JPS5973754A - Automatic analysis of coal structure - Google Patents

Automatic analysis of coal structure

Info

Publication number
JPS5973754A
JPS5973754A JP57185685A JP18568582A JPS5973754A JP S5973754 A JPS5973754 A JP S5973754A JP 57185685 A JP57185685 A JP 57185685A JP 18568582 A JP18568582 A JP 18568582A JP S5973754 A JPS5973754 A JP S5973754A
Authority
JP
Japan
Prior art keywords
reflectance
resin
noise
scanning
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57185685A
Other languages
Japanese (ja)
Other versions
JPH0445771B2 (en
Inventor
Mikiro Kato
加藤 幹郎
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57185685A priority Critical patent/JPS5973754A/en
Publication of JPS5973754A publication Critical patent/JPS5973754A/en
Publication of JPH0445771B2 publication Critical patent/JPH0445771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a measuring result with high reliability by the accerelation and generalization of analysis, by a method wherein the average reflectivity of a vitrinite structure is measured and a state such that resistivity is equal to or less than the value determined by using the relation of said reflectivity and the max. reflectivity of noise to be measured through resin and the deference of the reflectivities between adjacent two points is within a definite range is judged as noise to be measured through resin which is, in turn, removed to perform automatic analysis. CONSTITUTION:A specimen 10 is placed on a scanning stage 2 and the focus is adjusted. In the next step, a measuring condition is keyed in from an I/O typewriter 9 to a calculator 7 to start measurement. The scanning stage 2 performs stage scanning through a stage control circuit 4 by the order of the calculator 7. As the scanning method of scanning stage, there are two kinds (a), (b). The reflected light from each measuring position is received by a photoelectronic multiplier 3 through a filter and a sight iris and integrated by an integrator 5 for the sake of the enhancement of a S/N ratio while the integrated value is stored in the calculator 7 as a reflectivity signal along with position information through an interface.

Description

【発明の詳細な説明】 この発明は、主として高炉用コークスの原料炭の組織分
析を自動的に行なう方法に関するもので、その測定精度
の向上を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a method for automatically analyzing the structure of coking coal for blast furnace coke, and aims to improve the accuracy of the measurement.

高炉用コークスの原料炭の組織分析は、入荷炭の品質管
理のみならず成品コークスの品質管理において極めて重
要であり、特に日本においては原料炭事情により、原料
炭のコークス化性を的確に把握する必要がある。
Microstructural analysis of coking coal for blast furnace coke is extremely important not only for quality control of incoming coal but also for quality control of finished coke.Especially in Japan, due to the coking coal situation, it is necessary to accurately understand coking properties of coking coal. There is a need.

石炭の組織分析とは、石炭中の微細組織構成成分の含有
割合と石炭の主要成分であり、しかも均一な組織を持っ
てい名ビトリニットの反射率を顕微鏡によって定量する
ことであるが、人手で測定するかぎり、測定点の数に限
界があることと、測定者による個人誤差も大きいため、
最近では組織分析の自動化が進められている。
Textural analysis of coal involves quantifying the content of microstructural components in coal and the reflectance of vitrinite, which is the main component of coal and has a uniform structure, using a microscope, but it cannot be measured manually. However, since there is a limit to the number of measurement points and the individual error of the measurer is large,
Recently, automation of tissue analysis has been progressing.

この自動測定法は、基本的には計算機を導入して情報の
処理を行なう方法であり、多くは極めて多数点の反射率
を測定し、その反射率の分布曲線を数学的に統計処理す
る方法が用いられる。この方法以外には、相隣る2点間
若しくは上下左右の点の反射率の差からビトリニット組
織を判定し計数する方法が知られている。
This automatic measurement method basically uses a computer to process the information, and in most cases measures the reflectance at a very large number of points, and then mathematically and statistically processes the reflectance distribution curve. is used. Other than this method, a method is known in which the vitrinite structure is determined and counted based on the difference in reflectance between two adjacent points or between points above, below, left and right.

しかし、これら従来の自動測定方法では、前記したよう
に反射率分布が基本となっているため、石炭の研磨面よ
り下に沈んだ石炭からの反射光が、石炭粒子を埋め込み
成型した樹脂を通して測定されるノイズ(以下樹脂下ノ
イズという)は、その反射率分布がエクジニットと重な
るものである。
However, these conventional automatic measurement methods are based on the reflectance distribution as described above, so the reflected light from the coal that has sunk below the polished surface of the coal is measured through the molded resin in which the coal particles are embedded. The reflected noise (hereinafter referred to as under-resin noise) has a reflectance distribution that overlaps that of exginite.

