JPS5973526A - Fractional purification of protein existing in mammalian brain - Google Patents
Fractional purification of protein existing in mammalian brainInfo
- Publication number
- JPS5973526A JPS5973526A JP57183890A JP18389082A JPS5973526A JP S5973526 A JPS5973526 A JP S5973526A JP 57183890 A JP57183890 A JP 57183890A JP 18389082 A JP18389082 A JP 18389082A JP S5973526 A JPS5973526 A JP S5973526A
- Authority
- JP
- Japan
- Prior art keywords
- protein
- enolase
- water
- insoluble carrier
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は哺乳動物の脳に含まれる蛋白質の分別精製法に
関するものであり、その目的とするところはそれぞれの
蛋白質を相互に分離しそれらの各々を高純度に得るとこ
ろにある。[Detailed Description of the Invention] The present invention relates to a method for fractionating and purifying proteins contained in the brain of mammals, and its purpose is to separate each protein from each other and obtain each of them with high purity. It is in.
哺乳動物の脳には神経組織特異性蛋白質、生理活性ペプ
チドなどが、豊富に存在することが知られている。従っ
て哺乳動物の脳はこれら蛋白質あるいはペプチドの分離
精製用の材料として極めて有用である。これら脳の成分
の中には、その生理活性より医薬品への応用が考えられ
るもの、あるいは研究用の材料として重要なものが多い
。脳成分の例としてはエノラーゼ、カルモデユリン、S
−100蛋白、ダリア繊維性蛋白などがある。エノラー
ゼは2−ホスホグリセリン酸#ホスホエノールピルビン
酸の反応を触媒する解糖系の酵素である。エノラーゼ分
子は二量体構造をもち、分子量約50.000の2種の
サブユニットよりなり、サブユニットの組合せによりα
α、αγ、Tγ型が脳に存在する。これらエノラーゼは
癌、特に未分化蔑の患者血清中あるいは組織において増
加することが分かっている。カルモデユリンは動植物界
に広く分布しカルシウム依存性にさまざまな酵素、例え
ばCyclic nucleotide phosph
odiesterase。It is known that the mammalian brain is rich in neural tissue-specific proteins, physiologically active peptides, and the like. Therefore, mammalian brain is extremely useful as a material for separating and purifying these proteins or peptides. Many of these brain components have potential applications in medicine due to their physiological activity, or are important as research materials. Examples of brain components include enolase, calmodyulin, and S.
-100 protein, dahlia fiber protein, etc. Enolase is a glycolytic enzyme that catalyzes the reaction of 2-phosphoglycerate and phosphoenolpyruvate. The enolase molecule has a dimeric structure and consists of two types of subunits with a molecular weight of approximately 50,000, and depending on the combination of subunits, α
α, αγ, and Tγ types exist in the brain. These enolases are known to be increased in the serum or tissues of patients with cancer, particularly undifferentiated cancer. Calmodeulin is widely distributed in the animal and plant kingdoms and is involved in various calcium-dependent enzymes, such as cyclic nucleotide phosph.
odiesterase.
Adenylate cyclase、Myostn
light chain kinase+Phosph
orylase b kinase、 Glycoge
n 5ynthBsekinase、 (Ca” −
Mg”) 八TPase、 NAD”Kinase
などをカルシウム依存性に活性化する分子量約17,0
00のカルシウム受容蛋白質であり、これらの酵素活性
化などを通して幅広く生体内調節機構に関係している。Adenylate cyclase, Myostn
light chain kinase+Phosph
orylase b kinase, Glycoge
n 5ynthBsekinase, (Ca” −
Mg”) 8TPase, NAD”Kinase
The molecular weight is approximately 17.0, which activates calcium-dependent substances such as
It is a calcium receptor protein of 00, and is involved in a wide range of in vivo regulatory mechanisms through the activation of these enzymes.
動物においては大脳、畢丸に高濃度で存在することが知
られている。S’−100蛋白質も神経組織特異性蛋白
質の1つであり脳に高濃度で存在する。分子量は約20
.000であり2種のサブユニットの二量体よりなる2
種の異性体(αβ、ββ)が存在する。本蛋白質の生理
活性は現在不明であるが、神経芽細胞腫などの疾患によ
り脳を髄液での本蛋白質の増加が報告されている。ダリ
ア繊維性蛋白は神経組織特にダリア細胞に存在し、神経
組織化学分野において多くの研究がなされている。In animals, it is known to be present in high concentrations in the cerebrum and endomaru. S'-100 protein is also one of the neural tissue-specific proteins and is present in high concentration in the brain. Molecular weight is approximately 20
.. 000 and consists of a dimer of two types of subunits 2
Isomers of the species (αβ, ββ) exist. Although the physiological activity of this protein is currently unknown, it has been reported that the protein increases in the cerebrospinal fluid of the brain due to diseases such as neuroblastoma. Dahlia fibrillary protein is present in nervous tissues, particularly Dahlia cells, and has been extensively studied in the field of neurohistochemistry.
従来これら脳内蛋白を精製するに当たっては個々の蛋白
に特有の精製法が報告されている。即ちエノラーゼに関
しては、K、Kato et al、 J、Bioch
−emistry、117巻、 1587〜1594ペ
ージ、 1980年、カルモデユリンに関しては、Te
o、T、S、Jang、T、t(、+ J。Conventionally, purification methods specific to individual proteins have been reported for purifying these brain proteins. For enolase, K. Kato et al. J. Bioch.
