JPS5974614A - Surface shielding type molded transformer - Google Patents

Surface shielding type molded transformer

Info

Publication number
JPS5974614A
JPS5974614A JP57184516A JP18451682A JPS5974614A JP S5974614 A JPS5974614 A JP S5974614A JP 57184516 A JP57184516 A JP 57184516A JP 18451682 A JP18451682 A JP 18451682A JP S5974614 A JPS5974614 A JP S5974614A
Authority
JP
Japan
Prior art keywords
shield layer
edge
shield
coil
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184516A
Other languages
Japanese (ja)
Other versions
JPH0454961B2 (en
Inventor
Yasuyuki Takahara
高原 保之
Kiyohisa Ishikawa
石川 清久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57184516A priority Critical patent/JPS5974614A/en
Publication of JPS5974614A publication Critical patent/JPS5974614A/en
Publication of JPH0454961B2 publication Critical patent/JPH0454961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material

Abstract

PURPOSE:To suppress a discharge between a resin layer and a shield layer by a method wherein the shield layer formed on the surface of an insulation resin layer is composed of a high conductivity part and a low conductivity part and the low conductivity part is provided to an edge portion of the shield. CONSTITUTION:A masking tape is stuck to an end surface 13, a terminal part 12 and an edge portion 7a of a circumference surface, adjacent to them, of a molded coil 11 and a high conductivity metal film is adhered closely to the outside surface of the coil by a melted metal spray and a central portion 7a of a shield layer 7 is formed. After the central portion 7a is hardened, the masking tape on the edge portion 7b is removed and a masking tape is stuck to the surface of the central portion 7a. At this stage, a low conductivity metal film is adhered closely by the melted metal spray. After the edge portion 7b is hardened, all masking tape is removed. A surface shielded molded coil thus composed is combined with a core to compose a molded transformer and an earth terminal 8b is grounded by a lead wire 9. The potential gradient is relieved and a discharge is suppressed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、課電中モールドコイルの表面に人体カ触れて
も安全なシールドj曽全形成したモールド変圧器に係り
、特にシールド層と樹脂層の間の電界全緩和したシール
ド層構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a molded transformer in which a shield is formed so that it is safe even if a human body touches the surface of the molded coil during energization, and in particular, it relates to a molded transformer in which a shield layer and a resin layer are formed. Regarding the shield layer structure with total relaxation of the electric field between.

〔従来技術〕[Prior art]

モールドコイルの表面は絶縁樹脂層で被覆されているが
、その樹脂層と大地間に存在する静電容量のため、一般
に七〜ルド変圧器九課電されていルト*、−1=−tv
トコイルの表面はがなりの高電位となっており、人体九
触れると感電する恐れかある。その対策として、モール
ドコイルの端子部周辺を除く樹脂層の表面に樹脂層との
密層性がよく、化学的にも安定なアルミニウム、亜鉛等
の金属溶射皮膜からなるシールド層を設け、このシール
ド層を接地することが考えられる。
The surface of the molded coil is covered with an insulating resin layer, but because of the capacitance that exists between the resin layer and the ground, it is generally applied to a 7- to 9-volt transformer.
The surface of the coil has a very high potential and there is a risk of electric shock if touched. As a countermeasure, a shield layer made of a thermally sprayed metal coating of aluminum, zinc, etc., which has good close contact with the resin layer and is chemically stable, is provided on the surface of the resin layer except for the area around the terminals of the molded coil. It is possible to ground the layer.

