JPS5972949A - Salient-pole type lumped pole rotor - Google Patents

Salient-pole type lumped pole rotor

Info

Publication number
JPS5972949A
JPS5972949A JP57182193A JP18219382A JPS5972949A JP S5972949 A JPS5972949 A JP S5972949A JP 57182193 A JP57182193 A JP 57182193A JP 18219382 A JP18219382 A JP 18219382A JP S5972949 A JPS5972949 A JP S5972949A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole
head
rotor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57182193A
Other languages
Japanese (ja)
Inventor
Onori Hiramatsu
大典 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57182193A priority Critical patent/JPS5972949A/en
Publication of JPS5972949A publication Critical patent/JPS5972949A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Abstract

PURPOSE:To alleviate the influence of heat loss at the starting time by burying a burying material having excellent electroconductivity and thermal conductivity in a section having remarkably large eddy current of the head of a pole. CONSTITUTION:Grooves 7 are formed on a lumped pole head 4, electroconductive and thermal conductive members 8 such as copper or the like are arranged in the grooves 7, and the head 4 is fixed by thermal engagement or a magnetic material 9 so as to prevent the gap for disturbing the heat insulating action and magnetic flux passing action. The positions of the members 8 to be buried are intermediate of heat loss generating layers. Thus, even if the magnetic flux is concentrated at the part from the surface of the head 4 to the prescribed impregnating depth at the starting time to generate heat, the heat is not conducted to the lower part by the thermal conduction of the member 9 buried in the lower part from the intermediate layer, thereby spreading the thermal capacity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は同期電動機等に用いられる突極形塊状磁極回転
子(二関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a salient-pole block magnetic pole rotor used in a synchronous motor or the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

突極形塊状磁極回転子を備えた塊状磁極形同期電動機は
磁極頭部の熱容量が大きいことから重負荷起動を行なう
自己始動方式の同期電動機として広く用いられている。
BACKGROUND ART A block magnetic pole type synchronous motor equipped with a salient pole block magnetic pole rotor is widely used as a self-starting type synchronous motor that performs heavy load starting because the heat capacity of the magnetic pole head is large.

従来の塊状磁極形同期電動機の具体的構成を第1図、第
2図および第3図に基づいて説明する。
The specific structure of a conventional block magnetic pole type synchronous motor will be explained based on FIGS. 1, 2, and 3.

薄鉄板を積層した固定子鉄心1とその内径側に設けられ
た多数の溝に納められたコイル2で固定子は構成される
。回転子の塊状磁極は胴部3と頭部4を一つの母材から
一体に製作しこれ(=絶縁物5を介して巻線6を巻装す
るもの、および第2図の如く胴部3と頭部4を分割製作
しボルトにより締着して一体に組立てるものがある。
The stator is composed of a stator core 1 made of laminated thin iron plates and coils 2 housed in a number of grooves provided on the inner diameter side of the stator core 1. The block magnetic poles of the rotor include those in which the body 3 and the head 4 are made integrally from one base material (= winding 6 is wound through an insulator 5, and the body 3 and the head 4 are made integrally as shown in FIG. 2). There is one in which the head 4 is manufactured separately and assembled into one piece by tightening with bolts.

以上の様(=構成された塊状磁極形同期電動機は起動時
磁極頭部に流れるうず電流によるトルクを利用して起動
を行うことから磁極頭部に多くの熱損失を発生し磁極頭
部の熱伝導により回転子巻線6、回転子巻線6と磁極頭
部および胴部との間に装着された絶縁物51=劣化を生
ずる。特に起動時の熱損失は回転子の回転方向に対して
回転進み側磁極頭部に集中することから回転進み側の磁
極頭部と回転子巻線6との間に装着される絶縁物を損傷
する。
As described above (= the configured lump magnetic pole type synchronous motor uses the torque generated by the eddy current flowing in the magnetic pole head at startup to start, so a lot of heat loss occurs in the magnetic pole head, and the heat in the magnetic pole head increases. Due to conduction, the rotor winding 6 and the insulator 51 installed between the rotor winding 6 and the magnetic pole head and body deteriorate.Especially, heat loss during startup occurs in the direction of rotation of the rotor. Since it concentrates on the magnetic pole head on the leading side of rotation, it damages the insulator installed between the magnetic pole head on the leading side of rotation and the rotor winding 6.

