JPS5972074A - Measuring device of underwater position - Google Patents

Measuring device of underwater position

Info

Publication number
JPS5972074A
JPS5972074A JP18234182A JP18234182A JPS5972074A JP S5972074 A JPS5972074 A JP S5972074A JP 18234182 A JP18234182 A JP 18234182A JP 18234182 A JP18234182 A JP 18234182A JP S5972074 A JPS5972074 A JP S5972074A
Authority
JP
Japan
Prior art keywords
wave
gate
time
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18234182A
Other languages
Japanese (ja)
Other versions
JPH0117553B2 (en
Inventor
Takeshi Nakamura
猛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18234182A priority Critical patent/JPS5972074A/en
Publication of JPS5972074A publication Critical patent/JPS5972074A/en
Publication of JPH0117553B2 publication Critical patent/JPH0117553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure a position with a high precision even if various reflected echoes exist, by eliminating the signal of a part having a disturbed phase by a phase difference gate control circuit. CONSTITUTION:Receiving signals are received by receiving elements 16-18 and are amplified in preamplifiers 19-21 and are converted to pulses by pulse circuits 22-24. A direct distance measuring circuit 25 counts the period from the transmission reference of a sounding body to the reception time with clocks corresponding to the underwater acoustic velocity to attain the distance. A phase difference gate control circuit 29 generates a gate part of a time corresponding to the number of mountains in a part, where the waveform is not disturbed, set by a mountain number set counter 30 as shown in Fig. (c). The period from a time D to a time E in Fig. (c) is a gate used for measurement, and the succeeding part is eliminated by the counter 30 because the phase is distrubed.

Description

【発明の詳細な説明】 本発明は水中超音波を利用して海上及び海中における母
船に対する海中の目標物の相対位置を三次元的に測定す
る位置測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a position measuring device that uses underwater ultrasound to three-dimensionally measure the relative position of an underwater target with respect to a mother ship on the sea or in the sea.

従来、この種の位置測定装置は、第1図(alに示す様
に、海中の目標物3にビンガ−又はトランスポンダー等
の発音体4を搭載し、母船1に装備された少くとも3個
以上の受波素子から成る受波器2で発音体4からの音波
を受信して、各受波素子に入力する発音体4からの音波
の位相差を検出して目標物3の方位を検出すると共に、
発音体4と受波器2との音波器2との音波到達時間を計
測して直距離りを求めて、目標物の位置を三次的に計測
している。
Conventionally, this type of position measuring device, as shown in FIG. A receiver 2 consisting of receiving elements receives the sound waves from the sounding body 4, and detects the phase difference of the sound waves from the sounding body 4 input to each receiving element to detect the direction of the target object 3. With,
The position of the target object is measured three-dimensionally by measuring the arrival time of the sound waves between the sound generator 4 and the receiver 2 to determine the direct distance.

この目標物の位置の計測について説明する。The measurement of the position of this target object will be explained.

まず、母船1に装備された受波器2は、第2図に示すよ
うに、母船1の垂直軸Zと直交する水平面(X−Y面)
に4個の受波素子11〜14が配置され、これら素子の
間隔は素子11.14間、 12.13間、11.12
問および13.14間が距離りとなつている。また、目
標物3に搭載された発音体4の位置は、第3図に示すよ
うに、P(X、Y、Z)点とし、目標物3から各受波素
子11〜14までの直距離をLl、L2.L3.L4と
する。POとY軸のなす角を02+POとY軸とのなす
角をθ、とする。徒だ、受波器間隔りは使用超音波周波
数の半波長以下とし、母船1と目標物3″!、での直距
離りは受波器間隔りに比べて充分大きいとすると、各受
波素子に音波が平衝して入るとみなされ次式が成立する
First, as shown in FIG. 2, the receiver 2 installed on the mother ship 1
Four receiving elements 11 to 14 are arranged, and the spacing between these elements is between elements 11.14, 12.13, and 11.12.
The distance between question and 13.14 is the distance. In addition, the position of the sounding body 4 mounted on the target object 3 is set to point P (X, Y, Z), as shown in FIG. Ll, L2. L3. Let it be L4. Let the angle between PO and the Y-axis be 02+the angle between PO and the Y-axis be θ. It's a waste. Assuming that the distance between the receivers is less than half the wavelength of the ultrasonic frequency used, and the direct distance between the mother ship 1 and the target 3"! is sufficiently large compared to the distance between the receivers, each received wave It is assumed that the sound waves enter the element in equilibrium, and the following equation holds.