第1図は石炭組織の反射率範囲の1例を示す図である。FIG. 1 is a diagram showing an example of the reflectance range of a coal structure.

横軸は反射率を示し、図中(1)はイナーチニット、(
SF)はセミフジニット、(■)はビトリニット、(E
)はエクジニット、(N)は樹脂下ノイズである。図で
明らかのように樹脂下ノイズ(N)はエクジニット(E
)と反射率分布は重なるものである。そのため樹脂下ノ
イズをエクジニットと誤認して計数する欠点があり測定
精度が不充分で満足できる分析値が得られていないのが
現状である。
The horizontal axis shows the reflectance, and in the figure (1) is Inertinit, (
SF) is semi-fujiknit, (■) is vitrinite, (E
) is exginite, and (N) is under-resin noise. As is clear from the figure, the noise under the resin (N) is
) and the reflectance distribution overlap. For this reason, there is a drawback that under-resin noise is misidentified as exginite and counted, and the measurement accuracy is insufficient, making it impossible to obtain satisfactory analytical values.

この発明は、以上のような状況に鑑みてなされたもので
、その要旨は、石炭試料の反射率を極めて多数点につい
て測定し、その情報を処理する方式の石炭組織自動分析
方法において、ビトリニットを判別してその反射率の平
均値を求め、予め作 。
This invention was made in view of the above-mentioned circumstances, and its gist is to use vitrinite in an automatic coal structure analysis method that measures the reflectance of a coal sample at a very large number of points and processes the information. The average value of the reflectance is determined and calculated in advance.

成しておいたビトリニットの反射率の平均値と樹脂下ノ
イズの最大反射率との関係を用いて決定した値以下の反
射率であって、かつ隣接2点間の反射率の差が一定範凹
内にある場合を樹脂下ノイズと判定して、測定データか
ら除外して石炭組織の分析を行なうことを特徴とするも
のである。
The reflectance is less than or equal to the value determined using the relationship between the average reflectance of Vitrinit and the maximum reflectance of noise under the resin, and the difference in reflectance between two adjacent points is within a certain range. A feature of this method is that if the noise is within the concave area, it is determined to be noise under the resin, and the coal structure is analyzed by excluding it from the measurement data.

以下この発明の詳細につい゛C説明する。The details of this invention will be explained below.

この発明者等は、数μ程度の微小距離のステップ走査が
可能な走査ステージを何する偏光反射顕微鏡を用いて樹
脂下ノイズの反射率のラインプロファイルの特性を詳細
に調査し1こ。ここで、反射率のラインプロファイルは
、樹脂に埋込成形研磨し1こ試料を走査ステージに載せ
、該走査ステージを等速度でXl!1111方向に移動
しつつ光電子j占倍管からの7u気信7(を記録計で記
録することによって得られるものである。第2図は樹脂
下ノイズのラインプロファイルの波形の1例を示す図で
ある。、該軸は走査孔1■であり、縦軸は反射率である
。このような調査の結果樹脂下ノイズは次のような特徴
を持つでいることが判明した。
The inventors investigated in detail the characteristics of the line profile of the reflectance of noise under the resin using a polarized reflection microscope equipped with a scanning stage capable of step scanning over minute distances of several microns. Here, the line profile of the reflectance is obtained by placing one sample, which is embedded in resin and polished, on a scanning stage, and moving the scanning stage at a constant speed of Xl! This is obtained by recording the 7u signal from the photoelectron j-multiplier with a recorder while moving in the 1111 direction. Figure 2 is a diagram showing an example of the waveform of the line profile of the noise under the resin. , the axis is the scanning hole 1, and the vertical axis is the reflectance.As a result of this investigation, it has been found that the under-resin noise has the following characteristics.

■第3図はこの発明における樹脂下ノイズ最大反射率と
ビトリニットの平均反射率との関係を示す図である。横
軸はビトリニットのSV均反射率R8であり、縦軸は樹
脂下ノイズの最大反射率Rtある。
(2) FIG. 3 is a diagram showing the relationship between the maximum reflectance of under-resin noise and the average reflectance of vitrinite in the present invention. The horizontal axis is the SV average reflectance R8 of Vitrinit, and the vertical axis is the maximum reflectance Rt of under-resin noise.

■また、隣接2点間の反射率の差は第1表に示す範囲内
にあることを見出し・た。
(2) We also found that the difference in reflectance between two adjacent points was within the range shown in Table 1.

