JPS5974224A - Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic - Google Patents

Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic

Info

Publication number
JPS5974224A
JPS5974224A JP18416482A JP18416482A JPS5974224A JP S5974224 A JPS5974224 A JP S5974224A JP 18416482 A JP18416482 A JP 18416482A JP 18416482 A JP18416482 A JP 18416482A JP S5974224 A JPS5974224 A JP S5974224A
Authority
JP
Japan
Prior art keywords
silicon steel
cold rolling
annealing
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18416482A
Other languages
Japanese (ja)
Inventor
Hiroto Nakamura
中村 広登
Michiro Komatsubara
道郎 小松原
Bunjiro Fukuda
福田 文二郎
Hiroshi Matsumura
松村 洽
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18416482A priority Critical patent/JPS5974224A/en
Publication of JPS5974224A publication Critical patent/JPS5974224A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a high grade non-directional silicon steel sheet having a low iron loss and a high magnetic flux density by decreasing considerbly S, O and N among the impurities contained unavoidably in a blank material for a silicon steel and annealing a base strip under specific conditions after hot rolling then cold rolling the strip at a high draft. CONSTITUTION:A blank material for a silicon steel contg., by weight %, <=0.005 % C, 2.5-4.0% Si, 0.25-1.00% Al, and 0.1-1.0% Mn is hot rolled by an ordinary method. A base strip is annealed and is then made into a final plate thickness by one time of a cold rolling method, in succession to which the strip is subjected to continuous finish annealing. The S, O and N among the impurities contained unavoidably in the blank materal are considerably decreed to <=15ppm, <=20ppm and <=25ppm respectively in the above-mentioned stage. The annealing of the base strip is accomplished under the conditions of 900-1,050 deg.C and 2- 15min. The draft in the cold rolling is set at >=65%. The non-directional silicon steel sheet having an extremely outstanding magnetic characteristic is thus produced.

Description

【発明の詳細な説明】 この発明は、磁気特性の極めて優れた無方向性珪素鋼板
の製造方法に関し、とくに鉄損が低く、磁束密1fの高
い高級な無方向性珪素鋼板の有利な製造方法を提案しよ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-oriented silicon steel sheet with extremely excellent magnetic properties, and particularly an advantageous method for manufacturing a high-grade non-oriented silicon steel sheet with low iron loss and high magnetic flux density 1f. This is what we are trying to propose.

一般に無方向性珪素鋼板は鉄損により格付されているが
、現在JIS規格で最高級のものは8−9級(板厚0.
85 uでw ”/5o<0.95 、 W”’/5o
<z.4ow/IH,、板厚0.50朋でW10/5o
<1.15 。
Generally, non-oriented silicon steel sheets are graded by iron loss, and currently the highest grade according to JIS standards is grade 8-9 (plate thickness 0.
85 u at w”/5o<0.95, W”'/5o
<z. 4ow/IH, W10/5o with plate thickness 0.50mm
<1.15.

W15/5。<2.90 W/}、 )である。ところ
が大型発電機などの鉄心材料としては成力損失の軽減の
ため更に鉄損の低い8−8級〜8−7級クラスの高級な
無方向性珪素鋼板の要求が強い。
W15/5. <2.90 W/}, ). However, as iron core materials for large power generators and the like, there is a strong demand for high-grade non-oriented silicon steel sheets in the 8-8 class to 8-7 class, which have even lower iron loss in order to reduce power loss.

この発明はこのような要求に有利に応えるもので、鉄損
が低く、磁束密度の高い高級無方向性珪素鋼板の製造方
法を提供することを目的とするものである。
The present invention advantageously meets these demands, and aims to provide a method for manufacturing a high-grade non-oriented silicon steel sheet with low core loss and high magnetic flux density.

ところで無方向性珪素鋼板の製造方法には、大別して一
回冷延法と二回冷延法とがある。
By the way, methods for manufacturing non-oriented silicon steel sheets can be roughly divided into a single cold rolling method and a double cold rolling method.