-emistry, vol. 117, pages 1587-1594, 1980, regarding carmodeulin, Te
o,T,S,Jang,T,t(,+J.
Biological Chemistry+ 248
巻、588ページ。Biological Chemistry+ 248
Volume, 588 pages.
1973年、S−100蛋白に関しては、T、l5ob
e et at。In 1973, regarding the S-100 protein, T, l5ob
e et at.
Biochimica et Biophysica
Acta+ 494巻、222〜232ページ、 19
77年などがある。しかし同時にこれらの蛋白質を哺乳
動物の脳より分離する精製法の報告はない。呻乳動物の
脳は資源として有限であり、これを有効に利用するには
脳から同時にできるだけ多くの成分を分離精製すること
が望まれる。Biochimica et Biophysica
Acta+ Volume 494, Pages 222-232, 19
1977, etc. However, there are no reports on purification methods for separating these proteins from mammalian brains. The brain of a mammal is a limited resource, and in order to make effective use of this resource, it is desirable to separate and purify as many components from the brain as possible at the same time.
本発明者らは以上の現状を考慮し鋭意検討した結果、哺
乳動物の脳の成分であるこれら蛋白質及びペプチドを含
有する液をCH3(CH2)n−水不溶性担体(但しn
=3〜7)またはNH2−(CH2)II+−水不溶性
担体(但しm−4〜8)に接触せしめ、該蛋白質及びペ
プチドを該担体に吸着または素通りせしめた後、吸着せ
しめたものについては該担体より溶出し、これらの蛋白
質あるいはペプチドを相互に分離し、これらを同時に精
製する精製法を見い出したものである。The present inventors have conducted intensive studies in consideration of the above-mentioned current situation, and have found that a solution containing these proteins and peptides, which are components of the mammalian brain, is transferred to a CH3(CH2)n-water-insoluble carrier (however, n
= 3 to 7) or NH2-(CH2)II+- to a water-insoluble carrier (m-4 to 8), and the protein and peptide are adsorbed or passed through the carrier, and then the adsorbed proteins and peptides are adsorbed. We have discovered a purification method in which these proteins or peptides are eluted from a carrier, separated from each other, and purified simultaneously.
本発明に用いられる吸着担体は、一般式CH3−(CH
2)n−NH2(但しn−3〜7)で表されるアルキル
アミンまたは一般式NH2−(CH2)m−NH2(但
しm=4〜B)で表されるα、ω−ジアミノアルカイを
水不溶性担体に結合させることによって得られる。そし
て更にここに用いるアルキルアミンまたはα、ω−ジア
ミノアルカンを具体的に例示すればブチルアミン、ペン
チルアミン、ヘキシルアミン、ヘプチルアミン、オクチ
ルアミン、1.4−ジアミノブタン、1,5−ジアミノ
ペンクン、1.6−ジアミツヘキサン、1,7−ジアミ
ノへブタン、1.8−ジアミノオクタンなどがあげられ
る。また水不溶性担体としては不活性で疎であり、不溶
性であり、しかも親水性であるような不溶性担体が好ま
しく、例えばアガロース(登録商標セファロース:ファ
インケミカル社製)、デキストラン(登録商標セファデ
ソクス:ファルマシア・ファインケミカル社製)、セル
ロースパウダー、ポリアクリルアマイドゲル(登録商標
バイオゲル:バイオラド社製)などが用いられる。結合
反応はまず水不溶性担体をブロムシアン、過沃素酸ナト
リウム、エピクロルヒドリンなどで活性化し、これにア
ルキルアミンまたはα、ω−ジアミノアルカンを添加し
た緩衝液を添加することによって達成される。The adsorption carrier used in the present invention has the general formula CH3-(CH
2) Alkylamine represented by n-NH2 (however, n-3 to 7) or α,ω-diaminoalkay represented by the general formula NH2-(CH2)m-NH2 (however, m=4 to B) is dissolved in water. Obtained by binding to an insoluble carrier. Further, specific examples of the alkylamine or α,ω-diaminoalkane used herein include butylamine, pentylamine, hexylamine, heptylamine, octylamine, 1,4-diaminobutane, 1,5-diaminopenkune, Examples include 1,6-diamithexane, 1,7-diaminohebutane, and 1,8-diaminooctane. The water-insoluble carrier is preferably an inert, sparse, insoluble, and hydrophilic insoluble carrier, such as agarose (registered trademark Sepharose, manufactured by Fine Chemical Co., Ltd.), dextran (registered trademark Sephadesox, manufactured by Pharmacia Fine Chemical Co., Ltd.), (manufactured by Bio-Rad), cellulose powder, polyacrylamide gel (registered trademark Biogel: manufactured by Bio-Rad), etc. are used. The binding reaction is accomplished by first activating a water-insoluble carrier with bromic cyanide, sodium periodate, epichlorohydrin, etc., and adding thereto a buffer containing an alkylamine or an α,ω-diaminoalkane.