第   1   表 この発明者等は、前記■、■の特性を利用し次のような
樹脂下ノイズ判定規準を見出した。すなわち、反射率が
前記RN以下で、かつ2点間の反射率の差が前記第1表
に示す範囲内にある場合を樹脂下ノイズと柿定する。こ
の判定規準を計算機に記憶させておくことにより、実際
に測定された反射率と該判定規準とが照合されて樹脂下
ノイズがどうかの判定が行なわれる。このように、この
発明では従来技術では不可能であった樹脂下ノイズの除
去が可能となるので測定精度を極めて高くすることがで
きるものである。
Table 1 The inventors have found the following criteria for determining under-resin noise by utilizing the characteristics of (1) and (2) above. That is, a case where the reflectance is below the RN and the difference in reflectance between two points is within the range shown in Table 1 above is determined to be under-resin noise. By storing this criterion in the computer, the actually measured reflectance is compared with the criterion to determine whether there is under-resin noise. In this way, the present invention makes it possible to remove under-resin noise, which was impossible with the prior art, and therefore makes it possible to extremely improve measurement accuracy.

この発明に係る佃光顕徴錠は、前−述のように、数ミク
ロン程度の微小距離のステップ走査が可能な走査ステー
ジ、および石炭からの反射光を測定するための測光装置
を備えており、その走査ステージは最小ス・チップ幅1
μ、走査速度loo 5teps/分、走査範囲は20
1MX20sr*の機能を有し、測光装置には高圧安定
化電源を付属した光電子増倍管を用いているが、このよ
うな機能をもつテレビカメラでもよい。
As mentioned above, the Tsukuda microscopic tablet according to the present invention is equipped with a scanning stage capable of step scanning over a minute distance of several microns, and a photometric device for measuring reflected light from coal. The scanning stage has a minimum chip width of 1
μ, scanning speed loo 5teps/min, scanning range 20
Although a photomultiplier tube with a 1MX20sr* function and a high-voltage stabilized power supply is used as the photometric device, a television camera having such a function may also be used.

また、計算機は、インターフェイス、記憶装置、および
入出力装置を備え、走査ステージの駆動側なうものであ
る。
The computer also includes an interface, a storage device, and an input/output device, and serves as the drive side of the scanning stage.

第4図はこの発明を実施するための装置構成を示すブロ
ック図である。mは偏光反射顕微鏡であり、走査ステー
ジ(2)および光電子増倍管(3)を備えている。(4
)はステージ移動制御回路、(5)は積分器、(6)ハ
ルΦ変換器、(7)は計算機を示し、(8)はラインプ
リンター、(9)はI10タイプライタ−である。
FIG. 4 is a block diagram showing the configuration of an apparatus for carrying out the present invention. m is a polarized reflection microscope equipped with a scanning stage (2) and a photomultiplier tube (3). (4
) is a stage movement control circuit, (5) is an integrator, (6) is a hull Φ converter, (7) is a calculator, (8) is a line printer, and (9) is an I10 typewriter.

すなわち、先ず走査ステージ(2)の上に試料(1o)
を載せ焦点を合わせる。次に、Ilo  タイプライタ
−(9)から計算機(7)へ測定条件をキー・インした
後測定を開始する。走査ステージ(2)は、計算機(7
)の指令により、ステージ制御回路(4)を介して、1
μ、2.5μ、あるいは5μのステップ幅でステップス
キャンを行なう。第5図は走査ステージの走査法を示す
図である。モードはa、b2種類あり、いずれの場合も
10mX 10t1m 〜20tx×20MMcD範囲
を走査する。
That is, first, the sample (1o) is placed on the scanning stage (2).
Place and focus. Next, measurement conditions are entered from the Ilo typewriter (9) into the computer (7) and then measurement is started. The scanning stage (2) includes a computer (7
1 through the stage control circuit (4).
A step scan is performed with a step width of μ, 2.5μ, or 5μ. FIG. 5 is a diagram showing a scanning method of the scanning stage. There are two modes, a and b, and in both cases, a range of 10 m x 10 t1 m to 20 tx x 20 MMcD is scanned.

各測定位置からの反射光は、546 nmのフィルター
、視野絞り(測定視野の直径1μあるいは2μ)を介し
て光電子増倍管(3)で受光され、S/N比を向上する
ため数m sec〜10m5ecの間積分器(5)で積
分された後、インターフェイスを介して計算機(7)に
位置の情報(、Tj、’;J=)とともに反射率信号A
I、5として蓄えられる。ここで、名は測定開始からt
番目の測定点を示す添字である。
The reflected light from each measurement position is received by a photomultiplier tube (3) via a 546 nm filter and a field diaphragm (measuring field of view diameter 1μ or 2μ), and is transmitted over several msec to improve the S/N ratio. After being integrated by the integrator (5) for ~10m5ec, the reflectance signal A is sent to the computer (7) via the interface along with the position information (,Tj,'; J=).
It is stored as I,5. Here, the name is t from the start of measurement.
This is a subscript indicating the th measurement point.