起動時の熱容量を増加させ、回転子巻線6および絶縁物
5に対する熱影響を低下させるのには磁極頭部を大きく
する必要があり、電動機が大形化する欠点がある。
In order to increase the heat capacity during startup and reduce the thermal influence on the rotor winding 6 and the insulator 5, it is necessary to increase the size of the magnetic pole head, which has the disadvantage of increasing the size of the motor.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点に鑑みてなされたものであり、起
動時の熱影響を緩和し巻線、絶縁物等の損傷を防止でき
る突極形塊状磁極回転子を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a salient pole-shaped block magnetic pole rotor that can alleviate thermal effects during startup and prevent damage to windings, insulators, etc. .

〔発明の概要〕[Summary of the invention]

本発明の突極形塊状磁極回転子においては上記の目的を
達成するために、磁極頭部のうず電流の著しく大きい部
分よりも深い部分に、導電性および熱伝導性のすぐれた
埋設材を、前記磁極頭部の磁性体とのあいだの熱伝導が
良好な状態にて埋設する。
In order to achieve the above object in the salient pole type block magnetic pole rotor of the present invention, a buried material with excellent electrical conductivity and thermal conductivity is provided in a portion of the magnetic pole head that is deeper than the portion where the eddy current is significantly large. The magnetic pole head is buried in a state where heat conduction between the magnetic body and the magnetic body is good.

〔発明の実施例〕 本発明の一実施例を第4および第5図を参照して説明す
る。従来技術と同一部分は同一符号を設けて説明を省略
する。
[Embodiment of the Invention] An embodiment of the present invention will be described with reference to FIGS. 4 and 5. Components that are the same as those in the prior art are designated by the same reference numerals and description thereof will be omitted.

塊状磁極頭部4に溝7を設は溝7中に銅等の導電性熱伝
導性部材8を配設する。導電性熱伝導性部材8の固定方
法としては、断熱作用および磁束通過をさまたげる間隙
を防止する為に、磁極頭部4(二加熱嵌着もしくは磁性
材9により固定する。
A groove 7 is provided in the block magnetic pole head 4, and an electrically conductive and thermally conductive member 8 made of copper or the like is placed in the groove 7. The method of fixing the electrically conductive and thermally conductive member 8 is to fix the magnetic pole head 4 (by two-heat fitting or magnetic material 9) in order to provide heat insulation and to prevent gaps from interfering with the passage of magnetic flux.

磁極頭部4の素材および起動方法(=よって若干異なる
が、高張鋼よりなる部材を磁極頭部4に使用した本発明
の突極形塊状磁極回転子を備えた同期電動機を商用周波
数において自己起動を行う場合、起動時の各すべりにお
ける磁束浸透深さは下表の様(二なる。磁束集中による
熱損失の熱伝導を考えるならば 始動時に磁極頭部の発熱の集中する層は磁極表面部より
散開の範囲であることから、熱損失発生層の中間部、例
えば磁極頭部4の表面より約3朋より下部に10朋長さ
の導電性、熱伝導性部材を埋設するのがよい。導電性熱
伝導性部材の数および大きさは起動時磁極頭部(=生ず
る熱損失を充分吸収し磁極胴部へ伝導するよう考慮する
こととする。
The material of the magnetic pole head 4 and the starting method (=Therefore, the starting method is slightly different, but it is possible to self-start at commercial frequency a synchronous motor equipped with a salient pole block magnetic pole rotor of the present invention using a member made of high tensile steel for the magnetic pole head 4. In this case, the magnetic flux penetration depth at each slip during startup is as shown in the table below (2).If we consider the heat conduction of heat loss due to magnetic flux concentration, the layer where heat is concentrated in the magnetic pole head during startup is the magnetic pole surface. Since the range is more spread out, it is preferable to embed a conductive and thermally conductive member with a length of 10 mm in the middle part of the heat loss generation layer, for example, about 3 mm below the surface of the magnetic pole head 4. The number and size of the electrically conductive and thermally conductive members shall be taken into consideration so as to sufficiently absorb the heat loss that occurs at the magnetic pole head during startup and conduct it to the magnetic pole body.

この様に構成した突極形塊状磁極回転子においては起動
待磁極頭部4表面部より前f′″表1に示した浸透深さ
までの部分(二磁束がV−中し、ここにおいてうず電流
により熱損失が発生し、これにともなう発熱作用により
、磁束集中部は高温に達する。
In the salient pole-shaped block magnetic pole rotor constructed in this way, the part from the surface of the starting magnetic pole head 4 to the penetration depth f''' shown in Table 1 (where the two magnetic fluxes are V-, and the eddy current This causes heat loss, and the resulting heat generation causes the magnetic flux concentrated portion to reach a high temperature.