本発明に供される材料としては哺乳動物の脳抽出液、ま
たは抽出液をある程度精製したもの、例えば塩析、溶媒
分画などの処理を行ったものでもよい。これら材料をC
H3−(CH2)n−水不溶性担体(但しn = 3〜
7 )または NH2−(CH2)lI+−水不溶
性担体く但しm = 4〜B )に接触させる際のpi
としては各成分が安定であるpH4〜】0の範囲内で選
択し得るが、特にエノラーゼなどの酵素類を収率良く分
離するにはpH6〜9が好ましい。また該水不溶性担体
に吸着された成分の溶出法としては食塩などの塩類、ア
ルコールなどの疎水性の溶媒、界面活性剤、アミン類(
アミノ酸を含む)などが単独もしくは組み合わせて用い
られる。The material used in the present invention may be a mammalian brain extract or an extract that has been purified to some extent, such as one that has been subjected to treatments such as salting out and solvent fractionation. These materials are C
H3-(CH2)n-water-insoluble carrier (however, n = 3~
7) or NH2-(CH2)lI+-water-insoluble carrier, provided that m = 4 to B)
The pH can be selected within the range of 4 to 0, at which each component is stable, but pH 6 to 9 is particularly preferable to separate enzymes such as enolase with good yield. In addition, the components adsorbed on the water-insoluble carrier can be eluted using salts such as common salt, hydrophobic solvents such as alcohol, surfactants, amines (
(including amino acids) can be used alone or in combination.
ここで得られる各成分の精製標品はかなり精製されてい
るが、更に高純度の標品を必要とする場合には、本発明
において使用される吸着担体を組み合わせて用いるか、
または通常の精製手段を応用することができる。通常の
精製手段にはイオン交換クロマトグラフィ、水素結合ク
ロマトグラフィ、ゲル濾過、アフィニティクロマトグラ
フィ、塩析、有機溶媒による分画、吸着クロマトグラフ
ィ、等電点分画、電気泳動などが含まれる。The purified specimens of each component obtained here are highly purified, but if a more highly purified specimen is required, it may be used in combination with the adsorption carrier used in the present invention, or
Alternatively, conventional purification means can be applied. Common purification means include ion exchange chromatography, hydrogen bond chromatography, gel filtration, affinity chromatography, salting out, fractionation with organic solvents, adsorption chromatography, isoelectric focusing, electrophoresis, and the like.
以上のように本発明によれば哺乳動物の脳の各蛋白質成
分を同時にしかも高収率で分離w4製できる。次に本発
明の試験例及び実施例を示す。As described above, according to the present invention, each protein component of the mammalian brain can be separated and produced at a high yield. Next, test examples and examples of the present invention will be shown.
試験例1
牛大1156100gを洗浄後50mMリン酸緩衝液(
pH6,0)400meを加えミキサーにて大脳を破砕
し、大脳破砕物懸濁液を濾過し濾液420 ml!を得
た。濾液5h+fをそれぞれ同級ih液で平衡化した水
不溶性吸着担体を充填したカラム(5−)に流した。次
にカラムを同緩衝液50−で洗浄後、0.1M及び0.
5M塩化ナトリウム(NaC1)を含む同緩衝液を各々
5〇−カラムに流した。使用した水不溶性吸着担体の種
類、それぞれの吸着担体を使用した場合の未吸着画分、
0.1M塩化ナトリウム溶出画分及び0.5M塩化ナト
リウム溶出画分でのエノラーゼ、カルモデユリン、S
−100蛋白、ダリア繊維性蛋白の濾液からの収率を表
−1、表−2、表−3、表−4にそれぞれ示した。なお
0.5M塩化ナトリウムを用いたにもかかわらず、これ
ら蛋白及びペプチドが溶出されない場合はIM)リス−
塩酸緩衝液(p)17.0 )かあるいは1M塩化ナト
リウムを含む40%プロパツール溶液を用いることによ
り溶出することができた。 それぞれの蛋白及びペプチ
ドの検定は特異抗体を用いたエンザイムイムノアソセイ
により行った。但しエノラーゼのみは2−ホスホグリセ
リン酸を基質として酵素活性を測定した。Test Example 1 After washing 1156100 g of beef size, 50 mM phosphate buffer (
Add 400me (pH 6,0), crush the cerebrum in a mixer, filter the suspension of the crushed cerebrum, and make 420 ml of filtrate! I got it. The filtrates 5h+f were each passed through a column (5-) filled with a water-insoluble adsorption carrier equilibrated with the same grade IH liquid. Next, after washing the column with the same buffer solution 50-, 0.1M and 0.
The same buffer solution containing 5M sodium chloride (NaCl) was applied to each 50-column. Type of water-insoluble adsorption carrier used, unadsorbed fraction when using each adsorption carrier,
Enolase, Calmodeulin, S in 0.1M sodium chloride elution fraction and 0.5M sodium chloride elution fraction
The yields of -100 protein and Dahlia fibrous protein from the filtrate are shown in Table 1, Table 2, Table 3, and Table 4, respectively. If these proteins and peptides are not eluted even though 0.5M sodium chloride is used, IM)
Elution was possible using a hydrochloric acid buffer (p) 17.0) or a 40% propatool solution containing 1M sodium chloride. Assays for each protein and peptide were performed by enzyme immunoassay using specific antibodies. However, the enzymatic activity of only enolase was measured using 2-phosphoglyceric acid as a substrate.
表−1エノラーゼ
表−23−100蛋白
表−3カルモデユリン
表−4ダリア繊維性蛋白
実施例1
牛大脳300gを洗浄後50mMリン酸緩衝液(pH6
,0)1200−を加えミキサーにて大脳を破砕し、得
られた大脳破砕物懸濁液を濾過し濾液1300−を得た
。Table-1 Enolase Table-23-100 Protein Table-3 Calmodulin Table-4 Dahlia Fibrous Protein Example 1 After washing 300 g of bovine brain, 50 mM phosphate buffer (pH 6)
.
