JPS5973806A - Method of improving energization loss of steel core aluminumtwisted wire - Google Patents

Method of improving energization loss of steel core aluminumtwisted wire

Info

Publication number
JPS5973806A
JPS5973806A JP18341482A JP18341482A JPS5973806A JP S5973806 A JPS5973806 A JP S5973806A JP 18341482 A JP18341482 A JP 18341482A JP 18341482 A JP18341482 A JP 18341482A JP S5973806 A JPS5973806 A JP S5973806A
Authority
JP
Japan
Prior art keywords
steel
wire
aluminum
core
steel core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18341482A
Other languages
Japanese (ja)
Inventor
高橋 恂
藤掛 和男
渥美 聰
田代 幸雄
三宅 保彦
佐野 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Cable Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP18341482A priority Critical patent/JPS5973806A/en
Publication of JPS5973806A publication Critical patent/JPS5973806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は架空送電線として広く使用されている鋼心アル
ミ撚線(以下AC3Rという)の送電ロスを大幅に改善
するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for significantly improving power transmission loss in steel-core aluminum stranded wires (hereinafter referred to as AC3R) widely used as overhead power transmission lines.

近年送電分野における電源地の立地条件がきびしくなり
、需要地からますます遠隔化する傾向にあり、これを結
ぶ送電線も長距離送電を余儀なくされている。当然、途
中における送電ロスが大きく、経済事情や省エネルギー
の観点からみて、ゆゆしき問題である。このため超高圧
化など種々なる対応は講じられているのであるが、なお
一層の改善が望まれている実情にある。
In recent years, the location requirements for power sources in the power transmission field have become more stringent, with the tendency for power sources to become increasingly remote from demand centers, and the power transmission lines that connect them are forced to transmit power over long distances. Naturally, there is a large amount of power transmission loss along the way, which is a serious problem from the perspective of economic circumstances and energy conservation. For this reason, various measures have been taken, such as increasing the pressure to ultra-high pressures, but the reality is that further improvements are desired.

送電ロスを改善する手取早い方法は、送電線の電気抵抗
を低減させることにある。このためには■導体の導電率
を上昇させるか、■導体の断面積を増加させることが考
えられる。
An easy way to improve power transmission loss is to reduce the electrical resistance of power transmission lines. To this end, it is conceivable to (1) increase the conductivity of the conductor or (2) increase the cross-sectional area of the conductor.

今日架空送電線として使用されている電線としてはテン
ションメンバーとしての鋼心の外周に導電メンバーとし
てのアルミ線を撚り合わせてなるAC8Rが主流となっ
ているが、このものにおいて、導電率を上昇させること
はきわめてむずかしい。すなわち、AC8Rとして使、
用されているEC級硬アルミ線の導電率は約62%lA
C3であるが、仮に高純度99.99%Mに代えてもた
かだか64%lAC3にすぎず、このためのアルミ線の
機械的強度の低下、価格の増大を考え合わせると、この
ような方法はにわかには採用し難い。
The mainstream electric wire used today as overhead power transmission lines is AC8R, which is made by twisting aluminum wire as a conductive member around the outer circumference of a steel core as a tension member. That is extremely difficult. In other words, use it as AC8R,
The conductivity of the EC grade hard aluminum wire used is approximately 62% lA.
C3, but even if you replace it with high purity 99.99% M, it will only be 64% lAC3 at most, and considering the decrease in mechanical strength of the aluminum wire and the increase in price, such a method is It is difficult to hire someone suddenly.

然らば、前記■の方法は如何とみるに、当然なことなが
らAC8Rの外径ならびに重量の増大を伴い、再圧の増
大、弛度の増加が生ずる上、鉄塔を高く強く覆る必要ま
で伴なってくる。
However, no matter how you look at it, method (2) above naturally involves an increase in the outer diameter and weight of AC8R, which causes an increase in repressurization and an increase in sag.It is also necessary to cover the steel tower high and strongly. It's coming.

本発明は以上のような実情にかんがみてなされたもので
あり、電線の外径を増大することなくA CS Rの電
気抵抗を大巾に低減せしめ、その通電損失を大[1]に
改善し得る方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to significantly reduce the electrical resistance of the ACS R without increasing the outer diameter of the wire, and to greatly improve the current conduction loss [1]. We are trying to provide a way to obtain it.

以下に実施例に基づいて説明する。This will be explained below based on examples.

