Position (
Longitudinal direction) axis, 7...Energy beam intensity, 8.
... Temperature, 9... Position of base body periphery, 10... Axis indicating energy beam intensity, 11... Axis indicating vertical position, 12... Energy beam intensity in vertical direction, 13... Water-cooled high frequency coil, 14... Quartz tube, 15... Gas inlet, 16... Gas outlet,
17... Laser window, 18... Substrate moving device, 19
... Single crystal sj substrate, 20... Thermal oxidation 5102 film,
21... Polycrystalline Si film, 22... CvD SiO2
film. Summary 3 Figure ■ 4 Figure

Claims (1)

【特許請求の範囲】 1、非晶質絶縁体基体ないし少なくとも一部を絶縁体膜
で覆われた半導体基体上に加熱した物体からの輻射によ
り形成される半導体薄膜の帯溶融方法において、上記物
体にエネルギー・ビームを照射させることを特徴とする
帯溶融方法。 2、石英管と、該管外に設けられた加熱手段と、上記管
内に設けられた基体支持台とを有した帯溶融装置におい
て、上記基体支持台上に所定の間隔でへだてた輻射体を
設けたことを特徴とする帯溶融装置。
[Scope of Claims] 1. A method for band melting a semiconductor thin film formed by radiation from a heated object on an amorphous insulating substrate or a semiconductor substrate at least partially covered with an insulating film, which comprises: A band melting method characterized by irradiating an energy beam with. 2. In a band melting device having a quartz tube, heating means provided outside the tube, and a base support provided within the tube, radiators are spaced apart at predetermined intervals on the base support. A belt melting device characterized by being provided with.
JP18454782A 1982-10-22 1982-10-22 Zone melting method and equipment therefor Pending JPS5974619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18454782A JPS5974619A (en) 1982-10-22 1982-10-22 Zone melting method and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18454782A JPS5974619A (en) 1982-10-22 1982-10-22 Zone melting method and equipment therefor

Publications (1)

Publication Number Publication Date
JPS5974619A true JPS5974619A (en) 1984-04-27

Family

ID=16155105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18454782A Pending JPS5974619A (en) 1982-10-22 1982-10-22 Zone melting method and equipment therefor

Country Status (1)

Country Link
JP (1) JPS5974619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115926A (en) * 2005-10-20 2007-05-10 Tokyo Univ Of Agriculture & Technology Thermal head and heat treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115926A (en) * 2005-10-20 2007-05-10 Tokyo Univ Of Agriculture & Technology Thermal head and heat treatment equipment

Similar Documents

Publication Publication Date Title
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
JPS5974619A (en) Zone melting method and equipment therefor
JPH1197448A (en) Apparatus and method for heat treatment of semiconductor crystal
JP3206375B2 (en) Method for manufacturing single crystal thin film
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JPH02112227A (en) Manufacture of semiconductor crystal layer
JP4056529B2 (en) Deposition equipment
JPH0733587A (en) Production of single crystal and apparatus for pulling up single crystal
JP2017154919A (en) Floating zone melting apparatus
JP2000327479A (en) Single crystal production apparatus and single crystal production
CN113512758A (en) Silicon carbide ingot, method of manufacturing the same, and system for manufacturing silicon carbide ingot
JPS58190897A (en) Method for growing crystal by molecular beam
CN118207628B (en) Gallium arsenide monocrystal growing device and preparation method
JP2864466B2 (en) Diamond production equipment
JPS60257123A (en) Apparatus for growing crystal by fusing surface zone
JPS62299011A (en) Annealing of polycrystalline thin-film substrate
JP2944426B2 (en) Molecular beam epitaxy equipment
JPS6092607A (en) Electron beam annealing device
JPH05294791A (en) Method and device for producing polycrystal substrate
JPS6339555B2 (en)
JPS59147425A (en) Formation of semiconductor crystal film
JPH06293585A (en) Apparatus for growing semiconductor single crystal
JPH07315979A (en) Infrared-heated single crystal producing device
CN112993160A (en) Transverse region melting recrystallization device and method for perovskite thin film
JP2828868B2 (en) Liquid phase crystal growth method for II-VI compound semiconductor