得られた濾液を同緩衝液で平衡化したブチル−セファロ
ースのカラム(5(7’)に流し、牛大脳中に含まれる
各種蛋白質を該カラムに吸着または素通りせしめ、次い
でカラムに吸着した各種蛋白質を塩化ナトリウムの濃度
勾配にて分別熔出した。即ちカラムを同緩衝液1000
−で洗浄後、同緩衝液を用いた塩化ナトリウム(NaC
1)の終濃度0.4Mまでの濃度勾配により溶出し、α
γ型エノラーゼ、γT型エノラーゼ、S −100蛋白
、カルモデユリン、及びダリア繊維性蛋白を明確に分画
することができた。尚、αα型エノラーゼは未吸着分と
して溶出した。エノラーゼのαγ型、γγ型、及びαα
型の識別はαサブユニットとγサブユニットに対する抗
体を用いて調べた。・
溶出パターンを図−1に示した。The obtained filtrate is passed through a butyl-Sepharose column (5 (7')) equilibrated with the same buffer solution, and various proteins contained in the bovine cerebrum are adsorbed onto or passed through the column, and then the various proteins adsorbed on the column are was fractionated and dissolved using a concentration gradient of sodium chloride.
- After washing with sodium chloride (NaC) using the same buffer,
Elute with a concentration gradient of 1) to a final concentration of 0.4M,
γ-type enolase, γT-type enolase, S-100 protein, calmodyulin, and dahlia fibrous protein could be clearly fractionated. Note that αα-type enolase was eluted as an unadsorbed amount. αγ type, γγ type, and αα of enolase
Type discrimination was investigated using antibodies against α and γ subunits.・The elution pattern is shown in Figure 1.
実施例2
牛大脳300gを洗浄後50mMリン酸緩衝液(pl+
6.0 >1200mJ’を加えミキサーにて大脳を破
砕し、得られた大脳破砕物懸濁液を濾過し濾液1380
−を得た。Example 2 After washing 300 g of bovine brain, 50 mM phosphate buffer (pl+
6.0 >1200 mJ' was added to crush the cerebrum in a mixer, and the resulting suspension of crushed cerebrum was filtered to obtain a filtrate of 1380 mJ'.
I got -.
得られた濾液を同緩衝液で平衡化したブチル−セファロ
ースのカラム(50+ne)に流し、牛大脳中に含まれ
る各種蛋白質を該カラムに吸着または素通りせしめ、次
いでカラムに吸着した各種蛋白質を分別溶出した。即ち
カラムを同緩衝液1000−で洗浄後、loomM、
140mM、 210mM、 400mM塩化ナトリウ
ムを含む同緩衝液200m1’でそれぞれ溶出した。未
吸着画分及びそれぞれの塩化ナトリウム濃°度熔出液で
のエノラーゼ、S −100蛋白、カルモデユリン、ダ
リア繊維性蛋白の濾液からの収率を表−5に示した。尚
エノラーゼについては、αα型が未吸着画分に、αγ型
が100mM NaCl溶出画分に、γγ型は210m
M NaC1画分に溶出されていた。The obtained filtrate is passed through a butyl-Sepharose column (50+ne) equilibrated with the same buffer, and the various proteins contained in the bovine cerebrum are adsorbed onto or passed through the column, and then the various proteins adsorbed on the column are fractionated and eluted. did. That is, after washing the column with the same buffer solution 1000-
Elution was performed with 200 ml of the same buffer solution containing 140 mM, 210 mM, and 400 mM sodium chloride, respectively. Table 5 shows the yields of enolase, S-100 protein, calmodyulin, and dahlia fibrous protein from the filtrate in the unadsorbed fraction and each sodium chloride concentration eluate. Regarding enolase, the αα type was added to the unadsorbed fraction, the αγ type was added to the 100mM NaCl elution fraction, and the γγ type was added to the 210mM NaCl elution fraction.
M was eluted in the NaCl fraction.
また溶離された蛋白質については、各両分の蛋白収率(
A 2fOy1m )より明らかなように10〜40倍
精製されており、各成分が相互に分離されると同時に効
果的に精製されていることが分かる。Regarding the eluted protein, the protein yield (
As is clear from A 2fOy1m ), it is purified 10 to 40 times, and it can be seen that each component is separated from each other and simultaneously purified effectively.
1
表−5
似下余白)
2
実施例3
牛大脳300gを洗浄後50mMリン酸緩衝液(pl+
6.0)1200ml’を加えミキサーにて大脳を破砕
し、得られた大脳破砕物懸濁液を濾過し濾液1300m
Fを得た。1 Table-5 Lower margin) 2 Example 3 After washing 300 g of bovine brain, 50 mM phosphate buffer (pl+
6.0) Add 1200 ml' and crush the cerebrum with a mixer, filter the resulting suspension of crushed cerebrum, and make a filtrate of 1300 ml.
I got an F.
