JPS5974605A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5974605A
JPS5974605A JP57185217A JP18521782A JPS5974605A JP S5974605 A JPS5974605 A JP S5974605A JP 57185217 A JP57185217 A JP 57185217A JP 18521782 A JP18521782 A JP 18521782A JP S5974605 A JPS5974605 A JP S5974605A
Authority
JP
Japan
Prior art keywords
magnetic layer
recording medium
alloy
magnetic recording
supporting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185217A
Other languages
Japanese (ja)
Inventor
Makoto Nagao
信 長尾
Akira Nahara
明 名原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP57185217A priority Critical patent/JPS5974605A/en
Publication of JPS5974605A publication Critical patent/JPS5974605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Abstract

PURPOSE:To improve S/N ratio by forming a rhombic deposition type magnetic layer which contains Co, Cr and O or Co, Ni, Cr and O as main components and Mg of a specific % of number of atoms on a supporting body. CONSTITUTION:A deposition equipment is evacuated by an exhausting system 9 and a vacuum chamber 8 is kept at a required degree of vacuum. A supporting body 5 of tape-shape made of polyethylene terephthalate is supplied by a pay-off roll 6 and supported by a cylindrical cooling can 1 and guided to a take-up roll 7. Co-Ni-Cr-Mg alloy or Co-Cr-Mg alloy is charged to an evaporating source 2. A mask 3 determines a minimum slant incident angle thetamin. Oxygen is taken into the magnetic layer by exposing the layer to an oxygen atmosphere after deposition is completed. A rhombic deposition type magnetic layer which contains Co, Cr and O or Co, Ni, Cr and O as main components and Mg of 0.05-3% of number of atoms is formed on the supporting body and improved S/N ratio is obtained.

Description

【発明の詳細な説明】 本発明は真空雰囲気内で、強磁性材料を加熱蒸発させて
得る蒸気流を支持体に対して斜め方向から入射させて強
−磁性結晶柱を支持体に対して斜めに形成したいわゆる
斜方蒸着型磁性層を有する磁気記録媒体の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of forming ferromagnetic crystal columns obliquely with respect to the support by making a vapor flow obtained by heating and vaporizing a ferromagnetic material obliquely incident on the support in a vacuum atmosphere. The present invention relates to an improvement in a magnetic recording medium having a so-called obliquely deposited magnetic layer.

近年、情報量の増大とともに、高密度磁気記録媒体の出
現が望まれており、特に、理想的な高密度磁気記録媒体
として、金属薄膜型磁気記録媒体の開発が盛んに進めら
れている。
In recent years, with the increase in the amount of information, there has been a desire for the emergence of high-density magnetic recording media, and in particular, development of metal thin film type magnetic recording media is actively underway as an ideal high-density magnetic recording medium.

薄膜化技術としては、真空蒸着法、イオンブレーティン
グ法、スパックリング法、湿式メッキ等の各種方法が挙
げられるが、高密度記録に適した冒保磁力媒体を安定に
得るには、特公昭41−19,389号に開示された、
いわゆる斜方蒸着方法がすぐれた方法である。
Film thinning techniques include various methods such as vacuum evaporation, ion blating, spackling, and wet plating, but in order to stably obtain a coercive force medium suitable for high-density recording, -Disclosed in No. 19,389,
The so-called oblique evaporation method is an excellent method.

斜方蒸着方法とは、真空雰囲気内で、Co、Co−Ni
等の強磁性材料を加熱蒸発せしめて得る蒸気流を、高分
子等から成る非磁性支持体に対して蒸気流の方向と支持
体上に立てた法線とのなす角度が、通常40度以上の角
度で支持体に入射せしめて、強磁性結晶柱を支持体に対
して斜めに形成する真空蒸着方法である。この斜方蒸着
方法の一部として、単なる熱蒸着以外に蒸気流の一部を
強制的にイオン化させて支持体に対して斜め入射せしめ
る、いわゆるイオンブレーティング型の斜方蒸着方法が
知られている。このような斜方蒸着方法により形成され
たイtli性層は斜方蒸着型磁性層と呼はれる。
The oblique evaporation method is used to deposit Co, Co-Ni in a vacuum atmosphere.
A vapor flow obtained by heating and evaporating a ferromagnetic material such as ferromagnetic material such as This is a vacuum evaporation method in which ferromagnetic crystal columns are formed obliquely to the support by making the light incident on the support at an angle of . As part of this oblique evaporation method, in addition to mere thermal evaporation, a so-called ion blating type oblique evaporation method is known, in which a part of the vapor flow is forcibly ionized and made to be incident obliquely on the support. There is. An itli layer formed by such an oblique evaporation method is called an oblique evaporation type magnetic layer.