次に、測定されたAaをあらかじめ反射率標準試料で測
定作成した反射信号と反射率R0の検量線からR,に変
換し、Xλ*k p Roi、を記憶させる。この測定
記憶されたχj、、’3jJ* Rapが、あらかじめ
計算機に記憶されている前記樹脂下ノイズ判定規準と照
合されて樹脂下ノイズを除去した後、組織の判別定量が
行なわれるものである。
Next, the measured Aa is converted into R from a reflection signal prepared by measuring a reflectance standard sample in advance and a calibration curve of reflectance R0, and Xλ*k p Roi is stored. The measured and stored χj, , '3jJ* Rap is compared with the under-resin noise determination criteria stored in the computer in advance to remove under-resin noise, and then tissue discrimination and quantification is performed.

第2表は、第4図1こ例示したこの発明法を実施する装
置を使用して、同一場所の目視判定と、この発明法によ
る自動判定を同時に行なった場合の樹脂下ノイズ判定量
と、目視判定量に対する自動判定量の割合、すなわち、
樹脂下ノイズ除去率を示す。
Table 2 shows the amount of under-resin noise determination when visual determination of the same location and automatic determination using this invention method are simultaneously performed using the apparatus implementing this invention method illustrated in FIG. The ratio of the automatic judgment amount to the visual judgment amount, that is,
It shows the noise removal rate under the resin.

第   2   表 第2表より明らかなように、この発明方法では極めて正
確に樹脂下ノイズの判定除去が可能であることを示すも
のである。
Table 2 As is clear from Table 2, the method of the present invention shows that it is possible to very accurately determine and remove under-resin noise.

第3表は、この発明方法によって組織分析を実施した結
果と、手分析による結果を併わせで示したものである。
Table 3 shows both the results of tissue analysis performed using the method of this invention and the results of manual analysis.

第   3   表 但し、  E : エクジニット ■ : ビトリニット SF:  セミフジニット I : イナーチニット Rの:  ビトリニットの平均反射率 第3表より明らかなごとく、この発明法による組織分析
値と手分析法による組織分析値は極めて良好な一致を示
した。
Table 3: However, E: Exginite ■: Vitrinit SF: Semi-Fujinite I: Inertinite R: Average reflectance of Vitrinit As is clear from Table 3, the tissue analysis values obtained by this invention method and those obtained by manual analysis are extremely different. Good agreement was shown.

以上説明し1こように、この発明法によれば、非掌に信
頼性の高い測定結果を得ることができる上、組織分析の
迅速化と一般化(どんな炭種にも、また熟練者でなくて
も゛実施可能)が達せられ、石炭組織分析の実用化を拡
大することができ、入荷炭の品質管理、新規購入炭の品
位決定、配合決定、および成品コークスの品質予測に多
大な効果を有するものである。
As explained above, the method of this invention not only allows highly reliable measurement results to be obtained without using the palm of the hand, but also speeds up and generalizes tissue analysis (can be applied to any type of coal or by an experienced person). It is possible to expand the practical application of coal structure analysis, and it has a great effect on quality control of incoming coal, determining the grade and blend of newly purchased coal, and predicting the quality of finished coke. It has the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭組織別の反射率の範囲の1例を示す図、第
2図は樹脂下ノイズのラインプロファルの波形の1例を
示す図、第3図はこの発明における樹脂下ノイズの最大
反射率とビトリニットの平均反射率を示す図、第4図は
この発明を実施するための装置構成を示すブロック図、
第5図は走査ステージの走査法を示す図である。 図中、1・・・偏光顕微鏡、2・・・走査ステージ、3
・・・光電子増倍管、4・・・ステージ移動制御回路、
5・・・積分器、6・・A/D変換器:、7・・・計算
機、8・・・ラインプ′リンター、9・・・I10タイ
プライタ−110・・・試料。 出願人  住友金属工業株式会社 第1図 第2図 272− 第3図 +r: + 叫 2(
Fig. 1 is a diagram showing an example of the reflectance range for each coal structure, Fig. 2 is a diagram showing an example of the waveform of the line profile of noise under the resin, and Fig. 3 is a diagram showing an example of the waveform of the line profile of noise under the resin in this invention. A diagram showing the maximum reflectance and the average reflectance of vitrinite, FIG. 4 is a block diagram showing the configuration of an apparatus for carrying out this invention,
FIG. 5 is a diagram showing a scanning method of the scanning stage. In the figure, 1... polarizing microscope, 2... scanning stage, 3
...Photomultiplier tube, 4...Stage movement control circuit,
5... Integrator, 6... A/D converter:, 7... Computer, 8... Line printer, 9... I10 typewriter-110... Sample. Applicant: Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 272- Figure 3 +r: + Scream 2 (