得られた濾液を同緩衝液で平衡化したヘキシルセファロ
ースのカラム(50mlりに流した。カラムを同緩ih
液10100O’で洗浄後、塩化ナトリウム(NaCI
)の終濃度0.5 Mまでの濃度勾配により溶出し、α
γ型エノラーゼ、γT型エノラーゼ、S −100蛋白
、カルモデユリン、及びダリア繊維性蛋白を明確に分画
することができた。尚、αα型エノラーゼは未吸着画分
として溶出した。溶出パターンを図−2に示した。The obtained filtrate was applied to a hexyl sepharose column (50 ml) equilibrated with the same buffer.
After washing with 10100O' solution, sodium chloride (NaCI
) to a final concentration of 0.5 M, and α
γ-type enolase, γT-type enolase, S-100 protein, calmodyulin, and dahlia fibrous protein could be clearly fractionated. Note that αα-type enolase was eluted as an unadsorbed fraction. The elution pattern is shown in Figure 2.
実施例4
実施例2で得られた100mM NaCl溶出画分を硫
安分画し得られた沈澱を溶解した。この溶液を1.8M
硫安溶液(pH7)で平衡化したトヨパールHW−55
のカラム(15mf)に流し、1.8Mから1.0 M
の硫安の濃度勾配で溶出し、αγ型エノラーゼの活性フ
ラクションを集めた。この両分を20mMリン3
酸緩衝液(pH7)で透析後、同緩衝液で平衡化したア
ミノへキシルセファロースのカラム(15ml’)に流
した。カラムを20mMリン酸緩衝液で洗浄後、OmM
から350mMのNaC1の濃度勾配で溶出し活性フラ
クションを集めた。この両分をセファロース6Bのカラ
ムに流してゲル濾過を行い、ディスク電気泳動において
単一なαγ型エノラーゼ約10■を得た。Example 4 The 100mM NaCl elution fraction obtained in Example 2 was fractionated with ammonium sulfate, and the resulting precipitate was dissolved. This solution is 1.8M
Toyopearl HW-55 equilibrated with ammonium sulfate solution (pH 7)
column (15mf), from 1.8M to 1.0M
The active fraction of αγ-type enolase was collected by elution with a concentration gradient of ammonium sulfate. Both fractions were dialyzed against 20 mM phosphate buffer (pH 7) and then applied to an aminohexyl Sepharose column (15 ml') equilibrated with the same buffer. After washing the column with 20mM phosphate buffer, OmM
The active fraction was collected by elution with a concentration gradient of 350 mM NaCl. Both fractions were passed through a Sepharose 6B column for gel filtration, and about 10 μm of a single αγ-type enolase was obtained by disk electrophoresis.
実施例5
実施例2で得られた140mM NaCl溶出画分に硫
安を0.35飽和濃度になるように添加し、生じた不純
蛋白を遠心分離により除去した。得られた遠心分離上澄
を20mMリン酸緩衝液を用いて透析した。Example 5 Ammonium sulfate was added to the 140 mM NaCl elution fraction obtained in Example 2 to a saturation concentration of 0.35, and the resulting impure protein was removed by centrifugation. The obtained centrifugation supernatant was dialyzed using 20mM phosphate buffer.
1.6−ジアミツヘキサンをセファロースに結合させる
ことにより調整したアミノヘキシル−セファロースを充
填したカラム(5−)を同緩衝液を用いて平衡化した。A column (5-) packed with aminohexyl-Sepharose prepared by binding 1,6-diamithexane to Sepharose was equilibrated using the same buffer.
透析後のS −100画分を平衡化したアミノヘキシル
−セファロースのカラムに流し、同緩衝液100m1!
でカラムを洗浄後塩化ナトリウム(NaC1)の終濃度
0.4 Mまでの濃度勾配により力4
ラムに吸着したs −too蛋白を溶出した。得られた
S−100蛋白画分を濃縮後、0.5M塩化ナトリウム
を含む同緩衝液で平衡化したセファデックスG−75(
ファルマシア・ファインケミカル社製)を用いてゲル濾
過を行い電気泳動的に単一な高純度のS −100蛋白
13.0■を得ることができた。The S-100 fraction after dialysis was applied to an equilibrated aminohexyl-Sepharose column, and 100ml of the same buffer was added.
After washing the column with NaCl, the s-too protein adsorbed on the column was eluted using a sodium chloride (NaCl) concentration gradient up to a final concentration of 0.4 M. After concentrating the obtained S-100 protein fraction, Sephadex G-75 (
Gel filtration was performed using a gel filtrate (manufactured by Pharmacia Fine Chemicals) to obtain 13.0 μl of electrophoretically single, highly pure S-100 protein.
実施例6
実施例2で得られた210+nM NaC1溶出画分を
硫安分画し、得られた沈殿を1.5 M硫安溶液(pH
7>で熔解した。この溶液を1.5 M硫安溶液(pH
7)で平衡化したトヨパールHW −55のカラム(1
5me)に流し、1.5Mから1.0Mの硫安の濃度勾
配で熔出しrr型エノラーゼの活性フラクションを集め
た。この両分を20mMリン酸緩衝液(pH6)で透析
後、同緩衝液で平衡化したアミノヘキシル−セファロー
スのカラム(15+nl’)に流した。カラムを200
mM NaClを含む2On+Mリン酸緩衝液で洗浄後
、200mMから350mMのNaClの濃度勾配で溶
出し、活性フラクションを集めた。この両分をセファロ
ース6Bのカラムに流してゲル濾過を行い、ディスク5
電気泳動において単一なrr型エノラーゼ約15■を得
た。得られたγγ型エノラーゼの活性は31U/■であ
った。Example 6 The 210+nM NaCl elution fraction obtained in Example 2 was subjected to ammonium sulfate fractionation, and the resulting precipitate was added to a 1.5 M ammonium sulfate solution (pH
7> was melted. This solution was diluted with 1.5 M ammonium sulfate solution (pH
Toyopearl HW-55 column (1) equilibrated with
5me), and the active fraction of rr-type enolase was collected using a concentration gradient of 1.5M to 1.0M ammonium sulfate. Both fractions were dialyzed against 20 mM phosphate buffer (pH 6) and then applied to an aminohexyl-Sepharose column (15+nl') equilibrated with the same buffer. 200 columns
After washing with 2On+M phosphate buffer containing mM NaCl, it was eluted with a concentration gradient of 200mM to 350mM NaCl, and active fractions were collected. Both fractions were passed through a Sepharose 6B column and subjected to gel filtration, and approximately 15 μm of single rr-type enolase was obtained by disk 5 electrophoresis. The activity of the obtained γγ enolase was 31 U/■.