第1図〜第3図はこの表面シールド形モールド変圧器を
示す図で、1は鉄心、2はこれに組合わされfc上モー
ルドイル、2′はその端子部、3はコイル導体、4は絶
縁樹脂層、5・6は端子部2′に設けられたコイル端子
、7けこれら端子部の周辺を除く絶縁樹脂層4の表面に
破着された金属溶射皮膜からなるシールド層、8は接地
用端子金具、9けこれに晰続された接地線であり、接地
線9の他端はアース電位にある鉄心締金具10などに接
続され、シールド層7を接地する。
Figures 1 to 3 show this surface shield type molded transformer, where 1 is the iron core, 2 is the FC upper mold coil combined with this, 2' is the terminal part, 3 is the coil conductor, and 4 is the insulation. Resin layer, 5 and 6 are coil terminals provided in the terminal part 2', 7 is a shield layer consisting of a metal sprayed coating that is broken on the surface of the insulating resin layer 4 except for the periphery of these terminal parts, and 8 is for grounding. It is a ground wire that is lucidly connected to terminal fittings, and the other end of the ground wire 9 is connected to an iron core fastener 10 or the like which is at earth potential, and the shield layer 7 is grounded.

このような表面シールド形変圧器は、感電防止の機能上
シールド層7が全体にわたって高導電率であって、7一
ス電位に等しくなるように構成される。
Such a surface shield type transformer is constructed so that the shield layer 7 has a high conductivity throughout and has a potential equal to 7-s.

しかし、この構造では一方のシールド層7が7一ス電位
であって、他方の絶縁樹脂層の表面となっている2′・
4′が高電位となっており、しかもシールド層7の縁部
の端7′が鋭利な形状となっているので、樹脂層シール
ド層両者間の電位が急激に変化して電界が集中すること
Kなる。従って両者間が気中を介して放電を起す恐f′
Lがあり、特に端子部2′は端子5・6が高電圧に印加
されているので、端子とシールド層の1用で放電が起り
易い。放電が実際に起ると、樹脂層が劣化するだけでな
く、この放電電流≠2接地端子8を介して大地に流れる
ので、他の設備・機器への障害、すなわち腐蝕・雑音に
よる通信障害を起す恐れがある。
However, in this structure, one of the shield layers 7 is at a potential of 71, and the surface of the other insulating resin layer is 2'.
4' is at a high potential, and the edge 7' of the shield layer 7 has a sharp shape, so the potential between the resin layer and the shield layer changes rapidly and the electric field concentrates. K becomes. Therefore, there is a risk that a discharge may occur between the two through the air.
In particular, in the terminal portion 2', high voltage is applied to the terminals 5 and 6, so discharge is likely to occur between the terminal and the shield layer 1. When a discharge actually occurs, not only does the resin layer deteriorate, but this discharge current≠2 flows to the ground via the ground terminal 8, which can cause problems with other equipment and equipment, such as communication problems due to corrosion and noise. There is a risk of it happening.

また、モールドコイルは対地静電容量廼;大きいため、
この容量を充電するための電流も大地に流れることにな
り、この点からも上記した障害を起す恐+1.がある。
In addition, since the molded coil has a large ground capacitance,
The current to charge this capacity will also flow to the ground, which may cause the above-mentioned trouble +1. There is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、樹脂層とシールド層の間の電界強度を
緩和した表面シールド形モールド変圧器を提供するもの
である。
An object of the present invention is to provide a surface shield type molded transformer in which the electric field strength between a resin layer and a shield layer is reduced.

〔発明の概略〕[Summary of the invention]

上記目的を達成するために本発明ではシールド層を高導
電率の4電皮膜からなる中央部と、この〔発明の実りb
例〕 以下、図面に従って本発明の詳細な説明する。
In order to achieve the above object, in the present invention, the shield layer is formed of a central portion consisting of a highly conductive four-electrode film, and this [Results of the Invention b]
Example] The present invention will be described in detail below with reference to the drawings.

第4図〜第6図において、従来例と同一部分には同一符
号を付して示す。モールドコイルの樹脂層表面にシール
ド層7を形成する方法としては導電性塗料の塗布・メッ
キ・溶射など種々考えられるが、ここでは−例として導
体溶射について述べる。
In FIGS. 4 to 6, parts that are the same as those of the conventional example are designated by the same reference numerals. Various methods can be considered for forming the shield layer 7 on the surface of the resin layer of the molded coil, such as applying a conductive paint, plating, thermal spraying, etc. Here, conductive thermal spraying will be described as an example.