Claims (1)

【特許請求の範囲】[Claims] 石炭試料の反射率を極めて多数点について測定して解析
処理する方式の石炭組織自動分析法において、ビトリニ
ット組織の平均反射率を測定し、該反射率と樹脂下ノイ
ズの最大反射率との関係を用いて決定した値以下の反射
率であって、かつ隣接する2点間の反射率の差が一定範
囲内にある場合を樹脂下ノイズと判定し、測定データか
ら除外して自動的に分析を行なうことを特徴とする石炭
組織の自動分析方法。
In the automatic coal structure analysis method, which measures and analyzes the reflectance of a coal sample at a very large number of points, the average reflectance of the vitrinite structure is measured, and the relationship between this reflectance and the maximum reflectance of noise under the resin is determined. If the reflectance is less than the value determined using the method, and the difference in reflectance between two adjacent points is within a certain range, it is determined to be under-resin noise, excluded from the measurement data, and automatically analyzed. An automatic analysis method for coal structure, characterized by:
JP57185685A 1982-10-20 1982-10-20 Automatic analysis of coal structure Granted JPS5973754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185685A JPS5973754A (en) 1982-10-20 1982-10-20 Automatic analysis of coal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185685A JPS5973754A (en) 1982-10-20 1982-10-20 Automatic analysis of coal structure

Publications (2)

Publication Number Publication Date
JPS5973754A true JPS5973754A (en) 1984-04-26
JPH0445771B2 JPH0445771B2 (en) 1992-07-27

Family

ID=16175069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185685A Granted JPS5973754A (en) 1982-10-20 1982-10-20 Automatic analysis of coal structure

Country Status (1)

Country Link
JP (1) JPS5973754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342548A (en) * 1989-07-11 1991-02-22 Sekiyu Shigen Kaihatsu Kk Automatic measuring instrument for vitrinite reflectivity
JP2016065821A (en) * 2014-09-25 2016-04-28 関西熱化学株式会社 Method for analyzing coal, apparatus for analyzing coal and computer program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822940A (en) * 1981-08-03 1983-02-10 Mitsubishi Chem Ind Ltd Method and apparatus for analyzing structure of coal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822940A (en) * 1981-08-03 1983-02-10 Mitsubishi Chem Ind Ltd Method and apparatus for analyzing structure of coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342548A (en) * 1989-07-11 1991-02-22 Sekiyu Shigen Kaihatsu Kk Automatic measuring instrument for vitrinite reflectivity
JP2016065821A (en) * 2014-09-25 2016-04-28 関西熱化学株式会社 Method for analyzing coal, apparatus for analyzing coal and computer program

Also Published As

Publication number Publication date
JPH0445771B2 (en) 1992-07-27

Similar Documents

Publication Publication Date Title
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
EP3267177A1 (en) Method for automated surface evaluation
JPS6411890B2 (en)
JPH0644278B2 (en) Method and apparatus for automatic quantitative measurement of tissue by image analysis
US6795201B2 (en) Method of objectively evaluating a surface mark
Sugimoto et al. Development of an automatic Vickers hardness testing system using image processing technology
US8189876B2 (en) Sediment assessment
JPH06294749A (en) Flaw inspection method for plat glass
JPS5973754A (en) Automatic analysis of coal structure
JPH09329597A (en) Urine sediment inspection system
EP0438508A1 (en) Variable parameter optical bottle checker.
US7679737B2 (en) Method, system and apparatus of inspection
JPS6230583B2 (en)
US5331397A (en) Inner lead bonding inspecting method and inspection apparatus therefor
JPH08220003A (en) Method and apparatus for inspecting surface defect
US6674888B1 (en) Tuning method for a processing machine
KR100507747B1 (en) Light Control Function Unit By Coating Surface Condition For The Adhesion & Powdering Test System
JP2924718B2 (en) Inspection equipment for non-metallic inclusions
JPS59137846A (en) Automatic analysis of coal structure
JPH0618439A (en) Inspection unit
JPH0776751B2 (en) Surface defect detection method for metallic products
JPH03150859A (en) Semiconductor wafer tester
KR19980014694A (en) CD pick-up lens tilt inspection device and method thereof
JPH04319778A (en) Micro porosity detecting and deciding method for oxygen-free copper
CN111489343A (en) Method for detecting jade color in raw stone