前者は熱延鋼帯を一回の冷延によって最終製品厚とした
後、連続仕上焼鈍を施す工程に′なるもので、コストは
安価であるが、冷延強圧下のため充分な粒成長がなされ
ず鉄損は比較的高い。そのため主に5−12級以下の低
級品の製造法として採用されている。
The former is a process in which hot-rolled steel strip is cold-rolled once to achieve the final product thickness and then subjected to continuous finish annealing, and although the cost is low, sufficient grain growth is not achieved due to the intense cold-rolling reduction. Iron loss is relatively high. Therefore, it is mainly used as a manufacturing method for low-grade products of grades 5-12 and below.

一方後者の冷延二回法は第一回目の冷延後に中間焼鈍を
施したのち再度二回目の冷延を行う工程になるもので、
この場合、磁気特性は中間焼鈍条件と第二回目の冷延鹿
に強く影響される。一般に鉄損を重視する場合には最終
冷延を軽圧下とし、連続仕上焼鈍時に先に導入された歪
エネルギーを利用して著しく粒成長させ、鉄損を改善す
る方法が採用されている。しかしこの方法によると集合
組織はランダム化するために磁束密度は低い。
On the other hand, the latter two-step cold rolling method is a process in which intermediate annealing is performed after the first cold rolling, and then the second cold rolling is performed again.
In this case, the magnetic properties are strongly influenced by the intermediate annealing conditions and the second cold rolling. Generally, when iron loss is important, a method is adopted in which the final cold rolling is lightly reduced, and the strain energy introduced earlier during continuous finish annealing is used to cause significant grain growth to improve iron loss. However, according to this method, the texture is randomized, so the magnetic flux density is low.

大型発電機の鉄心材料としては1.5 Tより高磁場で
の使用に適合するように磁束密度も高い材料が要求され
る。
Iron core materials for large generators are required to have a high magnetic flux density so that they can be used in magnetic fields higher than 1.5 T.

この発明は、上舵した2種の製造法のうち、−回冷延法
による無方向性珪素鋼板の製造方法の改良に係り、−回
冷延法によっても優れた鉄損ならびに磁束密度を実現し
て87〜8クラスの高級な無方向性珪素鋼板を得ること
ができる製造方法を提案するものである。
This invention relates to the improvement of the manufacturing method of non-oriented silicon steel sheets by the two-time cold rolling method, which is one of the two manufacturing methods that have been developed. The present invention proposes a manufacturing method capable of obtaining a high-grade non-oriented silicon steel sheet of 87 to 8 class.

この発明は、最近の製鋼技術の長足の進歩に伴い、鋼中
に不可避的に混入する不純物を従来に較べ著しく低減で
きるという新技術の下に、従来の無方向性珪素鋼板につ
いて幅広い再検討を行った結果究明されたもので、不純
物中とくにいおう(以下8で示す)、酸素(同O)およ
び窒素(同N)を極低化した上で冷延条件を適切に制御
した場合、従来とは再結晶の挙動が異なって優れた磁気
特性が得られるという新規知見に立脚する。
This invention is based on a new technology that can significantly reduce the impurities that inevitably get mixed into steel, in line with recent advances in steelmaking technology. As a result of this research, it was discovered that if the impurities, especially sulfur (denoted as 8 below), oxygen (O) and nitrogen (N) are extremely reduced and the cold rolling conditions are appropriately controlled, is based on the new knowledge that excellent magnetic properties can be obtained due to different recrystallization behavior.

すなわちこの発明は、C: 0.005重量%以下、S
i : 2.5〜4.0 M竣%、Aj : 0.25
〜1.00重量%およびMn : 0.1 = 1.0
重量%を含む珪素鋼用素材を、常法に従って熱間圧延し
、ついで世帯焼鈍を行ったのち一回冷延法によって最終
板厚とし、引続き連続仕上焼鈍を行って無方向性珪素鋼
板を製造するに際し、 (イ) 素材中に不可避に混入する不純物のうちS。
That is, this invention has C: 0.005% by weight or less, S
i: 2.5-4.0 M completion%, Aj: 0.25
~1.00 wt% and Mn: 0.1 = 1.0
A material for silicon steel containing % by weight is hot-rolled according to a conventional method, then subjected to household annealing, and then cold-rolled once to obtain the final thickness, followed by continuous finish annealing to produce a non-oriented silicon steel plate. (a) Of the impurities that inevitably mix into the material, S.