図において、モールドコイルの樹脂層表面でモールドコ
イルを設けないところにマスキングテープを貼りつける
。具体的には第4図に訃けるモールドコイル11の端面
13・端子部12・これらに隣接するコイル外周面の縁
部(後述7bの部分)である。この状態で金属溶射装#
を用いて金属を溶射しコイル外表面に厚さ20〜200
μm程度の高導電率金属皮膜を密着して形成し、シール
ド層7の中央部7aを形成する。この中央部7aか固ま
った後、中央部7aK隣接する後述7bの部分の門スキ
ングテープをはがし、中央部7aの表面にマスキングテ
ープを貼りつける。この状態で金属溶射装置を用いて低
導電率金属を溶射し上記と同様に厚さ20〜200μm
程度の曽属皮膜を樹脂表面に密着成形し、シールド層の
縁部7bを構成する。この縁部7’M;固まった後金て
のマスキングテープをはがす。導電率の高い2μ体とし
ては7!レミニウムー亜鉛で4電率の低い成体としては
ニクロム、タングステン、4市ワニス、鉄等≠zあげら
れる。
In the figure, masking tape is pasted on the surface of the resin layer of the molded coil where the molded coil is not provided. Specifically, these are the end face 13 of the molded coil 11 shown in FIG. 4, the terminal part 12, and the edge of the outer circumferential surface of the coil adjacent thereto (portion 7b, which will be described later). In this state, metal spraying equipment #
Spray metal onto the outer surface of the coil to a thickness of 20 to 200 mm.
A high conductivity metal film of approximately μm is formed in close contact to form the central portion 7a of the shield layer 7. After this central portion 7a has hardened, the gate masking tape at a portion 7b (described below) adjacent to the central portion 7aK is peeled off, and masking tape is pasted on the surface of the central portion 7a. In this state, a low conductivity metal is sprayed using a metal spraying device to a thickness of 20 to 200 μm in the same manner as above.
The edge portion 7b of the shield layer is formed by closely molding a solenoid film on the resin surface. This edge 7'M: Peel off the masking tape after it hardens. 7 for a 2μ body with high conductivity! Examples of reminium-zinc compounds with low 4-electricity include nichrome, tungsten, varnish, iron, etc.

シールド層の中央部7aと緑部7″Oけ境目が重なるよ
うに溶剤すれば両者全電気的に1続すること力;できる
。8bは接地中端子で、中央部1a縁部7bのいづれに
設けても良いが、実フで例では金属の浴射前にあらかじ
め縁部7bとなる樹脂表面VCjl 込んでおいてその
上に低導電率の金属を溶射することにより縁部7bと電
気的に妄緯さiする。
If the center part 7a of the shield layer and the green part 7"O border overlap, it is possible to make a complete electrical connection between them. 8b is a grounding terminal, and connect it to either of the center part 1a and the edge 7b. However, in the actual example, the resin surface VCjl, which will become the edge 7b, is injected in advance before the metal is sprayed, and a low-conductivity metal is thermally sprayed on top of the resin surface VCjl, so that it is electrically connected to the edge 7b. I feel delusional.

上記のようにして構成された表面シールド付モールドコ
イルQま第」図と同様に鉄心1と組合せてモールド変圧
器を構成して、アース端子8bをア−電線9により接地
して使用する。この使用状態においてはモールド□□□
脂層表面は前述のようにかなりの制電圧71;誘起され
ている。上記実怪例の構成によれば、シールド層周端の
縁部7b≠;低導電率金属で形成されているため、要地
、端子8bと樹脂層表面との電位差は、接地端子8b−
縁部7bと縁部7b−樹脂ノー表面で分担されることに
なり、谷間での電位差は小さくなる。
The molded coil Q with a surface shield constructed as described above is combined with the iron core 1 to form a molded transformer in the same manner as shown in FIG. In this usage condition, the mold □□□
As mentioned above, a considerable suppressing voltage 71 is induced on the surface of the fat layer. According to the configuration of the above-mentioned actual example, the edge 7b at the circumferential edge of the shield layer is formed of a low conductivity metal, so the potential difference between the key point, the terminal 8b, and the surface of the resin layer is the ground terminal 8b-
The voltage is shared between the edge 7b and the edge 7b-resin surface, and the potential difference between the valleys becomes small.