標準A CS Rの規格はJECにより定められている
。−例を160dAC8Rにとれば、鋼心は2.6#1
I11径7本撚り、アルミ線は2.68径30本撚り鋼
心の外径7.8mm、AC8Rの外径18.2alll
l引張荷重6,98Lon、重ffi 733 ka/
kmである。当然鉄塔建設その他の諸仕様はこの規格に
従い定められているから、大きな規格上のずれは許され
ない。
Standard ACSR specifications are defined by JEC. -If we take an example of 160dAC8R, the steel core is 2.6#1
I11 diameter 7 wires twisted, aluminum wire 2.68 diameter 30 twisted steel core outer diameter 7.8mm, AC8R outer diameter 18.2allll
l Tensile load 6,98Lon, heavyffi 733ka/
km. Naturally, the construction of steel towers and other specifications are determined in accordance with this standard, so major deviations from the standards are not allowed.

第1図に示したものは、標準AC8Rの断面図であり、
所定の鋼心1′の外周にアルミ線2′。
What is shown in FIG. 1 is a cross-sectional view of the standard AC8R.
Aluminum wire 2' is placed around the outer periphery of a predetermined steel core 1'.

2 ′−−−−−が撚り合わされている。2'---- are twisted together.

第2図は本発明に係るAC3Rの断面を示したものであ
るが、鋼心1は第1図の場合に比較してかなり径の小さ
いものが使用されている。
FIG. 2 shows a cross section of AC3R according to the present invention, and the steel core 1 used has a considerably smaller diameter than that shown in FIG.

AC8Rの外径を同じに保つものとすれば、当然その分
だけアルミ線の占める断面積は大きくなる。
If the outer diameter of AC8R is kept the same, the cross-sectional area occupied by the aluminum wire will naturally increase accordingly.

従って、AC8R全体でみた場合、それだけ電気抵抗は
小さくできた結果となる。
Therefore, when looking at the AC8R as a whole, the electrical resistance can be reduced accordingly.

前記160yJAcsRについて、第5図によりこの間
の事情を説明する。標準1605I111AC8Rの破
断荷重は前記の通りほば7 tonであるが、この場合
の鋼線径は前記2.6Mであり、その引張強さは135
kg/−である。
Regarding the 160yJAcsR, the circumstances during this period will be explained with reference to FIG. As mentioned above, the breaking load of the standard 1605I111AC8R is about 7 tons, but the steel wire diameter in this case is 2.6M, and its tensile strength is 135
kg/-.

いま、鋼線として200k(1/dの強度のものを使用
したとすると、同じ7 tonの破断荷重を確保り−る
には第5図よりわかるように2.1mm径でよく、22
0 ka/−の鋼線であれば1.9mm径でよいことに
なる。従って、このよう鋼線を用いれば鋼心の断面積が
これにより大巾に縮少しても標準の破断荷重が確保でき
ることがわかるであろう。
Now, if we use a steel wire with a strength of 200k (1/d), in order to secure the same breaking load of 7 tons, a diameter of 2.1 mm is sufficient as shown in Figure 5, and a diameter of 22
If it is a steel wire of 0 ka/-, a diameter of 1.9 mm will suffice. Therefore, it will be understood that if such a steel wire is used, a standard breaking load can be ensured even if the cross-sectional area of the steel core is greatly reduced.

しかしながら、本発明は単に鋼心の強度を大にし、断面
積を小とするというのみに止まるのではない。鋼心径が
縮小した分だけアルミ部分の占積率を大ならしめるので
ある。この場合第2図のように断面円形のアルミ線のみ
を撚り合わせたのではその占積率は小さく標準AC8R
と同じ外径において75%程度である。従って、第3図
あるいは第4図に示すようにアルミ線の一部あるいは全
部を扇形導体3.3−−−−一をもって構成する必要が
ある。しかして本発明に係る方法をもってすれば、アル
ミ線を扇形導体をもって構成し、占積率を85%どして
もAC8Rの外径は増大せず、AC8Rの重量も増大す
ることなく標準重量のままに保持可能となる。再度第5
図によりその間の事情を説明する。
However, the present invention is not limited to simply increasing the strength of the steel core and decreasing the cross-sectional area. The space factor of the aluminum portion is increased by the reduction in the steel core diameter. In this case, if only aluminum wires with a circular cross section are twisted together as shown in Figure 2, the space factor will be small and the standard AC8R
It is about 75% at the same outer diameter. Therefore, as shown in FIG. 3 or 4, it is necessary to construct part or all of the aluminum wire with a sector-shaped conductor 3.3. However, if the method according to the present invention is used, the outer diameter of AC8R will not increase even if the aluminum wire is configured with a fan-shaped conductor and the space factor is increased to 85%, and the weight of AC8R will not increase, and the standard weight will be reduced. It can be kept as it is. 5th again
The circumstances during that time will be explained using figures.