強磁性材料としては、通常、Co、又はC。The ferromagnetic material is usually Co or C.

−Ni合金等のCOを主成分とする合金材料或いは、こ
れに酸系を添加した合金組成が用いられる。しかし、こ
れらの斜方蒸着型磁性層は経時安定性かまだまだ不十分
であり、実用化への大きな障害となっていた。本発明者
等は、Co、 Co−Ni、 Co−0、又はCo −
Ni −0等に微量のCr等を添加したり、或いは更に
、斜方蒸着型磁性層の平均密度をある値以上とする等に
より、経時安定性及び電磁変換特性にすぐれた斜方蒸着
型磁性層を有する磁気記録媒体を提案した。
An alloy material containing CO as a main component, such as a -Ni alloy, or an alloy composition in which an acid system is added thereto is used. However, these obliquely deposited magnetic layers still lack sufficient stability over time, which has been a major obstacle to their practical application. The present inventors have prepared Co, Co-Ni, Co-0, or Co-
By adding a small amount of Cr, etc. to Ni-0, etc., or by increasing the average density of the obliquely evaporated magnetic layer to a certain value or more, it is possible to create an obliquely evaporated magnetic layer with excellent stability over time and electromagnetic conversion characteristics. A magnetic recording medium with layers was proposed.

しかしながら、これらの斜方蒸着型磁性層の組成及び膜
構造においては、S/N的にまだ必ずしも完全に満足し
うる特性とは言えず、ノイズの減少等の改良が望まれて
いた。
However, the composition and film structure of these obliquely deposited magnetic layers are not yet completely satisfactory in terms of S/N, and improvements such as reduction in noise have been desired.

本発明は、このような実状に鑑みなされたものであり、
経時安定性にすぐれ、且つノイズが低く、SlN比の改
良された斜方蒸着型磁性層を有する磁気記録媒体を提供
することを主たる目的とする。
The present invention was made in view of these circumstances,
The main object of the present invention is to provide a magnetic recording medium having an obliquely deposited magnetic layer that has excellent stability over time, low noise, and an improved SIN ratio.

本発明者等は、上記の欠点を改良すべく、鋭意研究を重
ねた結果、磁性層組成として、Co−Cr −0、又は
Co −Ni −Cr −0に微量のMgを添加するこ
とにより、ノイズの低いすぐれたSlN比を有する磁気
記録媒体が得られることを見出し、本発明に到ったもの
である。、 本発明の磁気記録媒体は、支持体上にCo、Cr、O又
はC01Ni、%Cr、0を主成分とし、0.05〜3
原子数係のI\1gを含む斜方蒸着型磁性層を有するこ
とを特徴とする。
The present inventors have conducted extensive research in order to improve the above-mentioned drawbacks, and as a result, by adding a small amount of Mg to Co-Cr-0 or Co-Ni-Cr-0 as the magnetic layer composition, The inventors have discovered that a magnetic recording medium with low noise and an excellent SIN ratio can be obtained, leading to the present invention. , The magnetic recording medium of the present invention has Co, Cr, O or C01Ni,%Cr,0 as the main component on the support, and 0.05 to 3
It is characterized by having an obliquely deposited magnetic layer containing an atomic coefficient of I\1g.

本発明における、支持体としては、ポリエチレンテレフ
タレート(以下1h〕単のためP E’l”と記す)、
ポリイミド等の旨分子材料、更にはkl 、 Cu等の
非磁性金属材料、又はガラス、セラミクスのような無機
質の支持体も使用出来る。これらの支持体の形状、厚さ
等は用途に応じて任怠に選定される。
In the present invention, the support includes polyethylene terephthalate (hereinafter referred to as 1h),
Molecular materials such as polyimide, non-magnetic metal materials such as KL and Cu, or inorganic supports such as glass and ceramics can also be used. The shape, thickness, etc. of these supports are arbitrarily selected depending on the intended use.