実施例7
実施例2で得られた400mM NaC1溶出画分を2
0mMリン酸緩衝液を用いて透析した。アミノヘキシル
−セファロースを充填したカラム(5−)を同緩衝液を
用いて平衡化した。透析後のカルモデユリン画分を平衡
化したアミノヘキシル−セファロースのカラムに流し、
同緩衝液100mfでカラムを洗浄後、同緩衝液を用い
た塩化ナトリウム(NaC1)の終濃度0.4 Mまで
の濃度勾配によりカラムに吸着したカルモデユリンを溶
出した。得られたカルモデユリン画分を濃縮後0.5M
塩化ナトリウムを含む同緩衝液で平衡化したセファデッ
クスG−75(ファルマシア・ファインケミカル社製)
を用いてゲル濾過を行い電気泳動的に単一な高純度のカ
ルモデユリン20■を得ることができた。得られたカル
モデユリンの活性をT、S、Teaらの方法 (J。Example 7 The 400mM NaCl elution fraction obtained in Example 2 was
Dialysis was performed using 0mM phosphate buffer. A column (5-) packed with aminohexyl-Sepharose was equilibrated using the same buffer. The calmodyulin fraction after dialysis was applied to an equilibrated aminohexyl-Sepharose column.
After washing the column with 100 mf of the same buffer, calmodulin adsorbed on the column was eluted with a concentration gradient of sodium chloride (NaCl) up to a final concentration of 0.4 M using the same buffer. After concentrating the obtained calmodyulin fraction to 0.5M
Sephadex G-75 equilibrated with the same buffer containing sodium chloride (manufactured by Pharmacia Fine Chemicals)
By performing gel filtration using a gel, it was possible to obtain 20 μg of electrophoretically single, highly pure calmodulin. The activity of the obtained calmodulin was determined by the method of T. S. Tea et al. (J.
Biological Chemistry、248巻
、588ページ、 19736
年)に従って測定したところ、12,000 U/■で
あった。Biological Chemistry, Volume 248, Page 588, 19736), it was 12,000 U/■.
実施例8
実施例2で得られたブチル−セファロースの未吸着画分
よりαα型エノラーゼを精製した。Example 8 αα-type enolase was purified from the unadsorbed fraction of butyl-Sepharose obtained in Example 2.
ブチル−セファロースの未吸着画分を硫安分画し、得ら
れた沈澱を1.7Mの硫安溶液(pl+7)に熔解し同
じ濃度の硫安溶液で平衡化したトヨパールHW −55
のカラムに流した。カラムを洗浄後1.7Mから1.2
Mの硫安の濃度勾配で溶出し活性画分を集めた。この両
分を20mMリン酸緩衝液(pH7)で透析し同緩衝液
で平衡化したヘキシル−セファロースのカラムに流し、
雑蛋白質のみを吸着させた。ヘキシル−セファロースの
カラムを洗浄し、未吸着画分をセファロース6Bのカラ
ムで分画し、電気泳動的に単一なαα型エノラーゼ約2
0■を得た。得られたαα型エノラーゼの活性は58U
/■であった。The unadsorbed fraction of butyl-Sepharose was fractionated with ammonium sulfate, and the resulting precipitate was dissolved in a 1.7M ammonium sulfate solution (pl+7) and equilibrated with an ammonium sulfate solution of the same concentration.Toyopearl HW-55
column. After washing the column, from 1.7M to 1.2
The active fraction was collected by elution with a concentration gradient of M ammonium sulfate. Both fractions were dialyzed against 20mM phosphate buffer (pH 7) and applied to a hexyl-Sepharose column equilibrated with the same buffer.
Only miscellaneous proteins were adsorbed. The hexyl-Sepharose column was washed, and the unadsorbed fraction was fractionated using a Sepharose 6B column.
I got 0■. The activity of the αα type enolase obtained was 58U.
It was /■.
実施例9
実施例2で得られたブチル−セファロース2107
mM食塩溶出液を20mMリン酸緩衝液(pH6)で透
析し、同緩衝液で平衡化したアミノヘキシル−セファロ
ースのカラムに流した。カラムを洗浄後0.1Mから0
.5 Mまでの食塩の濃度勾配で溶出し、ダリア繊維性
蛋白とγγ型エノラーゼを分離した。Example 9 The butyl-Sepharose 2107 mM saline eluate obtained in Example 2 was dialyzed against 20 mM phosphate buffer (pH 6) and applied to an aminohexyl-Sepharose column equilibrated with the same buffer. After washing the column, from 0.1M to 0
.. Dahlia fibrous protein and γγ-type enolase were separated by elution with a concentration gradient of sodium chloride up to 5 M.