L2−L1=Dcosθ2 L2−L3=Dcosθ! これら式において、間隔りは既知であるから、L2−L
l及びL2−L3を各チャンネルの位相差として計測す
ることによ?)、cosθ、 、 cosθ、がそれぞ
れ求められ、目標物3の方向θ1.θ2が求められる。
L2-L1=Dcosθ2 L2-L3=Dcosθ! In these equations, since the interval is known, L2-L
By measuring l and L2-L3 as the phase difference of each channel? ), cos θ, , cos θ, are determined, and the direction θ1 . θ2 is found.

一方、直距離りも送信基準時から受信時までの時間を計
測して、水中音速を考慮することによって求められる。
On the other hand, the direct distance can also be determined by measuring the time from the transmission reference time to the reception time and taking into account the underwater sound speed.

よって目標物の位置(x、y、z)は次式により求めら
れる。
Therefore, the position (x, y, z) of the target object is determined by the following equation.

X=L−cosθ1 Y=L−cosθ2 この位置測定装置は、各受波素子11〜14に受波され
る信号の位相差を正確に計測する必要がある。したがっ
て、発音体4から発射された音波が受波器2で受信され
る寸での間に、位相的な乱れを生じると、発音体4から
受波素子までの各受波素子間の位相差に誤差を発生し、
正確な方位を検出することが困難となってくる。
X=L-cos θ1 Y=L-cos θ2 This position measuring device needs to accurately measure the phase difference between the signals received by each of the wave receiving elements 11 to 14. Therefore, if a phase disturbance occurs when the sound wave emitted from the sound generating body 4 is received by the wave receiver 2, the phase difference between each wave receiving element from the sound generating body 4 to the wave receiving element An error occurs in
It becomes difficult to detect accurate orientation.

また、音波が受波器2に入るまでには、第1図(b)に
示す様に、直接波5以外に、船底反射波6、海底反射波
7の伝播経路を生じ、これら6波の合成された信号が受
波素子で受信される。これら受信波は、第4図(a)〜
(dJに示される。この直接波5(第4図(a))、!
:、反射波6,7(第4図(b) 、 (C) )とが
合成されて、第4図(d)に示す合成波となる。この合
成波が受波素子に到達する1でに、充分な時間差があれ
ばタイムケート等によりこれらを分離することができる
が、船底反射波6は、送信パルス幅や受波素子の立上り
特性にも依存するが、直接波5と分離することがむづか
しく、又、発音体4が海底等の反射物に近接している場
合には、海底反射波7の直接波5への影響も無視でき力
くなる。この合成波は、第4図(dlに示すように、A
部分が直接波5だけであるが、B、C部分は反射波6.
7の重なりにより位相的に乱れを生じている部分となっ
ている。
In addition, before the sound wave enters the receiver 2, as shown in Fig. 1(b), in addition to the direct wave 5, a propagation path is generated for a ship bottom reflected wave 6 and a sea bottom reflected wave 7, and these six waves The combined signal is received by the wave receiving element. These received waves are shown in Fig. 4(a)~
(shown in dJ. This direct wave 5 (Fig. 4(a)), !
:, reflected waves 6 and 7 (Fig. 4(b), (C)) are combined to form a composite wave shown in Fig. 4(d). When this combined wave reaches the receiving element 1, if there is a sufficient time difference, it is possible to separate them using a time gate, etc. However, the reflected wave 6 from the bottom of the ship depends on the transmission pulse width and the rise characteristics of the receiving element. It also depends on the direct wave 5, but if it is difficult to separate it from the direct wave 5, and if the sounding body 4 is close to a reflective object such as the seabed, the influence of the seabed reflected wave 7 on the direct wave 5 can also be ignored. I feel empowered. This composite wave, as shown in Figure 4 (dl),
The part is only the direct wave 5, but the B and C parts are the reflected waves 6.
This is the part where phase disturbance occurs due to the overlap of 7.

従来の位置測定装置は、これらの影響を除くためタイム
ゲートを備えたシ、受波器を昇降装置の先端に装備した
りしていたが、直接波に重なる反射波の影響は充分除去
することができず、方位誤差の要因となっていた。
Conventional position measuring devices are equipped with a time gate or a receiver at the tip of the lifting device to eliminate these effects, but it is necessary to sufficiently eliminate the effects of reflected waves that overlap with direct waves. This caused errors in direction.