0およびNにつき、それぞれS : l 5 ppm以
下、0 : 20 ppm以下およびN : 25 p
pm以下に抑制する、 (ロ) 世帯焼鈍を、900〜1050°C,2〜15
分間の条件下に行う、および、 (ハ)冷間圧延の圧下兆を65%以上とする、ことを特
徴とする特許 性珪素鋼板の製造方法である。
For 0 and N, respectively, S: 1 5 ppm or less, 0: 20 ppm or less and N: 25 p
(b) Household annealing at 900-1050°C, 2-15
(c) A manufacturing method of a patented silicon steel sheet, characterized in that the manufacturing method is carried out under conditions of 1 minute, and (c) the reduction sign of cold rolling is 65% or more.

以下この発明を由来するに至った実験結果に基き、この
発明を具体的に説明する。
This invention will be specifically explained below based on the experimental results that led to this invention.

表IK示した成分組成よりなる珪素鋼スラブを1l80
゜Cで1時間加熱した後、熱間圧延により、厚さ1.0
 111+ 、 1,4 1111 、 1.7 mお
よびj3.Q順の熱延板とした。これらの熱延板にそれ
ぞれ850゜C。
1l80 silicon steel slab with the composition shown in Table IK
After heating at °C for 1 hour, it was hot rolled to a thickness of 1.0
111+, 1,4 1111, 1.7 m and j3. Hot-rolled sheets were prepared in Q order. Each of these hot-rolled sheets was heated to 850°C.

900゜C,950゜C,1000℃およびl060゜
Cで5分間の世帯焼鈍を施こした後、表面のスケールを
酸洗で除去し、冷間圧延で厚さ0.50 1111に仕
上げた。次いで1000℃,8分間の連続仕上げ焼鈍を
施した。
After household annealing for 5 minutes at 900°C, 950°C, 1000°C, and 1060°C, surface scale was removed by pickling, and the product was finished by cold rolling to a thickness of 0.50 mm. Continuous finish annealing was then performed at 1000°C for 8 minutes.

得られた各鋼板の世帯焼鈍温度と磁気特性との関係につ
いて調べた結果を冷延圧下部別にSill図〜第会図に
示す。
The results of investigating the relationship between the household annealing temperature and the magnetic properties of each of the obtained steel sheets are shown in Figures Sill to 2 for each cold rolling section.

表1 同図より、世帯焼鈍温度が高くなるにつれて磁気特性は
向上するがそれらの鉄損およびm東密度のレベルは素材
成分および冷延圧下率によって異なることが判る。
Table 1 From the same figure, it can be seen that the magnetic properties improve as the household annealing temperature increases, but the levels of iron loss and m-east density differ depending on the material composition and cold rolling reduction.

8 : 8 0 ppm 、 O : 2 2 ppm
 、 N : 2. 6 ppmからなるスラブAから
得られた熱延板はいずれの世帯焼鈍温度の冷延圧下率を
とっても、磁気特性はS−9級どまりである。これに対
し、゛鋼中の8゜0およびNを極低化したスラブBから
なる熱延板はいずれの冷延圧下部でも磁気特性レベルが
優しており、冷延惠65%以上でかつ母帯焼斜温劇90
0°C〜1050°Cで処理したものは鉄損w”/、o
: 1.05 ”/に、以下、w”Zo :2.50 
”/鳥取下のS−7級の優れた磁気特性を示している。
8: 80 ppm, O: 22 ppm
, N: 2. The magnetic properties of the hot-rolled sheet obtained from slab A containing 6 ppm remain at grade S-9 no matter what household annealing temperature or cold rolling reduction ratio is taken. On the other hand, the hot-rolled sheet made of slab B with extremely low 8°0 and N content in the steel has excellent magnetic properties in both cold-rolling regions, and has a cold-rolling density of 65% or more and Obiyaki slanting drama 90
Those processed at 0°C to 1050°C have iron loss w”/, o
: 1.05 ”/to, below, w”Zo : 2.50
”/Shows excellent magnetic properties of S-7 class under Tottori.

この点8 : 15 ppm以下、O: 20 ppm
以下、N:25 ppm以下よりいずれかの成分が多く
含まれ℃いると世帯焼鈍および冷延圧下部を最適条件に
と・つても磁気特性の著しい改善は望めず8−7級は得
られない。
This point 8: 15 ppm or less, O: 20 ppm
Below, N: If any of the components is contained in a large amount below 25 ppm at ℃, no significant improvement in magnetic properties can be expected and grade 8-7 cannot be obtained even if household annealing and cold rolling are performed under optimal conditions. .