Tγ型エノラーゼは実施例6に準じて更に精製し、電気
泳動的に単一な標品約15■を得た。The Tγ-type enolase was further purified according to Example 6, and about 15 μm of an electrophoretically homogeneous specimen was obtained.
一方ダリア繊維性蛋白の両分は、硫安塩析後セファロー
ス6BとセファデックスG −150で濾過を行い、電
気泳動的に単一なダリア繊維性蛋白的20■を得た。On the other hand, both portions of the dahlia fibrous protein were salted out with ammonium sulfate and filtered through Sepharose 6B and Sephadex G-150 to obtain 20 μm of electrophoretically single dahlia fibrous protein.
実施例10
牛大脳を実施例2と同様に抽出し、抽出液を50mMリ
ン酸緩衝液(pH6>で平衡化したアミノヘキシル−セ
ファロース(NH2−(CH2)6−セファロース)の
カラムに流し、0.1Mの食塩を含む緩衝液でカラムを
洗浄後、0.1Mから0.5Mの食塩の濃度勾配で溶出
した。Example 10 Bovine cerebrum was extracted in the same manner as in Example 2, and the extract was applied to a column of aminohexyl-Sepharose (NH2-(CH2)6-Sepharose) equilibrated with 50 mM phosphate buffer (pH 6>). After washing the column with a buffer containing 1M NaCl, it was eluted with a concentration gradient of 0.1M to 0.5M NaCl.
溶出順序はブチル−セファロースと同様であり、αγ型
エノラーゼ、S −100蛋白、ダリア繊維性8
蛋白、TT型エノラーゼ、カルモデユリンの順に溶出さ
れた。αα型エノラーゼは吸着されなかった。The elution order was the same as that for butyl-Sepharose, with αγ type enolase, S-100 protein, Dahlia fibrillary 8 protein, TT type enolase, and calmodyulin eluted in this order. αα type enolase was not adsorbed.
各蛋白質を含む両分を集めたところ、αα型エノラーゼ
3900U 、αγ型エノラーゼ1200U 、グリア
繊維性蛋白18■(純品に換算して)、γγ型エノラー
ゼ1500U、 S −100蛋白14■(純品に換算
して)、カルモデユリン160,000 Uが各々別に
得られた。When we collected both parts containing each protein, we found 3900 U of αα-type enolase, 1200 U of αγ-type enolase, 18 μg of glial fibrous protein (converted to pure product), 1500 U of γγ-type enolase, and 14 μg of S-100 protein (purified product). ) and 160,000 U of calmodyulin were obtained separately.
実施例11
上と同じ牛大脳抽出液をアミノオクチル−セファロース
(NH2(CH2)8−セファロース)に流し、0から
0.5 Mまでの食塩の濃度勾配で溶出したところ実施
例9とほぼ同じ結果が得られた。Example 11 The same bovine cerebrum extract as above was passed through aminooctyl-Sepharose (NH2(CH2)8-Sepharose) and eluted with a concentration gradient of salt from 0 to 0.5 M. Almost the same results as in Example 9 were obtained. was gotten.
実施例12
牛大脳抽出液を20mM )リス塩酸緩衝液(pl+7
)で平衡化したオクチル−セファロースのカラムに流し
、0.5Mの食塩を含む緩衝液でカラムを洗浄後、トリ
ス塩酸緩衝液(pl+7)の濃度勾配(20mMからL
Mまで)で溶出した。最初にαα型エノラ9
一ゼが溶出され、次に図−2と同様の順序でαγ型エノ
ラーゼ、S −100蛋白、グリア繊維性蛋白、γγ型
エノラーゼ、カルモデユリンが相互に分離されて溶出さ
れた。Example 12 Bovine cerebral extract (20mM) was added to Lis-HCl buffer (pl+7
), and after washing the column with a buffer containing 0.5M NaCl, a concentration gradient (from 20mM to L
eluted up to M). αα-type enolase was eluted first, and then αγ-type enolase, S-100 protein, glial fibrillary protein, γγ-type enolase, and calmodyulin were mutually separated and eluted in the same order as shown in Figure 2. .
図−1は牛大脳抽出液に含まれる各種蛋白質をブチル−
セファロースのカラムにて分画した溶出パターンを示す
ものであり、図−2は牛大脳抽出液に含まれる各種蛋白
質をヘキシル−セファロースのカラムにて分画した溶出
パターンである。
a−−−−−−αγ型エノラーゼ
b −−−−−、S −100蛋白
c −−−−−グリア繊維性蛋白
a′−・−−一−γT型エノラーゼ
d −−−−一力ルモデュリン
特許出願人 天野製薬株式会社
0Figure 1 shows various proteins contained in bovine cerebrum extract.