なお、接地端子81)&′i高導電率の金属である。こ
れは接地端子8bが中央部7aVc接続されても同じで
ある。
Note that the ground terminal 81) &'i is made of a metal with high conductivity. This is the same even if the ground terminal 8b is connected to the central portion 7aVc.

従って上記した後者すなわちシールド層の縁部7bと樹
脂表面の間の電位傾斜がゆるやかとなりこれら≠;絶縁
強度の比較的低い気中にさらさtとていても両者の間で
の放電は起りに< < 7’eる。端子5・6とシール
ド層7との間においても、上記と同理由により電界集中
が起らず放電I/バ起りにくぐなる。
Therefore, the electric potential gradient between the latter, that is, the edge 7b of the shield layer and the resin surface becomes gentle, and even if they are exposed to air with relatively low insulation strength, a discharge between them will not occur. <7'eru. Also between the terminals 5 and 6 and the shield layer 7, electric field concentration does not occur for the same reason as mentioned above, and the discharge I/bar occurs.

ヒ記実廊例では接地端子8b−;シールド層の縁部7b
に電気的に接続されているので、モールド樹脂コイルの
静電容量大に起因するシールド層から接地端子に流れる
電流はこの縁部7bによって限流され、他設備・機器へ
の障野が少な(なる。
In this example, the ground terminal 8b-; the edge 7b of the shield layer
Since the current flowing from the shield layer to the ground terminal due to the large capacitance of the molded resin coil is limited by this edge 7b, there is little interference with other equipment/equipment ( Become.

また上記縁部7bのエリアで1産地瑞子から遠い部分程
その間作高抵抗となって電位H+i1斜を分担できるの
で、例えば端子5を高電位用端子としたときこの端子5
に漆地端子8bをあまり近付けない方が、端子5とシー
ルド層間の放電を少なくできる。
In addition, in the area of the edge 7b, the farther from the 1st production area Mizushi becomes the crop resistance and can share the potential H+i1 slope.For example, when the terminal 5 is used as a high potential terminal, this terminal 5
The discharge between the terminal 5 and the shield layer can be reduced by not bringing the lacquered terminal 8b too close to the terminal 5.

上記実賜例を電気回路で示せば第7図のようになる。す
なわち、端子5・6に凄絣されるコイル電線3とシール
ド層の中央部7aで構成される静電容量分をコンデンサ
C1とし、同コイル電線と縁部7bで構成される静電容
量分をコンデンサC2とする。これらコンデンサ+電広
間にはモールド樹脂層4が介在する。この図からシール
ド層の縁部7bによってシールド層とモールド樹脂層表
面(12・14)との電位煩祠j;ゆるやかとなると共
(c1コンデンサの充電電流が限流されるの6分る。ま
た人体が実際に触れるのは、7aと7b部分であり、こ
れらの部分と接地端子上の間には高高人体が感電しない
ような電位差が生じるように7bの導電率を決めるべき
である。
If the above practical example is shown as an electric circuit, it will be as shown in Fig. 7. That is, the capacitance formed by the coil wire 3 and the central part 7a of the shield layer, which are connected to the terminals 5 and 6, is defined as the capacitor C1, and the capacitance formed by the coil wire and the edge 7b is defined as the capacitor C1. Let it be the capacitor C2. A molded resin layer 4 is interposed between these capacitor+electronic spaces. From this figure, it can be seen that the electric potential between the shield layer and the surface of the molded resin layer (12, 14) becomes loose due to the edge 7b of the shield layer, and the charging current of the capacitor c1 is limited. The parts that are actually touched are parts 7a and 7b, and the conductivity of 7b should be determined so that there is a potential difference between these parts and the ground terminal so that a person at high altitude will not receive an electric shock.