前記の通り標準160allAC8Rの重量は733K
g/KRI テアル。AC3R標準外径における鋼心の
標準線径2.6#Iの場合においてアルミの占積率を8
5%とすれば重量は792Ky/Kmにもなり規格値を
大巾に逸脱する。しかし、本発明に従い鋼線の強度を2
00/(y/−とし、線径を2、 1#III+とすれ
ばアルミの占積率を85%とし°Cもその重量は依然標
準160dAC8Rと変らない。しかもこの場合の電気
抵抗は標準16041+11AC8R(7)0.182
Ω/ K m 、に:対し0.149Ω/Kmと82%
であり、20%近い通電損失の改善が達成せられたこと
になる。
As mentioned above, the weight of the standard 160allAC8R is 733K.
g/KRI Teal. In the case of standard wire diameter 2.6#I of steel core with AC3R standard outer diameter, the space factor of aluminum is 8
If it is 5%, the weight will be 792 Ky/Km, which greatly deviates from the standard value. However, according to the present invention, the strength of the steel wire is reduced to 2
If the wire diameter is 00/(y/- and the wire diameter is 2, 1#III+, the space factor of aluminum is 85%, and the weight is still the same as the standard 160dAC8R at °C.Moreover, the electrical resistance in this case is the standard 16041+11AC8R. (7) 0.182
Ω/Km, to: 0.149Ω/Km and 82%
This means that an improvement in conduction loss of nearly 20% has been achieved.

上記の如き顕著な効果は、鋼心の強度をさらに200K
g/IIIIIよりも犬とすることでより顕著にあられ
れることは勿論である。
The remarkable effects mentioned above increase the strength of the steel core by an additional 200K.
It goes without saying that the appearance is more noticeable in dogs than in g/III.

このような20ONy/−以上の強度の鋼線を入手する
にはC0,8%以上、Cr0.4〜2.0%、Si O
08〜1.5%の材料をパテンティング伸線加工するこ
とで容易に手に入れることができる。
To obtain such a steel wire with a strength of 20ONy/- or more, C0.8% or more, Cr0.4-2.0%, SiO
It can be easily obtained by patenting wire drawing processing of 0.08 to 1.5% material.

なお、本発明に係るAC8Rの最外層において第4図に
示すようにヒレ状突起4を形成してやれば、難着雪効果
および低騒音効果を併せ発揮ゼしめることが可能である
If fin-like protrusions 4 are formed in the outermost layer of the AC8R according to the present invention as shown in FIG. 4, it is possible to achieve both the anti-snow accretion effect and the low-noise effect.

上記においては、実施例として16041111A’C
S Rの場合についてのみ説明したが、他の如何なるサ
イズのΔC8Rにおいても本発明の技術思想がそのまま
適用できることはいうまでもない。
In the above, 16041111A'C is used as an example.
Although only the case of SR has been described, it goes without saying that the technical idea of the present invention can be applied as is to any other size of ΔC8R.

そして、そのような場合でも本発明の効果を十分に享受
する意味からすると、アルミの占積率を85%以上とす
るのがのぞましいのである。
In order to fully enjoy the effects of the present invention even in such a case, it is desirable that the space factor of aluminum be 85% or more.

アルミ線については、単にECUに限らず、各種耐熱ア
ルミ合金、高力アルミ合金、などについても同様に適用
可能であり、とくに合金の場合において宿命的な導電率
の低下を本発明に係る占積率増加によって補い得るとい
う意味がある。
Regarding aluminum wires, it is not only applicable to ECUs, but also various heat-resistant aluminum alloys, high-strength aluminum alloys, etc., and in particular, in the case of alloys, the fateful decrease in conductivity can be reduced by There is a sense that this can be compensated for by increasing the rate.