本発明における磁性層組成は、Co、Cr、Ol又は、
C01Ni、Cr、0を主成分とするCO糸金合金組成
0.05〜3原子数パーセント(以下簡単のためat%
とFず)のMgを含有するものであるが、更に、Coに
対して、0〜25at%のNiを含む合金組成に、適当
量のCr、0及び0.05〜3 at %のΔ4gを含
む組成が好ましい。
The magnetic layer composition in the present invention is Co, Cr, Ol or
CO1 CO thread alloy composition mainly composed of Ni, Cr, 0.05 to 3 atomic percent (hereinafter referred to as at% for simplicity)
In addition, an appropriate amount of Cr and Δ4g of 0 and 0.05 to 3 at % are added to the alloy composition containing 0 to 25 at % of Ni with respect to Co. Compositions containing the following are preferred.

Cr添加量としては、磁性層の経時安定性と磁気特性(
特に保磁力と磁束密度)を考慮して決められる。Cr添
加量が多いと経時安定性は向上するが、磁束密度が減少
し、従って再生出力が低下する。本発明においては、C
r添加量としては、平均して1〜20at%が好ましく
、特に2〜8 at %が好ましい。
The amount of Cr added depends on the stability over time of the magnetic layer and the magnetic properties (
It is determined by taking into consideration the coercive force and magnetic flux density. If the amount of Cr added is large, the stability over time will improve, but the magnetic flux density will decrease, and therefore the reproduction output will decrease. In the present invention, C
The amount of r added is preferably 1 to 20 at% on average, particularly preferably 2 to 8 at%.

酸系添加量としては、これも磁性層の磁気特性と経時安
定性を考慮して決められるが、通常平均して3〜30a
t%が好ましく、特に10〜20at%が好ましい。磁
性層中の酸素の分布は必ずしも均一でなくとも良い。又
、ミクロに見ても、磁性層の柱状組織の中に一様に含ま
れていなくとも良く、例えば、柱状組織の界面、或いは
表面に多く存在していてもよい。酸系を磁性層中に添加
せしめるためには、必ずしも酸系が含有された蒸着材料
を用いなくともよく、蒸着中、或いは、蒸着後に磁性層
を酸素雰囲気等に曝すことによって、磁性層中に酸系を
混入させれば良い。
The amount of acid added is determined by considering the magnetic properties and stability over time of the magnetic layer, but it is usually 3 to 30 a on average.
t% is preferred, particularly 10 to 20 at%. The distribution of oxygen in the magnetic layer does not necessarily have to be uniform. Further, even when viewed microscopically, it is not necessary to be uniformly contained in the columnar structure of the magnetic layer, and for example, it may be present in large quantities at the interface or surface of the columnar structure. In order to add an acid system into the magnetic layer, it is not necessarily necessary to use a vapor deposition material containing an acid system. All you have to do is mix in an acid type.

Mg添加量としては、0.05〜3at%が望ましい。The amount of Mg added is preferably 0.05 to 3 at%.

I’v1g添加効果の原因は、まだ十分解明さ“れては
いないが、例えば、斜方蒸着型磁性層中に形成される柱
状組織の大きさを/J・さくする効果、或いは、磁性層
の柱状組織の大きさの変動をおさえる効果等があるので
はないかと推定される。。
The cause of the I'v1g addition effect has not yet been fully elucidated, but for example, it may be due to the effect of reducing the size of the columnar structure formed in the obliquely evaporated magnetic layer by /J. It is presumed that this has the effect of suppressing fluctuations in the size of the columnar structure.

また本発明の合金組成の喘゛徴を損わぬ範囲で、微量の
添加物を含んでもよい。
Further, trace amounts of additives may be included within the range that does not impair the essential properties of the alloy composition of the present invention.

本発明においては、斜方蒸着型磁性層の膜厚は、通常5
00〜5000A程度が望ましい。
In the present invention, the film thickness of the obliquely evaporated magnetic layer is usually 5.
Approximately 00 to 5000A is desirable.

また本発明における磁性層としては、単層でも、或いは
2層以」−の重層、或いは、中間層、下地層と組合せた
多層構成であっても良い。
Further, the magnetic layer in the present invention may be a single layer, a multilayer structure of two or more layers, or a multilayer structure in combination with an intermediate layer and an underlayer.

まだ実用上の諸特性を改良するための所望の各種表面処
理を磁性層側又は支持体側に施しても良い。
Various desired surface treatments may be applied to the magnetic layer side or the support side in order to improve various practical properties.