第8図に他の史廠例を示す。この実褒例は先の実」袖1
のシールド層の縁部が導電率の異なる第1縁部7b′と
第2縁部7Cから構成され、第71縁部7 b’は第2
縁部7Cより導電率が高く設定される。
Figure 8 shows other examples of historical sites. This actual reward example is the previous fruit” sleeve 1
The edge of the shield layer is composed of a first edge 7b' and a second edge 7C having different conductivities, and the 71st edge 7b' is the second edge 7b'.
The conductivity is set higher than that of the edge 7C.

中央部7a、第1縁部7b′、第2縁部7Cは先の実悔
例と同様にマスキングテープを用いて順に各部の境が若
干型なるように導体溶射によって樹脂層表面に密着させ
る。各部7a・7 b’・7Cの境の重なり状況は第9
図に示される。この場合最も外側に配置される縁部7C
≠;熱膨張系数による熱変形の絶対清が太き(なるので
、樹脂層の熱膨張系数に近い導体を選ぶのが良い。また
各部7a・7b′・7Cにはそれぞれ接地端子aa@s
b・8Cが電気的に接続されており、この中の任意の端
子が接地される。
The center portion 7a, first edge portion 7b', and second edge portion 7C are adhered to the surface of the resin layer by conductor spraying using masking tape in the same manner as in the previous example, so that the boundaries of each portion are slightly shaped. The overlapping situation of the boundaries of each part 7a, 7b', and 7C is the 9th
As shown in the figure. In this case, the outermost edge 7C
≠; Since the absolute value of thermal deformation due to the thermal expansion coefficient is large, it is better to choose a conductor that is close to the thermal expansion coefficient of the resin layer. Also, each part 7a, 7b', and 7C has a ground terminal aa@s
b.8C is electrically connected, and any terminal therein is grounded.

仮に、中央部7aの端子8aが接地された場合を考える
。この場合電界集中は中央部7a・縁部署P汁しφ 1川と縁部C・樹脂層間の6ケ所で太きく生じる。従っ
て先の実祷例と比べて各集中、Qでの電界負担が軽くな
り、そ〕tだけシーlレド層と樹脂層間の電位傾斜がゆ
るやかとなり、両者rl■の放電抑制71z一層効果的
となる。どの接地端子を接地するかは変化器の特性すな
わち放電の起り易さ、静電容量分の充電電流の大きさ、
人体がシールド層に触れたときの人体に加わる電圧等全
考慮に入れて決められる。なお、要地端子は同時に2個
以上全凄地するように構成してもよい。
Let us consider a case where the terminal 8a of the central portion 7a is grounded. In this case, electric field concentration occurs in six places between the central part 7a, the edge part P, the φ1 river, the edge part C, and the resin layer. Therefore, compared to the previous practical example, the electric field burden at each concentration and Q becomes lighter, and the potential gradient between the sealing layer and the resin layer becomes gentler by that amount, and the discharge suppression 71z of both rl becomes even more effective. Become. Which grounding terminal to ground depends on the characteristics of the transformer, i.e. the ease with which discharge occurs, the magnitude of the charging current for the capacitance,
It is determined by taking into consideration all factors such as the voltage applied to the human body when the human body touches the shield layer. Note that two or more important ground terminals may be configured to be all grounded at the same time.