本発明の目的は、前述の反射波による影@を除き、方位
誤差を少くすることができ、測定精度を向上させた水中
位置測定装置を提供することにある0 本発明の構成は、水中目標物の発音体から送られた信号
を受信する3個以上の受波素子と、これ5− ら各受波素子で受けた各信号を増幅してそれぞれパルス
信号とするパルス化回路と、これらパルス化された各信
号間の位相差をそれぞれ検出する位相差検出回路と、前
記発音体の送信時から前記各受信素子の受波までの時間
から直距離を計測する距離計測回路とを含む水中位置測
定装置において前記距離計測回路の出力から所定受信レ
ベル以上の信号でかつ位相乱れのないように選ばれた波
数のゲートを出力するゲート制御回路と、このゲート制
御回路の出力ゲートにより前記パルス化信号をそれぞれ
選択するゲート回路とを有することを特徴とする。
An object of the present invention is to provide an underwater position measuring device that can reduce the azimuth error and improve the measurement accuracy by eliminating the shadow caused by the reflected waves. three or more wave receiving elements that receive signals sent from a sounding body of an object; a pulsing circuit that amplifies each signal received by each of the wave receiving elements and converts each signal into a pulse signal; an underwater position including a phase difference detection circuit that detects a phase difference between each of the converted signals, and a distance measurement circuit that measures a direct distance from the time from the time of transmission of the sounding body to the reception of the wave by each of the reception elements. In the measuring device, a gate control circuit outputs from the output of the distance measuring circuit a gate having a wave number selected such that the signal is at a predetermined reception level or higher and has no phase disturbance, and the pulsed signal is controlled by the output gate of the gate control circuit. and a gate circuit that selects each of the two.

本発明においては、各受波素子で受信される信号のうち
海底反射波や船底反射波による、位相の乱れが生じてい
る部分を計測から除去するため、受信信号の立上シ部分
を検出し、この検出点から山数設定カウンタにより設定
されるパルス山数分の信号までを検出して、この検出範
囲にある各受信信号の位相差情報から目標物の方位を演
算しているので、その方位計測精度を向上できる。
In the present invention, the rising edge portion of the received signal is detected in order to remove from the measurement the portion of the signal received by each receiving element in which the phase is disturbed due to waves reflected from the ocean floor or waves reflected from the bottom of the ship. , the signal from this detection point to the number of pulse peaks set by the peak number setting counter is detected, and the direction of the target is calculated from the phase difference information of each received signal within this detection range. Direction measurement accuracy can be improved.

−〇− 次に本発明を図面により詳細に説明する。−〇− Next, the present invention will be explained in detail with reference to the drawings.

第5図(伏木発明の実施例のブロック図、第6図(al
〜(C1は第5図の動作波形図である。図において、1
6〜18は3個の受波素子であり、各受波素子には、第
6図(81に示すような受信信号が受信される。
Figure 5 (block diagram of an embodiment of Fushiki's invention), Figure 6 (al
~(C1 is the operating waveform diagram in FIG. 5. In the figure, 1
6 to 18 are three wave receiving elements, and each wave receiving element receives a reception signal as shown in FIG. 6 (81).

ここでは受波素子は最低3個あれば位置測定ができるの
で3個の受波素子の場合を説明する。これら受信信号は
前置増幅器19〜21で増幅された後、パルス化回路2
2〜24でパルス化される。その様子は第6図(b)に
示すとおりである。寸だ、26−28は各チャンネル間
位相差検出回路、25Fi直距離計測回路であり、発音
体4の送信基準から受信時までを水中基準音速に相当す
るクロックでカウントして求めている。ゲートコントロ
ール回路29は山数設定カウンタ30で設定された波形
瓦れのないような個所の山故に相当する時間のゲート幅
をつくる部分で、その様子は第6図(C)に示される。
Here, since position measurement can be performed with at least three wave receiving elements, a case with three wave receiving elements will be explained. These received signals are amplified by preamplifiers 19 to 21, and then pulsed by a pulse generator 2.
Pulsed at 2-24. The situation is as shown in FIG. 6(b). Numerals 26-28 are inter-channel phase difference detection circuits and 25Fi direct distance measurement circuits, which count and calculate the time from the transmission reference of the sounding body 4 to the time of reception using a clock corresponding to the underwater reference speed of sound. The gate control circuit 29 is a part that creates a gate width corresponding to a time period corresponding to a waveform waveform failure set by the waveform number setting counter 30, and its state is shown in FIG. 6(C).

第6図(C1のり、E間がこの装置の計測に使用するゲ
ートであシ、下部は位相が乱れているため山数設定カウ
ンタ30により除いていることを示す。
FIG. 6 shows that the gate between C1 and E is the gate used for measurement with this device, and the lower part is excluded by the peak number setting counter 30 because the phase is disordered.