次にこの発明で成分組成を前記の範囲に限定した理由に
ついて述べる。
Next, the reason why the component composition is limited to the above range in this invention will be described.

Cは、鋼中に0.005%を超えて残留すると磁気時効
(aging )により磁気特性を劣化させるためC:
 0.005%以下とした。
C: If more than 0.005% of C remains in steel, it deteriorates the magnetic properties due to magnetic aging.
It was set to 0.005% or less.

Slは、2.5%未満ではS−8級以上の高級品の製造
は頃み得す、一方4.0%を超えると冷延加工性が悪く
なるのでEli : 2.5〜4.0%とした。
If Sl is less than 2.5%, it is possible to manufacture high-grade products of grade S-8 or higher, but if it exceeds 4.0%, cold rolling workability deteriorates, so Eli: 2.5 to 4.0 %.

klは、磁気特性を向上させるためには0.25%以上
必要であるが、1.00%を超えると冷延性が悪くなる
のでA7 : o、ga〜1.00%とした。
Kl is required to be 0.25% or more in order to improve magnetic properties, but if it exceeds 1.00%, cold rollability deteriorates, so A7: o, ga ~ 1.00%.

Mnは、Sによる熱間脆性を抑制するため添加されるが
、0.1%より少ないと割れを防止する効果に乏しく、
一方1.0%よりも多いと磁気特性が劣化するのでMn
 : 0.1〜1.0%とした。
Mn is added to suppress hot embrittlement caused by S, but if it is less than 0.1%, it is not effective in preventing cracking.
On the other hand, if the amount exceeds 1.0%, the magnetic properties deteriorate, so Mn
: 0.1 to 1.0%.

S、OおよびNはそれぞれ15 ppm 、 20pp
m。
S, O and N are 15 ppm and 20 ppm respectively
m.

25 ppmを超えて多く含まれると微細介在物が増え
、連続仕上焼鈍で鋼板の結晶粒を成長させる際−阻害要
因となりこの発明で所期した磁性の著しい改善は望めな
いのでS : l 5 ppm以下、0:20 ppm
以下、N : Z 5 ppm以下にすることがとりわ
け肝要である。
If the content exceeds 25 ppm, fine inclusions will increase, which will inhibit the growth of crystal grains in the steel sheet during continuous finish annealing, and the significant improvement in magnetism as expected in this invention cannot be expected. Below, 0:20 ppm
Hereinafter, it is particularly important to keep N:Z to 5 ppm or less.

さて上記の如く成分調整した溶鋼は、連続鋳造により鋼
スラブに鋳造するか、または造塊−分塊法によって鋼ス
ラブとする。かくして得た鋼スラブを公知の方法で熱間
圧延鴬し、2.0〜8.0−の板厚に仕上げる。
Now, the molten steel whose composition has been adjusted as described above is cast into a steel slab by continuous casting or by an ingot-blowing method. The thus obtained steel slab is hot rolled by a known method and finished to a thickness of 2.0 to 8.0 mm.

次に冷間圧延を施すが、この発明で冷延条件を前記のと
おりに限定した理由は下記の°とおりである。
Next, cold rolling is performed, and the reason why the cold rolling conditions are limited as described above in this invention is as follows.

一回冷延法において、900〜1050°Cで2〜15
分間の世帯焼鈍を施すのは熱延板組織の均一化と結晶粒
の粗大化を目的とするもので、世帯焼鈍が900°C未
満の温度あるいは2分未満の短時間焼鈍では熱延板組織
が充分に改善されず、8−7級クラスの磁気特性が得ら
れない。一方1050℃を超える温度あ、るいは15分
より長時間の世帯焼鈍では熱延板の結晶粒が過大となり
すぎ圧延時に板割れを起す原因となる。
2-15 at 900-1050°C in single cold rolling method
The purpose of household annealing for 1 minute is to homogenize the structure of the hot-rolled sheet and to coarsen the grain size. is not sufficiently improved, and magnetic properties of class 8-7 cannot be obtained. On the other hand, household annealing at a temperature exceeding 1050° C. or for a longer time than 15 minutes causes the crystal grains of the hot-rolled sheet to become excessively large, causing cracking of the sheet during rolling.