このとき磁極頭部4の熱伝導率に対し導電性熱伝導性部
材の熱伝導率が10数倍であることから、熱損失発生中
間層より下部に埋設された導電性伝導性部材9の熱伝導
作用によって更に下部への熱の伝導がおこなわれ起動時
の熱容量を拡大することができる。従来の構造(=よる
突極形塊状磁極回転子と本発明の突極形塊状磁極回転子
の起動待温度分布は第6図に示すようになる。また導電
性熱伝導性部材8(二上って局部的な温度上昇が防止さ
れるので鋼や銅よりも耐熱的に弱い絶縁物5に対する熱
影響を緩和させる作用があり回転子巻線6および回転子
巻線6°と磁極部との間(−装着された絶縁物5の損傷
を防止できる。
At this time, since the thermal conductivity of the electrically conductive thermally conductive member is ten times higher than that of the magnetic pole head 4, the electrically conductive member 9 buried below the intermediate layer where heat loss occurs is heated. Due to the conductive action, heat is further conducted to the lower part, and the heat capacity at the time of startup can be expanded. The start-up temperature distributions of the salient pole type block magnetic pole rotor according to the conventional structure and the salient pole type block magnetic pole rotor of the present invention are shown in FIG. 6. This prevents a local temperature rise, which has the effect of mitigating the thermal effect on the insulator 5, which is weaker in heat resistance than steel or copper, and the relationship between the rotor winding 6 and the rotor winding 6° and the magnetic pole part. (- Damage to the installed insulator 5 can be prevented.

また起動初期における磁束は前記表1の如く磁極頭部4
表面部に集中し磁極頭部4表面部うず電流によるトルク
を発生するが、起動が進むにつれ磁極頭部4内部に磁束
は浸透し磁極頭部4に埋設された導電性熱伝導性部材8
内部(二うず電流を誘起すること(二よりトルクを発生
し、磁極頭部4表面部のうず電流作用によるトルク1=
重畳させることによりトルクは急増して同期引入が容易
となる効果がある。すなわち部材8は、起動巻線と同様
の効果を生ずる。以上の様な速度−トルク特性を第7図
に示す。すなわち第7図特性■の様な従来の塊状磁極形
同期電動機のトルク特性に、起動巻線をもつ同期電動期
のトルク特性■が重畳されること(二より、起動時初期
のトルク、および同期突入時のトルクの大な理想的な起
動トルク特性■を有するような電動機を実現することが
可能となる。
In addition, the magnetic flux at the initial stage of startup is as shown in Table 1 above.
Torque is generated by the eddy current concentrated on the surface of the magnetic pole head 4, but as the startup progresses, the magnetic flux penetrates into the inside of the magnetic pole head 4 and the electrically conductive and thermally conductive member 8 embedded in the magnetic pole head 4 is generated.
Inside (2) Inducing eddy current (2) Generating torque, torque 1 = due to the eddy current action on the surface of the magnetic pole head 4
By superimposing them, the torque increases rapidly, which has the effect of making synchronization easier. In other words, member 8 produces an effect similar to that of a starting winding. FIG. 7 shows the speed-torque characteristics as described above. In other words, the torque characteristic (■) in the synchronous motor period with a starting winding is superimposed on the torque characteristic of the conventional lump magnetic pole type synchronous motor as shown in the characteristic (■) in Figure 7 (from the second point, the initial torque at startup and the synchronous It becomes possible to realize an electric motor having ideal starting torque characteristics (2) with large torque at the time of rush.

本発明の他の実施例を第8図、第9図および第10図(
二示す。
Other embodiments of the present invention are shown in FIGS. 8, 9 and 10 (
Show two.

導電性、熱伝導性部材8は第8図に示す如く逆台形とし
ても上記実施例と同一の効果を得ることができ、且つ熱
損失の集中する磁極頭部4表面部側が犬であることから
起動時の熱伝導を容易ならしめ、また同期突入時のトル
ク特性をさらに改善することができる。
The same effect as in the above embodiment can be obtained even if the electrically conductive and thermally conductive member 8 has an inverted trapezoid shape as shown in FIG. It is possible to facilitate heat conduction during startup and further improve torque characteristics during synchronization entry.