It shows the elution pattern obtained by fractionation using a Sepharose column. Figure 2 shows the elution pattern obtained by fractionating various proteins contained in a bovine cerebrum extract using a hexyl-Sepharose column. a-----αγ-type enolase b----, S-100 protein c-----Glial fibrillary protein a'--・--1-γT-type enolase d-----Uniforce lumodulin Patent applicant: Amano Pharmaceutical Co., Ltd. 0
Claims (1)
有液をCH3(CH2)n−水不溶性担体(但しn =
3〜? )またはNH2−(CH2)m−水不溶性担
体(但しm=4〜8)に接触せしめ、該各種蛋白質を該
水不溶性担体に吸着又は素通りさせ、次いで該水不溶性
担体に吸着した各種蛋白質を分別溶出することを特徴と
する哺乳動物の脳に含まれる蛋白質の分別精製法。 (2)該水不溶性担体に吸着する蛋白質がαγ型エノラ
ーゼ、S −100蛋白、ダリア繊維性蛋白、Tγ型エ
ノラーゼ、カルモデユリンである特許請求の範囲第1項
記載の哺乳動物の脳に含まれる蛋白質の分別精製法。 (3)該水不溶性担体に素通りする蛋白質がαα型エノ
ラーゼである特許請求の範囲第1項記載の哺乳動物の脳
に含まれる蛋白質の分別精製法。[Claims] (11) Various protein-containing liquids obtained by extraction from mammalian brains are combined with CH3(CH2)n-water-insoluble carrier (where n =
3~? ) or NH2-(CH2)m-water-insoluble carrier (where m = 4 to 8), the various proteins are adsorbed onto or passed through the water-insoluble carrier, and then the various proteins adsorbed on the water-insoluble carrier are separated. A method for fractionating and purifying proteins contained in mammalian brains, characterized by elution. (2) A protein contained in the brain of a mammal according to claim 1, wherein the protein adsorbed to the water-insoluble carrier is αγ-type enolase, S-100 protein, Dahlia fibrous protein, Tγ-type enolase, or calmodyulin. fractional purification method. (3) The method for fractionating and purifying proteins contained in mammalian brains according to claim 1, wherein the protein that passes through the water-insoluble carrier is αα-type enolase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57183890A JPS5973526A (en) | 1982-10-19 | 1982-10-19 | Fractional purification of protein existing in mammalian brain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57183890A JPS5973526A (en) | 1982-10-19 | 1982-10-19 | Fractional purification of protein existing in mammalian brain |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5973526A true JPS5973526A (en) | 1984-04-25 |
Family
ID=16143598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57183890A Pending JPS5973526A (en) | 1982-10-19 | 1982-10-19 | Fractional purification of protein existing in mammalian brain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973526A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017375A (en) * | 1982-11-24 | 1991-05-21 | Baylor College Of Medicine | Method to prepare a neurotrophic composition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55167228A (en) * | 1979-06-14 | 1980-12-26 | Amano Pharmaceut Co Ltd | Purification of high-purity kallikrein |
-
1982
- 1982-10-19 JP JP57183890A patent/JPS5973526A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55167228A (en) * | 1979-06-14 | 1980-12-26 | Amano Pharmaceut Co Ltd | Purification of high-purity kallikrein |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017375A (en) * | 1982-11-24 | 1991-05-21 | Baylor College Of Medicine | Method to prepare a neurotrophic composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kitamura et al. | Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane | |
Zachmann et al. | The occurrence of γ-aminobutyric acid in human tissues other than brain | |
Hershkowitz et al. | The modulation of protein phosphorylation and receptor binding in synaptic membranes by changes in lipid fluidity: implications for ageing | |
DE69333287T2 (en) | INNOVATIVE GLYCOFORMS AS SOLUBLE COMPLEMENT RECEPTORS | |
Habermann et al. | Bee venom neurotoxin (apamin): iodine labeling and characterization of binding sites | |
JPS63503352A (en) | Protein purification | |
JPS58201794A (en) | Purification of human interferon through concentration | |
Moon et al. | Partial purification of neurofilament subunits from bovine brains and studies on neurofilament assembly. | |
JP2023139142A (en) | Refining method of ophthalmic protein pharmaceuticals | |
Donnér et al. | Lipase-colipase interactions during gel filtration: High and low affinity binding situations | |
EP1531160A1 (en) | Recovery of a heat shock protein | |
KR960009051B1 (en) | Simultaneous preparation process of useful proteins from human urine | |
JPS62500072A (en) | Protein purification method | |
Uyemura et al. | Studies on myelin proteins in human peripheral nerve | |
JPS5973526A (en) | Fractional purification of protein existing in mammalian brain | |
Wagner et al. | [14] Purification of kinesin from bovine brain and assay of microtubule-stimulated ATPase activity | |
Traub et al. | Interaction in vitro of the neurofilament triplet proteins from porcine spinal cord with natural RNA and DNA | |
KR100361894B1 (en) | Substituted Chromatography Methods and Purified Hemoglobin Products | |
Villa et al. | Effect of CDP‐choline treatment on mitochondrial and synaptosomal protein composition in different brain regions during aging | |
CA2295688A1 (en) | Agent for the treatment and/or prophylaxis of microcirculation disorders | |
Vijayakumar et al. | Purification and physico-chemical properties of lectins from the jack fruit (Artocarpus iutegrifolia) | |
Do et al. | Vesikin, a vesicle associated ATPase from squid axoplasm and optic lobe, has characteristics in common with vertebrate brain MAP 1 and MAP 2 | |
Chataway et al. | Development of a two‐dimensional gel electrophoresis database of human lysosomal proteins | |
Greenblatt et al. | Chromatographic separation of a rat serum growth factor required by Trypanosoma lewisi | |
JPH06508604A (en) | Treatment of endotoxemia |