以下、本発明を図面及び実施例により詳紹1に説明する
The present invention will be explained in detail below with reference to drawings and examples.

図面は、本発明の磁気記録媒体を製造するための好まし
い蒸着装置の概略断面図である。
The drawing is a schematic cross-sectional view of a preferred vapor deposition apparatus for manufacturing the magnetic recording medium of the present invention.

図面に示される蒸着装置は真空排気系9によりその内部
が排気され所望の真空度に保たれる真空槽8、この真空
槽8内部に設ゆられたテープ送出ロール6から送り出さ
れたテープ状の支持体5をテープ巻取ロール7まで案内
、支持する円筒状冷却キャン1、加熱蒸発することによ
り磁性層を支持体5上に形成する蒸発材料がチャージさ
れる蒸発源2および斜方蒸着を行な51Mの蒸気流の最
小斜入射角θminを規定するマスク3からなっている
The vapor deposition apparatus shown in the drawing includes a vacuum chamber 8 whose interior is evacuated by an evacuation system 9 and maintained at a desired degree of vacuum, and a tape-shaped film fed from a tape feed roll 6 provided inside the vacuum chamber 8. A cylindrical cooling can 1 guides and supports the support 5 to the tape take-up roll 7, an evaporation source 2 is charged with an evaporation material that forms a magnetic layer on the support 5 by heating and evaporating it, and oblique evaporation is performed. The mask 3 defines a minimum oblique incidence angle θmin of a vapor flow of 51M.

以上のように構成された蒸着装置において、本発明の磁
気記録媒体は例えば次のようにして製造される。
In the vapor deposition apparatus configured as described above, the magnetic recording medium of the present invention is manufactured, for example, as follows.

真空槽8は、真空排気系9によりその内部が適度な真空
度に保たれる蒸発源2には蒸発材料Co −Ni −C
r −Mg合金またはCo −Cr−Mg合金がチャー
ジされる。蒸発源2にチャージされた蒸発材料は従来公
知の加熱手段により加熱される。この加熱手段としては
例えば、電子ビーム加熱、誘導加熱、抵抗加熱等を用い
ることができる。加熱された蒸発材料は融解気化し、蒸
気流となって真空槽8内部−F方へ上昇する。テープ送
出ロール6がも送り出された支持体5には円筒状冷却キ
ャン1に案内される際に斜入射角度θが高角度(はぼ9
0 g2 )から低角度へと変化しながら、蒸発材料の
蒸気流が蒸着され、斜方蒸着が行なわれ、最小斜入射角
θ1旧11をすぎると蒸着が終了し、テープ巻取ロール
7に巻き取られる。
The vacuum chamber 8 has an evaporation source 2 whose interior is maintained at an appropriate degree of vacuum by an evacuation system 9, and an evaporation material Co-Ni-C.
An r-Mg alloy or a Co-Cr-Mg alloy is charged. The evaporation material charged in the evaporation source 2 is heated by conventionally known heating means. As this heating means, for example, electron beam heating, induction heating, resistance heating, etc. can be used. The heated evaporation material melts and vaporizes, becomes a vapor flow, and rises toward the inside of the vacuum chamber 8 -F. When the tape delivery roll 6 is also delivered to the support 5 and guided to the cylindrical cooling can 1, the oblique incidence angle θ is at a high angle (about 9
The vapor flow of the evaporation material is evaporated while changing from 0 g2 ) to a low angle, and oblique evaporation is performed. When the minimum oblique incidence angle θ1 is passed, the evaporation ends and the tape is wound on the tape take-up roll 7. taken.

このようにして支持体5上に設けられた磁性層には酸素
雰囲気に曝され、磁性層中に酸素が取り込まれる。
The magnetic layer thus provided on the support 5 is exposed to an oxygen atmosphere, and oxygen is taken into the magnetic layer.

なお、本発明の磁気記録媒体を製造するためには必ずし
も上述の装置及び方法に限定されるものではなく、本発
明の磁気記録媒体を製造しつるものであれば、いがなる
装置及び方法をも使用し得ることは言うまでもない。
Note that the apparatus and method for manufacturing the magnetic recording medium of the present invention are not necessarily limited to the above-described apparatus and method. Needless to say, it can also be used.

次に、本発明を実施例により説明する。Next, the present invention will be explained by examples.