あるいは第9図の如く断面形状が円形状の導電性熱伝導
性部材8を埋設すること(−より上記本発明と同一の効
果を得ることができ且つ導電性熱伝導性部材8を埋設す
ることによる磁極頭部4の回転遠心力に対する応力強度
を改善することができる。
Alternatively, as shown in FIG. 9, it is possible to bury an electrically conductive and thermally conductive member 8 having a circular cross-sectional shape. The stress strength of the magnetic pole head 4 against rotational centrifugal force can be improved.

また第10図の如く回転進み側と遅れ側とに異なる大き
さの導電性熱伝導性部材10.11を埋設すること(二
より上記本発明と同一の効果を得ることができ、且つ起
動待熱損失の集中する回転進み側の熱集中を緩和するこ
とができる。
Furthermore, as shown in FIG. 10, electrically conductive and thermally conductive members 10 and 11 of different sizes can be embedded in the rotation advance side and the rotation delay side (secondarily, the same effect as the above-mentioned present invention can be obtained, and Heat concentration on the rotation advancing side where heat loss is concentrated can be alleviated.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明においては回転子磁極頭部の起動時磁
束浸透による熱損失発生層中間部に導電の影響を緩和し
、起動待熱容量の拡大をはかり、且つトルク特性の改善
をはかることができ塊状磁極形同期電動機の小形軽量化
を実現することができる。
As described above, in the present invention, it is possible to alleviate the influence of conduction in the middle part of the heat loss generation layer due to magnetic flux penetration during startup of the rotor pole head, expand the startup heat capacity, and improve the torque characteristics. It is possible to realize a compact and lightweight block magnetic pole type synchronous motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の塊状磁極形同期電動機の縦断面図、第2
図は従来の塊状磁極回転子の斜視図、第3図は第2図の
磁極の断面図、第4図は本発明による一実施例の回転子
の斜視図、第5図は第4図の磁極の断面図、第6図は突
極形塊状磁極回転子の起動待温度分布図、第7図は同期
電動機の速度−トルク特性図、第8図第9図および第1
o図は他の実施例による磁極の断面図である。 3・・・磁極胴部    4・・・磁極頭部5・・・絶
縁物     6・・・回転子巻線7・・・溝    
   8・・・導電性熱伝導性部材(7317)  代
理人 弁理士 則 近 憲 佑(ほか1名) 第1図 / 第2図 第3図 第4図 第5図 第 6図(O−)〔促末〕 第 6 図(番)を本発明) 第7図 浅 第8図 第9図 第10図 手続補正書(方式) 昭和 5晋、 3 、 ’f +)  日特許庁長官 
殿 1、 事件の表示 特願昭57−182193号 28  発明の名称 突極形塊状磁極回転子 3、  @正をする者 事件との関係 特許出願人 (307)東京芝浦電気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 以上 手続補正書(自発) 115カ、3.’i5 ”’ 特許庁長官 殿 1、 事件の表示 特願昭57−182193号 2、発明の名称 突極形塊状磁極回転子 3、補正を1−る者 事件との関係 特奸出願人 (307)東京芝浦電気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 ジ +補正の対象 明細書第5頁第17行に「示すようになる。また」とあ
るのを、「示すようになる。ここで第6図+a+は従来
の構造による温度分布を示し、第6図(b)は本発明の
構造による温度分布を示す。また」と補正する。 以  上
Figure 1 is a vertical cross-sectional view of a conventional block magnetic pole type synchronous motor;
3 is a sectional view of the magnetic pole of FIG. 2, FIG. 4 is a perspective view of a rotor according to an embodiment of the present invention, and FIG. A cross-sectional view of the magnetic poles, FIG. 6 is a startup temperature distribution diagram of a salient pole block magnetic pole rotor, FIG. 7 is a speed-torque characteristic diagram of a synchronous motor, FIG. 8, FIG. 9, and FIG.
Figure o is a sectional view of a magnetic pole according to another embodiment. 3...Magnetic pole body 4...Magnetic pole head 5...Insulator 6...Rotor winding 7...Groove
8...Electrically conductive thermally conductive member (7317) Agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1/ Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 (O-) Figure 6 (number) of the present invention) Figure 7 Shallow Figure 8 Figure 9 Figure 10 Procedural amendment (method) Showa 5, 3, 'f +) Director General of the Japan Patent Office
Tono 1. Indication of the case Patent application No. 182193/1982 28 Name of the invention Salient pole type block magnetic pole rotor 3 Relationship to the case of @Correct person Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 4, Agent 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100 Written amendment to the above procedures (voluntary) 115 points, 3. 'i5 ''' Commissioner of the Japan Patent Office 1, Indication of the case Japanese Patent Application No. 57-182193 2 Name of the invention Salient pole type block magnetic pole rotor 3, Amendment 1 Relationship with the case Patent applicant (307 ) Tokyo Shibaura Electric Co., Ltd. 4, Agent Address: 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100 J + On page 5, line 17 of the specification subject to amendment, the phrase ``as shown. Here, FIG. 6+a+ shows the temperature distribution according to the conventional structure, and FIG. 6(b) shows the temperature distribution according to the structure of the present invention. that's all