また−回冷延法の冷延圧下率を65%以上としたのは、
65%未満の圧下耶では8−7級が得られないことと例
えば製品板厚がQ、35mの場合には1.01m厚以下
に鋼スラブを熱間圧延する必要があるが、その際鋼板の
形状不良や板切れなどのトラブルが発生し感いので一回
冷延法の場合忙は冷延高を65%以上としたのである。
In addition, the reason why the cold rolling reduction ratio in the double cold rolling method was set to 65% or more was because
If the reduction is less than 65%, grade 8-7 cannot be obtained, and for example, if the product thickness is Q, 35m, it is necessary to hot-roll the steel slab to a thickness of 1.01m or less, but in this case, the steel plate To avoid problems such as poor shape and sheet breakage, the cold rolling height was set at 65% or more in the case of the single cold rolling method.

上記のようにして磁気特性が大幅に改善される理由は、
S、OおよびNの低減に伴う微細介在物や析出物の減少
が仕上焼鈍時の再結晶挙動に影響を与え、この再結晶の
挙動の違いによって集合組織が望ましい形態となるため
であることが、数多くの実験の結果、確められている。
The reason why the magnetic properties are greatly improved as described above is that
The decrease in fine inclusions and precipitates associated with the reduction of S, O, and N affects the recrystallization behavior during final annealing, and this difference in recrystallization behavior may result in the desired texture shape. , has been confirmed as a result of numerous experiments.

次にこの発明の実施例について説明する。Next, embodiments of this invention will be described.

実施例 転炉で溶製した溶鋼に即脱ガス処理を施し、次いでMn
 + si I A1などの合金成分を添加して成分調
整した後、連続鋳造にてスラブとした。このスラブの成
分分析値は次の逼りであった。
Example: Molten steel produced in a converter was immediately degassed, and then Mn
After adjusting the composition by adding alloy components such as + si I A1, a slab was obtained by continuous casting. The component analysis values for this slab were as follows.

C: 0.008%、 Si : 8.21%、 Mn
 :帆15%。
C: 0.008%, Si: 8.21%, Mn
:Sail 15%.

S : 0.0006%、 At : 0.60%、 
P : 0.010%。
S: 0.0006%, At: 0.60%,
P: 0.010%.

0 : 0.0004%、 N : 0.0018%こ
のスラブを1150°Cで1時間加熱した後、熱間圧延
により厚さ2.0朋の熱延板とした。この熱延板に95
0°Cで5分間の連続焼鈍を施した。
0: 0.0004%, N: 0.0018% This slab was heated at 1150° C. for 1 hour, and then hot rolled into a hot rolled sheet having a thickness of 2.0 mm. 95 on this hot rolled plate
Continuous annealing was performed at 0°C for 5 minutes.

ついで焼鈍した熱延板の表面スケールな酸洗除去した後
、冷間圧延により厚さ0.50111に仕上げ(圧下出
75%)、引続き1000°CのH,ニア0%、N、 
: 80%よりなる乾燥雰囲気中で8分間の連続仕上焼
鈍を行なった。なお比較例として次の成分組成になるス
ラブを同一工程で処理して磁気特性を比較した。
Next, the surface scale of the annealed hot-rolled sheet was pickled and removed, and then finished by cold rolling to a thickness of 0.50111 (rolling down 75%), followed by 1000°C H, near 0%, N,
: Continuous finish annealing was performed for 8 minutes in an 80% dry atmosphere. As a comparative example, slabs having the following component compositions were processed in the same process and their magnetic properties were compared.

c : 0.004%、 Si : 8.28%、 M
n : 0.16%。
c: 0.004%, Si: 8.28%, M
n: 0.16%.

s : o、ooao%、 Al: 0.62%、 P
 : 0,012%。
s: o, ooao%, Al: 0.62%, P
: 0,012%.

0 : 0.0025%、 N : 0.0028%得
られた各鋼板の磁気特性について調べた結果を表2に示
す。
Table 2 shows the results of investigating the magnetic properties of each steel sheet obtained with 0: 0.0025% and N: 0.0028%.