第9図に示されるものは、各部7a・7 b’・7Cの
縁全マスギングテープで決めているので、各部の重なり
部分が皮膜の厚さ分だけ階段状に形成されている。この
ような構造は、各重なり部分が他と比べて厚くなって熱
容量が増大するため、使用時のヒートサイクルによる発
熱・放熱が均一になされず、導体全体の膨張・収縮九ア
ンバランスとなってはがれを生じる。
In the case shown in FIG. 9, the edges of each part 7a, 7b', and 7C are all defined by masking tape, so that the overlapping part of each part is formed in a step-like manner by the thickness of the film. In such a structure, each overlapped part is thicker than the other and the heat capacity increases, so heat generation and heat dissipation due to the heat cycle during use are not uniform, resulting in unbalanced expansion and contraction of the entire conductor. Peeling occurs.

これを改善したもの全第10図に示す。すなわち、各重
なり部分t:互いに厚さが薄くなるように構成される。
An improved version of this is shown in FIG. That is, each overlapping portion t is configured to have a mutually thinner thickness.

製造に際しては、各重なり部分を溶射するとき溶射量を
少なくするものであるが、具体的には溶射ノズルの吹出
口を絞るか、溶射ノズルと樹脂表面のIIに溶射量をコ
ントロールするマスク等を介在させる。さらには溶射温
度を高めて溶射粒子を細かぐする事等も考えられる。上
記のように構成すれば、異種導体の重なり部分で厚さだ
変らないので、熱容量≠2シールド層全体でホホ均一と
なり、ヒートサイクルによる導体間のはがれは防止され
る。この構成は、導体の重なり部分に電界が集中する事
を考えたとき、第9図のようにこの部分が段状となって
ものと比べ、角部C先の細部)がないので、この間の放
電を少なくすることができる。
During manufacturing, the amount of thermal spray is reduced when spraying each overlapped part, but specifically, the outlet of the thermal spray nozzle is narrowed down, or a mask etc. is installed between the thermal spray nozzle and the resin surface II to control the thermal spray amount. intervene. Furthermore, it is also conceivable to increase the thermal spraying temperature to make the thermal spray particles finer. With the above configuration, the thickness does not change in the overlapping portions of different types of conductors, so that the heat capacity≠2 is uniform throughout the shield layer, and peeling between the conductors due to heat cycles is prevented. Considering that the electric field is concentrated in the overlapping part of the conductors, this configuration has a step-like shape in this part as shown in Figure 9, but since there is no detail at the corner C, there is no Discharge can be reduced.

また第11図に示されるものは、第10図に示されるも
のの各導体の重なり各部が段状に形成さt″したもので
あり、効果は第10図のものとほぼ同じである。さらに
各導体の溶射順序を逆にしたものとして第12図に示す
ものが考えられ、その他に各導体は任意の順序に溶射で
きる。
The one shown in FIG. 11 is the same as that shown in FIG. 10, but each conductor overlaps and each part is formed in a stepped shape, and the effect is almost the same as that in FIG. 10. The spraying order of the conductors can be reversed as shown in FIG. 12, and the conductors can also be sprayed in any order.

溶射によって各導体を構成する場合、マスキングテープ
の貼付が必要となって、導体の種類が増加した場合作業
がめんどうになる事も考えられる。
When constructing each conductor by thermal spraying, it becomes necessary to apply masking tape, which may make the work cumbersome if the number of types of conductors increases.

容易である。4亀チー7°の貼付時は4甫テープと樹脂
層の貼44面に放電を誘う空間ができないようにする事
が肝要である。
It's easy. When pasting the 4 turtle 7 degrees, it is important to avoid creating a space on the 44th surface of the pasted 44 tape and resin layer that invites electrical discharge.