すなわち、直距離計測回路25で所定スレッシホールド
レベル以上の受信波を検出した時点りから山数の設定さ
れたカウント点Eまでのゲート(第6図(C))がつく
られる。なお、この山数は、1個以上で40個程度あれ
ばよい。この位相の乱れを除くのに必要々山数設定は受
波器の装備状況によフ変るため、初期設定時は波形を観
測して定めるものとするが、一度設定されれば調整不用
となる。
That is, a gate (FIG. 6(C)) is created from the point at which the direct distance measurement circuit 25 detects a received wave of a predetermined threshold level or higher to the count point E where the number of peaks is set. Note that the number of peaks may be one or more and about 40. The number of peaks required to eliminate this phase disturbance will vary depending on the equipment condition of the receiver, so it should be determined by observing the waveform during initial settings, but once set, no adjustment is necessary. .

又この山数は送信の周波数が一定の場合には、位相の規
則性を検知して自動的に設定することも可能である。3
1〜33は位相差検出信号のうち、第6図(C1に示す
り、E間の位相の乱れていない間の信号のみを出力する
ためのコントロールするゲートである。また、34は前
述の演算式を計算する演算回路であシ、この演算回路3
4により目標物の位置を計算して表示器35に表示して
いる。この表示器35に表示する場合は、それぞれ必要
な最終データに変換されるが、水平距離、方位角。
Further, when the transmission frequency is constant, the number of peaks can be automatically set by detecting the regularity of the phase. 3
Reference numerals 1 to 33 are gates for controlling the phase difference detection signal to output only the signal during which the phase between E and E is not disturbed, as shown in FIG. 6 (C1). This is an arithmetic circuit that calculates the formula, this arithmetic circuit 3
4, the position of the target object is calculated and displayed on the display 35. When displayed on this display 35, horizontal distance and azimuth are converted into the necessary final data.

俯角等も(x、y、z)データよシ演算することができ
る。
The angle of depression, etc. can also be calculated using (x, y, z) data.

本発明は、以上説明したように、位相差ゲートコントロ
ール回路よ多位相の乱れた部分の信号を除去することに
よシ、海底反射エコー、船底反射エコー等があっても位
置測定が精度よく求められる。さらに、本発明では山数
設定カウンタを設けているので、設定された山数だけ位
相差の平均をとることができるので、方位検出精度を向
上させることができる。
As explained above, the present invention allows the phase difference gate control circuit to remove the signal of the part where the multi-phase is disturbed, so that position measurement can be performed with high accuracy even when there are seabed reflection echoes, ship bottom reflection echoes, etc. It will be done. Furthermore, since the present invention is provided with a counter for setting the number of peaks, it is possible to average the phase differences by the set number of peaks, thereby improving the direction detection accuracy.

なお、この実施例では、山数設定カウンタを手動設定と
して説明したが、送信に単一周波数パルスを用いる場合
には受信波の位相の規則性から受信波(山)の長短を自
動的に検出してその山数の設定を自動的に行うこともで
きる。
In this example, the peak number setting counter was explained as being manually set, but when using a single frequency pulse for transmission, the length of the received wave (peak) can be automatically detected from the regularity of the phase of the received wave. You can also set the number of ridges automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al 、 (b)は目標物に装備された発音体
と母船に装備された受波器の関係および受波器に入射す
る音波経路を示した構成図、第2図は母船と受波器との
関係を示す座標図、第3図は目標物と母船との関係を示
す座標図、第4図(a)〜(d)は受信波9− を説明する波形図、第5図は本発明の一実施例を示すブ
ロック図、第6図(al〜(C)は第5図の実施例にお
ける波形図である。図において 1・・・・・・母船、2・・・・・・受波器、3・・・
・・・目標物、4・・・・・・発音体、5・・・・・・
直接波、6,7・・・・・・反射波、11〜14 、1
.6〜18・・・・・・受波素子、19〜21・・・・
・・前置増幅器、22〜24・・・・・・パルス化回路
、25〜28・・・・・・位相差検出回路、29・・・
・・・ゲートコントロール回路、3o・・・・・・山数
設定カウンタ、31〜33・・・・・・ゲート、34・
・・・・・演算回路、35・旧・・表示器である。 10− (fA) (6,)      ’。 :: 一−N+++ へ       姑        (’q     
         、              。
Figures 1 (al and b) are configuration diagrams showing the relationship between the sounding body installed on the target and the wave receiver installed on the mother ship, and the sound wave path incident on the receiver, and Figure 2 shows the relationship between the sounding body installed on the target and the wave receiver installed on the mother ship. FIG. 3 is a coordinate diagram showing the relationship with the receiver, FIG. 3 is a coordinate diagram showing the relationship between the target object and the mother ship, FIGS. The figure is a block diagram showing one embodiment of the present invention, and FIGS. 6A to 6C are waveform diagrams in the embodiment of FIG. ...Receiver, 3...
...Target, 4...Sounding body, 5...
Direct wave, 6, 7...Reflected wave, 11-14, 1
.. 6-18... Receiving element, 19-21...
...Preamplifier, 22-24...Pulsing circuit, 25-28...Phase difference detection circuit, 29...
...Gate control circuit, 3o...Tap number setting counter, 31-33...Gate, 34.
... Arithmetic circuit, 35. Old... Display. 10- (fA) (6,)'. :: 1-N+++ to mother-in-law ('q
, .