表2 S、oおよびNがこの発明の適正範囲を逸脱した比較例
は、その後に適切な冷間圧延を施したとしても、さほど
良好な磁気特性は得られなかったのに対し、S、0およ
びNとも著しく低減した発明材は8−7級の優れた磁気
特性を示し、比較例より2グレード特性が優れている。
Table 2 Comparative examples in which S, o, and N deviated from the appropriate ranges of the present invention did not have very good magnetic properties even if they were subsequently subjected to appropriate cold rolling. The invention material, in which both N and N were significantly reduced, exhibited excellent magnetic properties of grade 8-7, and was superior in grade 2 properties to the comparative example.

以上述べたようにこの発明によれば、−回冷延法でも、
鉄損が小さくかつ磁束密度が高い優れた磁気特性をそな
える高級な無方向性珪素鋼板を容易に得ることができ、
有利である。
As described above, according to the present invention, even in the -fold cold rolling method,
It is possible to easily obtain high-grade non-oriented silicon steel sheets that have excellent magnetic properties with low iron loss and high magnetic flux density.
It's advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

筑1図〜第4図はそれぞれ一回冷延法の圧下出50%、
65%、70%および75%における母帯焼鈍堪度とW
 10/l5o(a) 、 W 15/、o(b)およ
びB 5o (c)との関係を示したグラフである。 特許出願人 川崎製鉄株式会社 第1図  第2図 第3図  第4図 手続補正書(方式) 昭和58 年3 月 1日 1、事件の表示 昭和57年特許 願第184164号 2、発明の名称 磁気特性の極めて優れた無方向性珪素鋼板の製造方法3
、補正をする者 事件との関係 特許出願人 (125)川崎製鉄株式会社 5、補正命令の日付 昭和58年2月22日 1、明細書第12頁第6〜lO行を次のとおりに訂正す
る。 [4、図面の簡単な説明 第1図a、bおよび0はそれぞれ冷延率50%における
世帯焼鈍温度とW 10/  、 W IZ[I0 およびB50との関係について示したグラフ、第2図a
、bおよびOはそれぞれ冷延率65%における世帯焼鈍
温度とW 107  、 W1515゜0 およびB、。との関係について示したグラフ、第8図a
、bおよびCはそれぞれ冷延率7叶%における世帯焼鈍
温度とWIO,、;。、W イ。およびBsoとの関係
について示したグラフ、第4図a、bおよびOはそれぞ
れ冷延率75%における世帯焼鈍温度とW 107.、
 、 W 1515゜およびB11との関係について示
したグラフでiある。」 2、第1−4図を別紙のとおりに訂正する。 第1図 (訂− 4’l!114セJ諏/f(−C)、C:g−判≧Oコ
1ノ第8図 第4図
Figures 1 to 4 show the rolling reduction of 50% for the single cold rolling method, respectively.
Matrix annealing tolerance and W at 65%, 70% and 75%
10/l5o(a), W15/, o(b), and B5o(c); FIG. Patent Applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3 Figure 4 Procedural Amendment (Method) March 1, 1981 1. Display of the Case 1984 Patent Application No. 184164 2. Title of the Invention Method for manufacturing non-oriented silicon steel sheet with extremely excellent magnetic properties 3
, Relationship to the case of the person making the amendment Patent applicant (125) Kawasaki Steel Corporation 5 Date of amendment order February 22, 1981 1, page 12, lines 6 to 10 of the specification amended as follows: do. [4. Brief description of the drawings Figure 1 a, b and 0 are graphs showing the relationship between the household annealing temperature and W 10/ , W IZ[I0 and B50 at a cold rolling rate of 50%, respectively; Figure 2 a
, b and O are the household annealing temperature at a cold rolling rate of 65% and W 107 , W 1515°0 and B, respectively. Graph showing the relationship between
, b and C are the household annealing temperature and WIO at a cold rolling rate of 7%, respectively. , W i. Graphs a, b and O shown in FIG. 4 show the relationship between household annealing temperature and W 107. at a cold rolling rate of 75%, respectively. ,
, W is a graph showing the relationship between 1515° and B11. ” 2. Figure 1-4 is corrected as shown in the attached sheet. Fig. 1 (revised - 4'l! 114 ce J/f (-C), C: g-size ≧ Oko 1 no Fig. 8 Fig. 4