〔発明の考案〕[Devising the invention]

以上の説明から明らかなように、本発明によればシール
ド層と絶縁樹脂層表面との電圧傾斜を緩和できるので、
この間の放電を抑制することができるので、モールドコ
イル樹脂層の劣化や、雑音や腐蝕による他の設備機器へ
の障害を防止することめ:できる。
As is clear from the above description, according to the present invention, the voltage gradient between the shield layer and the surface of the insulating resin layer can be alleviated.
Since discharge during this time can be suppressed, deterioration of the molded coil resin layer and interference with other equipment due to noise and corrosion can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)・(b)は表面シールド形モールド変圧器
の正面図および側面図、第2図は先行技術によるシール
ド付モールドコイルの斜視図、第3図はそのA−A’[
r面図、第4図は本発明によるモールドコイルの斜視図
、第5図はそのB−E’断面図、第6図はその平面図、
第1図はその電気的等価回路図、第8図に第2実次例の
モールドコイlしの側面図、第9図はそのC−C’断面
図、第10図は第3実烏例の断面図、第11図は第4実
廠例の断面図、第12図は第≠実殉例の断面図である。 12:コイル端子部、12・1+:絶縁樹脂層表面、7
:シーIレド層、7a:高導電率部(中央部)、7b・
7 b’・7C:低導電率部(縁部)、8a@8b*8
c:接地端子。 第 1 図 沸2図    燥3図 算ε図 沸10図 第11  図 第 q121 勇 12[21)
Figures 1 (a) and (b) are front and side views of a surface-shielded molded transformer, Figure 2 is a perspective view of a shielded molded coil according to the prior art, and Figure 3 is an A-A'[
4 is a perspective view of the molded coil according to the present invention, FIG. 5 is a sectional view taken along the line B-E', and FIG. 6 is a plan view thereof.
Figure 1 is its electrical equivalent circuit diagram, Figure 8 is a side view of the molded coil of the second practical example, Figure 9 is its CC' sectional view, and Figure 10 is the third practical example. 11 is a sectional view of the fourth actual example, and FIG. 12 is a sectional view of the fourth actual example. 12: Coil terminal part, 12・1+: Insulating resin layer surface, 7
: Sea I red layer, 7a: High conductivity part (center part), 7b.
7 b'・7C: Low conductivity part (edge), 8a@8b*8
c: Ground terminal. Figure 1 Figure 2 Figure Drying 3 Calculation ε Figure 10 Figure 11 Figure q121 Yu 12 [21]

Claims (1)

【特許請求の範囲】 1、 コイル端子部の周辺を除き、絶縁樹脂層の表−面
にシールド層を有し、このシールド層に接地端子を接続
したモールドコイルを鉄心と組合せて構成した表面シー
ルド形モールド変圧器において、上記シールド層は高導
電率部と低導電率部からなり、この低導電率部が上記シ
ールド層の縁部に配置されたことを特徴とする表面シー
ルド形モールド変圧器。 2 上記シールド層の縁部は上記端子部周辺に臨む縁部
である事を特徴とする特許請求の範囲第1項記載の表面
シールド形モールド変圧器。 3、上記接地端子は上記シールド層の低導電率部に電気
的に接続されてなる特許請求の範囲第1項または第2項
記載の表面シールド形モールド変圧器。 4、上記低導電率部は導電率の異なる複数部分からなり
、各部分を4電率の低い順に縁部から中央部に配置して
なる特許請求の範囲第1項または第2項または第3項記
載の表面シールド形モールド変圧器。 5、上記接地端子は低導電率部の任意の導電率部分[電
気的に接続されてなる特許請求の範囲第4項記載の表面
シールド形モールド変圧器。
[Claims] 1. A surface shield constructed by combining a molded coil with an iron core, which has a shield layer on the surface of the insulating resin layer except for the periphery of the coil terminal portion, and has a ground terminal connected to this shield layer. 1. A surface shield type molded transformer, wherein the shield layer includes a high conductivity part and a low conductivity part, and the low conductivity part is arranged at an edge of the shield layer. 2. The surface shield type molded transformer according to claim 1, wherein the edge of the shield layer is an edge facing around the terminal portion. 3. The surface shield type molded transformer according to claim 1 or 2, wherein the ground terminal is electrically connected to the low conductivity portion of the shield layer. 4. The low conductivity part is made up of a plurality of parts having different conductivities, and each part is arranged from the edge to the center in descending order of conductivity. Surface shield type molded transformer as described in . 5. The surface shield type molded transformer according to claim 4, wherein the ground terminal is electrically connected to any conductive part of the low conductivity part.
JP57184516A 1982-10-22 1982-10-22 Surface shielding type molded transformer Granted JPS5974614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184516A JPS5974614A (en) 1982-10-22 1982-10-22 Surface shielding type molded transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184516A JPS5974614A (en) 1982-10-22 1982-10-22 Surface shielding type molded transformer