〔実施例1〕 図に示される斜方蒸着装置を用い、真空槽内を5 、X
 10’−5Torr以下の圧力に真空排気し、蒸発源
にチャージされたCo −Ni −Cr −Mg合金を
電子ビーム加熱により溶融、蒸発させて、では45°近
傍に選んだ。膜厚が約15oo穴となるように支持体の
搬送速度と蒸発源への加熱パワーを制御した。
[Example 1] Using the oblique evaporation apparatus shown in the figure, the inside of the vacuum chamber was heated to 5.
It was evacuated to a pressure of 10'-5 Torr or less, and the Co-Ni-Cr-Mg alloy charged in the evaporation source was melted and evaporated by electron beam heating, and the temperature was selected to be around 45°. The transport speed of the support and the heating power to the evaporation source were controlled so that the film thickness was about 15mm.

CoとN1の組成については、両者の蒸気圧がほぼ等し
いため、はぼ一定の組成比で支持体に付着させることが
出来た。CrとMgについては、Co及びNiとの蒸気
圧の差が大きいため、所望の組成の磁性層が得られるよ
う蒸発源への加熱パワーを制御した。
Regarding the compositions of Co and N1, since their vapor pressures were approximately equal, they could be deposited on the support at a nearly constant composition ratio. As for Cr and Mg, since the difference in vapor pressure between Co and Ni is large, the heating power to the evaporation source was controlled so as to obtain a magnetic layer with a desired composition.

酸素は蒸着終了後、酸素雰囲気に曝すことにより磁性層
中にとり込ませた。得られた磁性層はオージェ電子分析
及びX組マイクロアナライザーにより組成分析を行なっ
た。本実施例におけるCo、 Ni、 Cr 、 Oの
組成は原子数係で71:8:6:15であった。
After the vapor deposition was completed, oxygen was incorporated into the magnetic layer by exposing it to an oxygen atmosphere. The composition of the obtained magnetic layer was analyzed using Auger electron analysis and a group X microanalyzer. The composition of Co, Ni, Cr, and O in this example was 71:8:6:15 in atomic ratio.

また、得られた磁気記録媒体を172インチ幅のテープ
状にスリットし、VH8方式小型ビデオカセントに組込
んで、電磁変換特性を測定した。
Further, the obtained magnetic recording medium was slit into a 172-inch wide tape shape, and the tape was assembled into a VH8 type small video cartridge, and the electromagnetic conversion characteristics were measured.

得られた各種組成のテープ状サンプルの中から静磁気特
性と、経時女T性の良いものを選択して、Mg添加量と
S/Nとの関係を表1に示す。
Table 1 shows the relationship between the amount of Mg added and the S/N of tape-shaped samples with good magnetostatic properties and aging properties selected from among the obtained tape-shaped samples with various compositions.

表        1 (CO71−Nig−Cr6−Ots ) K対するM
g添加効果表1から明らかな如<0.05〜3.2at
係のMg添加によりS/Nが向上し最大+2.ldb改
善される結果が得られた。
Table 1 (CO71-Nig-Cr6-Ots) M against K
g addition effect As is clear from Table 1 <0.05 to 3.2at
The addition of Mg improves the S/N by up to +2. The result was that the ldb was improved.

なお、S/l’J向上に対する寄専の要因としては、再
生出力はほぼ同じで、ノイズが低下したことによるもの
であることが判明した。
It has been found that the contributing factor to the improvement in S/l'J is that the reproduction output is almost the same and the noise is reduced.

表1に記載したCo −Ni −Cr −0組成以外で
もl’、4g添加によりほぼ同様のS/N改善が得られ
た。
Even with compositions other than the Co-Ni-Cr-0 compositions listed in Table 1, almost the same S/N improvement was obtained by adding 4g of l'.

〔実施例2〕 蒸着材料としてCo 、 Cr −Mg系合金を用いた
以外は実施例1と同様にして、Co −Cr −0−M
gから成る磁性層を作成し、評価を行なった。不実施例
におけるCo、Cr、0の組成は原子数%で83:4:
13であった。実施例1と同様にして得られた各種組成
のテープ状サンプルの中から静磁気特性と、経時安定性
の良いものを選択して、Mg添加量とS/Nとの関係を
表2に示す。
[Example 2] Co-Cr-0-M was produced in the same manner as in Example 1 except that Co, Cr-Mg alloy was used as the vapor deposition material.
A magnetic layer consisting of G was prepared and evaluated. The composition of Co, Cr, and 0 in non-examples is 83:4 in atomic %.
It was 13. Among tape-shaped samples of various compositions obtained in the same manner as in Example 1, those with good magnetostatic properties and stability over time were selected, and the relationship between the amount of Mg added and S/N is shown in Table 2. .