また鋼心については通常の亜鉛メッキ鋼線に限ることな
く、アルミメッキ鋼線、アルミ被覆鋼線を用いることが
できるのはいうまでもなく、この種のものを使用するこ
とによりAC8Rの電気抵抗をさらに一層低減できると
いう効果を発揮する。
As for the steel core, it goes without saying that it is not limited to ordinary galvanized steel wire, but can also use aluminized steel wire or aluminum-coated steel wire, and by using this type of wire, AC8R's electrical resistance This has the effect of further reducing .

なお、本発明に係る効果を明確に゛するために、従来例
の場合と本発明との場合の詳細な比較値を表1および表
2によって示した。
In order to clearly demonstrate the effects of the present invention, detailed comparison values between the conventional example and the present invention are shown in Tables 1 and 2.

本発明に係る方法をもってず′れば、如何にその効果が
顕著であるが、これによって十分に明らかにできたこと
であろう。
If the method according to the present invention were not available, the effect would have been much more remarkable, but it would have been possible to fully clarify it.

以上本発明に係る通電損失改善方法によれば、すでに述
べた数々の効果のほかに、同一使用温度とした場合に、
それだけ電流容量を増大できるという効果も期待できる
上、AC8Rの重量を軽くできることによる弛度、張力
の低減などその産業上の価値ははかり知れない。
As described above, according to the current conduction loss improvement method according to the present invention, in addition to the numerous effects already mentioned, when the operating temperature is the same,
Not only can we expect the effect of increasing the current capacity, but also the industrial value of reducing AC8R's slack and tension by reducing its weight is immeasurable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のAC8Rの断面図、第2〜4図は本発明
に係るAC8Rの断面図、第5図は160adAC8R
の鋼心径の変化による諸性質の関係を示す線図である。 1.1−:91心、2.2−ニアルミ線、3:扇形導体
アルミ線。 警1 口       算2図 1 茅3図 % 5 配 綱礫径師面) 1事イ′1の表示 昭和 57 年  特  許  願第 183414 
 号2発明の名称 鋼心アルミ撚線の通電損失改善方法 3 補正をする者 4 代  理  人〒100 5 補正命令の日付  −(自発)− 補正の対象 (1)特許請求の範囲の欄 補正の内容 (1)特許請求の範囲を別紙の通り訂正する。 添付書類の目録 (1)別紙           1通特許請求の範囲 1 鋼心アルミ撚線における外径をほぼ標準外径に維持
し鋼心の引張強さを積極的に高くし、鋼心アルミ撚線の
標準破断荷重を低下せしめることなく、鋼心の断面積を
縮少し、その縮少分に見合った分だ【ノアルミ撚線層の
断面積を増大せしめる鋼心アルミ撚線の通電損失改善方
法。 2 アルミ素線の全部あるいは一部を扇形断面どし、ア
ルミ部分の占積率をさらに積極的に増大せしめる特許請
求の範囲1ilJ1項記載の鋼心アルミ撚線の 通電損
失改善方法。 3 アルミ部分の占積率が85%以上である特許請求の
範囲第1または2項記載の通電損失改善方法。
Fig. 1 is a sectional view of a conventional AC8R, Figs. 2 to 4 are sectional views of an AC8R according to the present invention, and Fig. 5 is a 160adAC8R.
FIG. 2 is a diagram showing the relationship between various properties as a result of changes in steel core diameter. 1.1-: 91 cores, 2.2-nialuminum wire, 3: sector-shaped conductor aluminum wire. Indication of 1 item A'1 1982 Patent Application No. 183414
No. 2 Name of the invention Method for improving conduction loss in steel-core aluminum stranded wires 3 Person making the amendment 4 Agent 〒100 5 Date of amendment order - (voluntary) - Subject of amendment (1) Amendment in the scope of claims section Contents (1) The scope of claims is amended as shown in the attached sheet. List of Attached Documents (1) Attachment 1 copy Claim 1 The outer diameter of the steel-core aluminum stranded wire is maintained at approximately the standard outer diameter, the tensile strength of the steel core is actively increased, and the steel-core aluminum stranded wire is The cross-sectional area of the steel core is reduced without reducing the standard breaking load, and the reduction is commensurate with the reduction. [Method for improving conduction loss in steel-core aluminum stranded wire by increasing the cross-sectional area of the aluminum stranded wire layer. 2. A method for improving conduction loss in a steel-core aluminum stranded wire according to claim 1ilJ1, which further actively increases the space factor of the aluminum portion by forming all or part of the aluminum strand into a fan-shaped cross section. 3. The method for improving conduction loss according to claim 1 or 2, wherein the aluminum portion has a space factor of 85% or more.