Publications (2)

Publication Number Publication Date
JPS5974614A true JPS5974614A (en) 1984-04-27
JPH0454961B2 JPH0454961B2 (en) 1992-09-01

Family

ID=16154559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184516A Granted JPS5974614A (en) 1982-10-22 1982-10-22 Surface shielding type molded transformer

Country Status (1)

Country Link
JP (1) JPS5974614A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149944A (en) * 2005-11-28 2007-06-14 Toshiba Corp Mold coil
JP2008187015A (en) * 2007-01-30 2008-08-14 Hitachi Ltd High-voltage resin mold transformer
JP2018166164A (en) * 2017-03-28 2018-10-25 株式会社日立産機システム Molded transformer
US11417456B2 (en) * 2017-01-25 2022-08-16 Delta Electronics (Shanghai) Co., Ltd High-voltage transformer and electronic power apparatus
US11515080B2 (en) 2017-01-25 2022-11-29 Delta Electronics (Shanghai) Co., Ltd Transformer, coil unit and electronic power apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517282A (en) * 1978-07-24 1980-02-06 Mitsubishi Electric Corp Stator coil
JPS5537286U (en) * 1978-09-01 1980-03-10

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218481A (en) * 1975-08-04 1977-02-12 Sekisui Chem Co Ltd Fluid separating shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517282A (en) * 1978-07-24 1980-02-06 Mitsubishi Electric Corp Stator coil
JPS5537286U (en) * 1978-09-01 1980-03-10

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149944A (en) * 2005-11-28 2007-06-14 Toshiba Corp Mold coil
JP2008187015A (en) * 2007-01-30 2008-08-14 Hitachi Ltd High-voltage resin mold transformer
US11417456B2 (en) * 2017-01-25 2022-08-16 Delta Electronics (Shanghai) Co., Ltd High-voltage transformer and electronic power apparatus
US11515080B2 (en) 2017-01-25 2022-11-29 Delta Electronics (Shanghai) Co., Ltd Transformer, coil unit and electronic power apparatus
JP2018166164A (en) * 2017-03-28 2018-10-25 株式会社日立産機システム Molded transformer

Also Published As

Publication number Publication date
JPH0454961B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JPS593907A (en) Molded transformer
JPS5974614A (en) Surface shielding type molded transformer
US3292127A (en) Closed circuit resistive shielding for multiwinding transformers
US3312919A (en) Shielded transformers
US4381423A (en) High capacitance bus bar manufacturing technique
JPH0150090B2 (en)
US3324362A (en) Electrical components formed by thin metallic form on solid substrates
US2966608A (en) Combination resistor and capacitor with built-in lightining arrester
CN113056800A (en) Shielded coil assembly and method for dry-type transformer
JPS5536915A (en) Electronic circuit and its manufacturing
US4443829A (en) Capacitor with integral discharge resistor and method of manufacture
JP3128825B2 (en) High frequency coil
JPS568811A (en) Current transformer
JPS6315732B2 (en)
JPH0539616Y2 (en)
JPH0325386Y2 (en)
JPH02237413A (en) Cryogenic current lead
JPH06849Y2 (en) Printed wiring board
JPS6238341Y2 (en)
RU2076475C1 (en) Thin-structure
JP2513440Y2 (en) Electronic system notebook device
US3231960A (en) Process for making electrical components and components made thereby
JPH07169877A (en) Metal multilayer integrated device and its preparation
JPS6141223Y2 (en)
JPH01281699A (en) Static electricity protection apparatus