表       2 (CO83−Cr4−013 )に対するへ4g添加効
果表2から明らかな如(,006〜3.Qat係のMg
添加によりS/N比が向上し、最大1.5db改善され
る結果が得られた。本実施例においても、S/N比改善
の要因としては、ノイズの低下によるものであった。
Table 2 Effect of adding 4g to (CO83-Cr4-013) As is clear from Table 2, Mg
The addition improved the S/N ratio by a maximum of 1.5 db. In this example as well, the improvement in the S/N ratio was due to the reduction in noise.

また、表2に記載したCO−Cr −0組成以外でもM
g添加によりほぼ同様のS/N改善が得られた。
In addition, M
Almost the same S/N improvement was obtained by adding g.

以」−の実施例から明らかな如く、Co −Cr−0、
又はCo −Ni −Cr −0より成る磁性層に0.
05〜3 at %のMgを添加することにより、S/
Nが大きく改善されることが明らかであり、本発明は、
蒸着テープの実用化に大ぎ(貢献するものである。
As is clear from the examples below, Co-Cr-0,
Or a magnetic layer made of Co-Ni-Cr-0 is coated with 0.
By adding 05 to 3 at% Mg, S/
It is clear that N is greatly improved, and the present invention
This will greatly contribute to the practical application of vapor-deposited tape.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の磁気記録媒体を製造するために使用す
る好ましい蒸着装置の概略断面図で゛ある。 ■・・・円筒状冷却キャン   2・・・・・・蒸  
発  源3・・・マ  ス  り   4・・・・・・
蒸  気  流5・・・支  持  体   6・・・
・・・送り出しロール7・・・巻き取りロール   8
・・・・・・真  空  槽9・・・真空排気系
The drawing is a schematic cross-sectional view of a preferred vapor deposition apparatus used to manufacture the magnetic recording medium of the present invention. ■...Cylindrical cooling can 2...Steam
Source 3...Mass 4...
Steam flow 5...Support 6...
...Feeding roll 7...Take-up roll 8
...Vacuum tank 9...Vacuum exhaust system

Claims (1)

【特許請求の範囲】[Claims] 支持体上にCo、Cr、0、又ハCo 、 1’Ji、
Cr、’Oを主成分とし、0.05〜3原子数幅のMg
を譬む斜方蒸着型磁性層を有することを特徴とする磁気
記録媒体。
Co, Cr, 0, Co, 1'Ji,
Cr, 'O as main components, Mg with a range of 0.05 to 3 atoms
A magnetic recording medium characterized by having an obliquely evaporated magnetic layer.
JP57185217A 1982-10-21 1982-10-21 Magnetic recording medium Pending JPS5974605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185217A JPS5974605A (en) 1982-10-21 1982-10-21 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185217A JPS5974605A (en) 1982-10-21 1982-10-21 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5974605A true JPS5974605A (en) 1984-04-27

Family

ID=16166920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185217A Pending JPS5974605A (en) 1982-10-21 1982-10-21 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5974605A (en)

Similar Documents

Publication Publication Date Title
JPS5961105A (en) Magnetic recording medium
US4521481A (en) Magnetic recording medium
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPS6153770B2 (en)
US4801500A (en) Magnetic recording medium
US4536443A (en) Magnetic recording medium
JPS5974605A (en) Magnetic recording medium
JPS5974606A (en) Magnetic recording medium
US4923748A (en) Magnetic recording medium
JPS5965927A (en) Magnetic recording medium
JPS5974607A (en) Magnetic recording medium
JPS5966106A (en) Magnetic recording medium
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JPH01220216A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0479043B2 (en)
JPS59178626A (en) Manufacture of magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPS5975426A (en) Magnetic recording medium
JPH09204634A (en) Magnetic recording medium
JPH09167326A (en) Magnetic recording medium
JPH0927125A (en) Production of magnetic recording medium
JPH08102054A (en) Production of magnetic recording medium and production device therefor
JPS6154026A (en) Magnetic recording medium
JPS6154027A (en) Magnetic recording medium