Claims (1)

【特許請求の範囲】 1 鋼心アルミ撚線における外径をほぼ標準外径に維持
し鋼心の引張強さを積極的に高くし、鋼心アルミ撚線の
標準破断荷重を低下せしめることなく、鋼心の断面積を
縮少し、その縮少弁に見合った分だけアルミ撚線層の断
面積を増大せしめる鋼心アルミ撚線の通電損失改善方法
。 2 アルミ素線の全部あるいは一部を扇形断面とし、ア
ルミ部分の占積率をさらに積極的に増大させる特許請求
の範囲第1項記載の鋼心アルミ撚線の通電損失改善方法
。 3 アルミ部分の占積率が85%以上である特許請求の
範囲第1または第2項記載の通電損失改善方法。
[Claims] 1. The outer diameter of the steel-core aluminum stranded wire is maintained at approximately the standard outer diameter, and the tensile strength of the steel core is actively increased, without reducing the standard breaking load of the steel-core aluminum stranded wire. , a method for improving conduction loss in steel-core aluminum stranded wires by reducing the cross-sectional area of the steel core and increasing the cross-sectional area of the aluminum stranded wire layer by an amount commensurate with the reduction valve. 2. A method for improving conduction loss in a steel-core aluminum stranded wire according to claim 1, wherein all or part of the aluminum wire has a fan-shaped cross section to further actively increase the space factor of the aluminum portion. 3. The method for improving conduction loss according to claim 1 or 2, wherein the aluminum portion has a space factor of 85% or more.
JP18341482A 1982-10-19 1982-10-19 Method of improving energization loss of steel core aluminumtwisted wire Pending JPS5973806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18341482A JPS5973806A (en) 1982-10-19 1982-10-19 Method of improving energization loss of steel core aluminumtwisted wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18341482A JPS5973806A (en) 1982-10-19 1982-10-19 Method of improving energization loss of steel core aluminumtwisted wire

Publications (1)

Publication Number Publication Date
JPS5973806A true JPS5973806A (en) 1984-04-26

Family

ID=16135356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18341482A Pending JPS5973806A (en) 1982-10-19 1982-10-19 Method of improving energization loss of steel core aluminumtwisted wire

Country Status (1)

Country Link
JP (1) JPS5973806A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877379A (en) * 1972-01-21 1973-10-17
JPS5442675A (en) * 1977-08-19 1979-04-04 December 4 Drotmuevek Steellcored aluminum cable and method of making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877379A (en) * 1972-01-21 1973-10-17
JPS5442675A (en) * 1977-08-19 1979-04-04 December 4 Drotmuevek Steellcored aluminum cable and method of making same

Similar Documents

Publication Publication Date Title
US7228627B1 (en) Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
US2359090A (en) Composite electrical conductor
CA1045222A (en) Aluminum alloy composite electrical conductor
US2321021A (en) Composite electrical conductor
CN209488131U (en) The preformed conduction wire clamp of carbon fiber core conducting wire
JPS5973806A (en) Method of improving energization loss of steel core aluminumtwisted wire
CN110189853B (en) Metal composite wire
CN215815263U (en) Special cable for servo motor with framework
CN215342002U (en) Bending-resistant copper-clad aluminum-magnesium data wire
CN206649950U (en) Preformed carbon-fibre wire strain insulator-string
CN217955519U (en) Data connecting line with tensile structure
CN219677695U (en) Copper-clad steel round wire
CN218602122U (en) Composite conductor cable mechanism
CN219958628U (en) Self-damping type ultra-high strength steel core expanded diameter stranded wire and high-altitude erection cable
CN109741874A (en) A kind of high-strength insulating aerial cable
CN218039845U (en) Connecting structure for one-to-many cables
CN209947451U (en) Stranded wire and stranded wire cable
JPS59171407A (en) Method of accelerating snowfall resistance of aerial ground wire
CN219697259U (en) 220kV equal-length cross arm structure capable of realizing left-right rotation of power transmission line
JPS585385Y2 (en) Suspension section of loose core overhead power transmission line
CN210779340U (en) High-temperature-resistant insulated cable
CN209525968U (en) A kind of chain armouring aluminium alloy cable of high intensity
JPS60198009A (en) Compound superconductive conductor
JPH05314819A (en) Overhead transmission cable
JPS617507A (en) Composite aluminum wire