Claims (1)

【特許請求の範囲】[Claims] 水中目標物の発音体から送られた信号を受信する3個以
上の受波素子と、これら各受波素子で受けた各信号を増
幅してそれぞれパルス信号とするパルス化回路と、これ
らパルス化された各信号間の位相差をそれぞれ検出する
位相差検出回路と、前記発音体の送信時から前記各受信
素子の受波までの時間から直距離を計測する距離計測回
路とを含む水中位置測定装置において、前記距離計測回
路の出力から所定受信レベル以上の信号でかつ位相部れ
のないように選ばれた波数のゲートヲ出力するゲート制
御回路と、このゲート制御回路の出力ゲートにより前記
パルス化信号をそれぞれ選択するゲート回路とを有する
ことを特徴とする水中位置測定装置。
three or more wave receiving elements that receive signals sent from a sounding body of an underwater target, a pulsing circuit that amplifies each signal received by each of these wave receiving elements and converts them into pulse signals, and pulsing these signals. underwater position measurement comprising: a phase difference detection circuit that detects a phase difference between each signal; and a distance measurement circuit that measures a direct distance from the time from the time of transmission of the sounding body to the time of reception of the wave by each of the reception elements. In the apparatus, a gate control circuit outputs a gate of a wave number selected such that the signal is at a predetermined reception level or higher and has no phase shift from the output of the distance measuring circuit, and the pulsed signal is controlled by the output gate of the gate control circuit. An underwater position measuring device characterized by having a gate circuit that selects each of the following.
JP18234182A 1982-10-18 1982-10-18 Measuring device of underwater position Granted JPS5972074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18234182A JPS5972074A (en) 1982-10-18 1982-10-18 Measuring device of underwater position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18234182A JPS5972074A (en) 1982-10-18 1982-10-18 Measuring device of underwater position

Publications (2)

Publication Number Publication Date
JPS5972074A true JPS5972074A (en) 1984-04-23
JPH0117553B2 JPH0117553B2 (en) 1989-03-30

Family

ID=16116612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18234182A Granted JPS5972074A (en) 1982-10-18 1982-10-18 Measuring device of underwater position

Country Status (1)

Country Link
JP (1) JPS5972074A (en)

Also Published As

Publication number Publication date
JPH0117553B2 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
US5796009A (en) Method for measuring in a fluid with the aid of sing-around technique
JP2859514B2 (en) Doppler shift correction pulse type fishing net depth gauge
JPH02102477A (en) Ultrasonic distance measuring instrument
GB1194282A (en) Determination of Ocean Sound Velocity Profiles.
JPS5972074A (en) Measuring device of underwater position
US3781774A (en) Method for determining the distance travelled over by vehicle with respect to a reference surface, making use of the doppler{40 s effect and device therefor
JP2837484B2 (en) Doppler speed detector
JP2528973B2 (en) Underwater detector
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JP2009174968A (en) Obstacle detection apparatus
JPS63193085A (en) Ultrasonic range finder
JPS62204733A (en) Ultrasonic doppler diagnostic apparatus
JPH11304898A (en) Ranging method and device
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method
JPS55152476A (en) Measuring instrument
JPS61241685A (en) Ultrasonic range finder
JPS6130288B2 (en)
JPS622182A (en) Underwater position measuring instrument
JPS63109310A (en) Ultrasonic probe for measuring thickness of plate
JPH11183580A (en) Underwater position measuring device
JPH04252989A (en) Snow coverage meter
JPH109846A (en) Human body detector
JPH0833441B2 (en) Acoustic positioning device
JPS6342757B2 (en)
JPH0829530A (en) Fishfinder