Claims (1)

【特許請求の範囲】 L  O: 0.005重量−以下、Si : 2.5
〜4.0重量%、At : 0.25〜1.00重量%
およびIn :’ 0・1〜1.0重量%を含む珪素鋼
用素材を、常法に従って熱間圧延し、ついで母帯焼鈍を
行ったのち一一冷延法によって最終板厚とし、引続き連
続仕上焼鈍を行って無方向性珪素鋼板を製造するに際し
、 (イ) 素材中に不可避に混入する不純物のうちいおう
、酸素および窒素につき、それぞれいおう: 15 p
pm以下、酸素: 20 ppm以下および窒素: 2
5 ppm以下に抑制する、(ロ) 母帯焼鈍を、90
0〜1050”C,2〜15分間の条件下に行う、およ
び (ハ)冷間圧延の圧下率を66%以上とする、ことを特
徴とする特許 方向性珪素鋼板の製造方法。
[Claims] L O: 0.005 weight or less, Si: 2.5
~4.0% by weight, At: 0.25~1.00% by weight
A material for silicon steel containing 0.1 to 1.0% by weight of In:' is hot-rolled according to a conventional method, then mother-of-the-plate annealing is performed, and the final thickness is obtained by the 11 cold rolling method, followed by continuous rolling. When manufacturing non-oriented silicon steel sheets by final annealing, (a) Regarding impurities that are inevitably mixed into the material, each of oxygen and nitrogen shall be considered: 15 p.
pm or less, oxygen: 20 ppm or less and nitrogen: 2
(b) Suppress mother zone annealing to 5 ppm or less, 90
A patented method for producing a grain-oriented silicon steel sheet, characterized in that the cold rolling is carried out under conditions of 0 to 1050''C for 2 to 15 minutes, and (c) the reduction ratio of cold rolling is 66% or more.
JP18416482A 1982-10-20 1982-10-20 Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic Pending JPS5974224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18416482A JPS5974224A (en) 1982-10-20 1982-10-20 Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18416482A JPS5974224A (en) 1982-10-20 1982-10-20 Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS5974224A true JPS5974224A (en) 1984-04-26

Family

ID=16148478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18416482A Pending JPS5974224A (en) 1982-10-20 1982-10-20 Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS5974224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294422A (en) * 1990-04-13 1991-12-25 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property
KR100658408B1 (en) * 1998-10-27 2006-12-15 제이에프이 스틸 가부시키가이샤 An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294422A (en) * 1990-04-13 1991-12-25 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property
JPH0737651B2 (en) * 1990-04-13 1995-04-26 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR100658408B1 (en) * 1998-10-27 2006-12-15 제이에프이 스틸 가부시키가이샤 An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same

Similar Documents

Publication Publication Date Title
US3940299A (en) Method for producing single-oriented electrical steel sheets having a high magnetic induction
AU2020328712B2 (en) High-magnetic-induction oriented silicon steel and manufacturing method therefor
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
US3876476A (en) Continuously cast slabs for grain oriented electrical steel sheet and method for producing said steel sheet
US5186763A (en) Process for production of non-oriented electrical steel sheet having excellent magnetic properties
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
CN101906580B (en) Non-oriented electrical steel containing vanadium and titanium and preparation method thereof
JPS5974224A (en) Producton of non-directional silicon steel sheet having extremely outstanding magnetic characteristic
EP0084980B1 (en) Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
KR19980018489A (en) Manufacturing method of unidirectional silicon steel sheet
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS5974225A (en) Production of non-directional silicon steel sheet having extremely outstanding magnetic characteristic
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
KR960003174B1 (en) Method for preparation of non-oriented electrical steel sheet having high flux-density
JPH11172382A (en) Silicon steel sheet excellent in magnetic property, and its production
KR960014510B1 (en) Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic
JPH07305114A (en) Production of nonoriented silicon steel sheet excellent in surface property and magnetic property
CN101914730B (en) preparation method of vanadium and titanium containing cold rolling non-oriented electrical steel
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPH0257125B2 (en)
JPH02258926A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0673454A (en) Production of high magnetic flux density grain-oriented electric steel sheet
JPH02258922A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS59100217A (en) Production of semi processed electrical hoop having remarkably high magnetic permeability