Claims (1)

【特許請求の範囲】 ■、 回転軸(=取付けられた塊状の磁性体とこの磁性
体に巻装された巻線とを備えた突極形塊状磁極回転子に
おいて、前記磁性体の頭部の起動時うず電流の著しく大
きい部分よりも深い部分に、導電性および熱伝導性のす
ぐれた埋設材を、前記磁性体とのあいだの熱伝導が良好
な状態にて埋設したことを特徴とする突極形塊状磁極回
転子。 2、埋設材は磁極の回転遅れ側におけるよりも回転進み
側におけるほうが大きいことを特徴とする特許請求の範
囲第1項記載の突極形塊状磁極回転子。
[Scope of Claims] (1) In a rotor with salient pole-shaped lumpy magnetic poles having a rotating shaft (=a lump-like magnetic material attached to the rotor and a winding wound around the magnetic material, the head of the magnetic material is A buried material having excellent electrical conductivity and thermal conductivity is buried in a part deeper than a part where the eddy current is significantly large at the time of start-up in a state where heat conduction between the material and the magnetic body is good. Pole-shaped blocky magnetic pole rotor. 2. The salient pole-shaped blocky magnetic pole rotor according to claim 1, wherein the embedded material is larger on the rotation advance side of the magnetic pole than on the rotation lag side.
JP57182193A 1982-10-19 1982-10-19 Salient-pole type lumped pole rotor Pending JPS5972949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182193A JPS5972949A (en) 1982-10-19 1982-10-19 Salient-pole type lumped pole rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182193A JPS5972949A (en) 1982-10-19 1982-10-19 Salient-pole type lumped pole rotor

Publications (1)

Publication Number Publication Date
JPS5972949A true JPS5972949A (en) 1984-04-25

Family

ID=16113962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182193A Pending JPS5972949A (en) 1982-10-19 1982-10-19 Salient-pole type lumped pole rotor

Country Status (1)

Country Link
JP (1) JPS5972949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294857A (en) * 1989-12-22 1994-03-15 Siemens Aktiengesellschaft Synchronous machine having control coils for compensating mechanical oscillations of the rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294857A (en) * 1989-12-22 1994-03-15 Siemens Aktiengesellschaft Synchronous machine having control coils for compensating mechanical oscillations of the rotor

Similar Documents

Publication Publication Date Title
RU2719307C1 (en) Thermal control structures and methods in stators with printed circuit boards
JP2762257B2 (en) Manufacturing method of grooveless motor
CN106505767B (en) Surface-mount type speed permanent magnet synchronous motor rotor with stacked metal pole piece spacing
US3428840A (en) Axial air gap generator with cooling arrangement
US4242610A (en) Wedge-shaped permanent magnet rotor assembly
JPS63274335A (en) Armature coil
EP0456498A2 (en) Reducing harmonic losses in dynamoelectric machine rotors
US3555316A (en) Lead attachment for dynamoelectric machine and method of making same
JP6772707B2 (en) Rotating machine
US5734217A (en) Induction machine using ferromagnetic conducting material in rotor
GB2271672A (en) Permanent magnet rotor with metal sheath
US3793546A (en) Rotor for dynamoelectric machines
JPS5972949A (en) Salient-pole type lumped pole rotor
US11228222B2 (en) Wedges with Q-axis damper circuits
JPS6346665B2 (en)
US11239718B2 (en) Wedges with Q-axis damper circuits
US3368091A (en) Rotating rectifier
RU2759161C2 (en) Asynchronous three-phase electric engine
US20220329138A1 (en) Induction generator
US2310501A (en) Device for reducing eddy current losses in stator end plates
JPS5989538A (en) Salient-pole lumped pole rotor
JPH0530137B2 (en)
RU2045804C1 (en) Nonsalient-pole rotor wedge
JP6095038B1 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JPH0474932B2 (en)