JPS5972011A - Torsion meter and shaft horsepower meter using it - Google Patents
Torsion meter and shaft horsepower meter using itInfo
- Publication number
- JPS5972011A JPS5972011A JP18319282A JP18319282A JPS5972011A JP S5972011 A JPS5972011 A JP S5972011A JP 18319282 A JP18319282 A JP 18319282A JP 18319282 A JP18319282 A JP 18319282A JP S5972011 A JPS5972011 A JP S5972011A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- torsion
- meter
- light
- horsepower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
- G01L3/12—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/24—Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
- G01L3/242—Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity by measuring and simultaneously multiplying torque and velocity
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はねじり計およびこれを用いた軸馬力計の改良に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a torsion meter and a shaft horsepower meter using the same.
従来より第1図(a)に示すように内燃機関、蒸気@、
関、電動機等の原動機1で発生した動力、および推進器
、発電機、ポンプ、送風機等の受動機2で消費される動
力の大きさは動力計によって測定される。動力は動力を
伝達する中間伝達軸3の回転力率と回転速度との積に比
例する。従って回転速度は回転計により測定されるので
、動力計は単に軸3の回転力のみを測定する回転力率計
(トルクメータ)または軸3のねじれθ(第1図(b)
)を測定するねじり計(トーションメータ)をさす場合
が多い。Conventionally, as shown in Fig. 1(a), internal combustion engines, steam @,
A dynamometer measures the power generated by a prime mover 1 such as a motor, electric motor, etc., and the power consumed by a passive device 2 such as a propulsion device, generator, pump, or blower. The power is proportional to the product of the rotational power factor and the rotational speed of the intermediate transmission shaft 3 that transmits the power. Therefore, since the rotational speed is measured by a tachometer, the dynamometer can be a rotational power factor meter (torque meter) that simply measures the rotational force of the shaft 3, or a torsion θ of the shaft 3 (see Figure 1 (b)).
) is often referred to as a torsion meter.
ねじり計および、ねじり計を用いた軸馬力針(八じり動
力計)は、軸3のねじれθを測定する方法、原理、目的
等に従って、きわめて多くの種類が考案され設計製作さ
れている(日本舶用機関学会誌第16巻第10号参照)
C軸3のねじれθを測定する一般的な方法としては、特
別な測定用弾他軸を用いる場合と、実際の動力伝達I軸
3の外部に測定装置4(第1 +9 (a) )を付設
する場合とがあり、その測定原理(d1軸3のある標点
距jiiil L間のねじれによる角度の変化θを、あ
る半量の位置変化量に変え(cc’十cc’−aθ−δ
)(第1図(1)))、これを機械的、光学的、電気的
に…11定するか、あるいは磁歪などトルクにより変化
する物理lに変えて直接測定している。これによって得
られた測定値により、公式試運転に必要な船の契約法度
に要する軸馬力の測定、エンジンの燃料消費量の割合、
将来の設計に必要な実船と模型船との相似則に関する資
料等のデータや、運航管理に必要なエンジンの経済運転
に要する燃料消費量との比、船の運航の最高効率と船体
や推進器軸性能の1)命、軸出力の測定による運航−1
!理の合理化等のためのデータや、その他軸系の振動特
性やねじり振動についての管料啓、きわめて多くのテ〜
りを得ることができる。A wide variety of torsion meters and shaft horsepower needles (Yajji dynamometers) using torsion meters have been devised, designed and manufactured according to the method, principle, purpose, etc. of measuring the torsion θ of the shaft 3. (Refer to Journal of the Japan Society of Marine Engineers, Vol. 16, No. 10)
The general methods for measuring the torsion θ of the C-axis 3 include the use of a special measuring shaft, and the use of a measuring device 4 (1st +9 (a)) outside the actual power transmission I-shaft 3. The measurement principle (change the angle change θ due to torsion between a certain gauge length jiii L of the d1 axis 3 to a certain half of the position change amount (cc'0cc'-aθ-δ
) (Fig. 1 (1))), this is fixed mechanically, optically, electrically...11, or it is directly measured by changing it to a physical force such as magnetostriction that changes with torque. The measured values obtained through this method can be used to measure the shaft horsepower required for the ship's contract law required for official commissioning, the percentage of fuel consumption of the engine,
Data such as materials related to the rules of similarity between actual ships and model ships necessary for future design, the ratio of fuel consumption required for economical engine operation necessary for operation management, and the maximum efficiency of ship operation and hull and propulsion. 1) Operation by measuring life and shaft output of shaft performance-1
! Data for streamlining the process, management information on the vibration characteristics of shaft systems and torsional vibration, and a huge number of topics.
You can get more.
原動4幾1が中間軸3全;径で動力を伝達している時の
軸馬力は、受動機2の回転軸の回転数Nと回=3−
伝力率(ドルクツ′Pを測定することによって得られる
、回転力記′1゛ばそ゛れに出側して生ずる回転軸3の
ねじれθ(あるいはδ)をねじり計に」二って測定して
求められる。ねじれθは受動機2との干渉作用のため、
常に一層腹雑な変動を伴う。従って回転数一定の定常運
転の正・iWな軸馬力を得るためには、ねじれの平均値
が求められるねじり計を用いなければならない。公式試
運転の場合、船体は宝速で・i!lI]3の回転数Nお
よび回転力率Tは独立で、旨ぼ一定である。従って、回
転数Nを回転計で、回転力率Tをねじり計によりそれぞ
れ平均値を求め、次式から軸馬力Pが算出される(第1
図(1))参照)。The shaft horsepower when the prime mover 41 is transmitting power through the diameter of the intermediate shaft 3 is determined by measuring the number of rotations N of the rotating shaft of the passive device 2 and the number of rotations = 3 - power transmission factor (P). The torsion θ (or δ) of the rotating shaft 3, which is generated when the rotational force is outputted from the rotational force 1, is measured using a torsion meter.The torsion θ is determined by Due to the interference effect of
Always accompanied by more and more complicated fluctuations. Therefore, in order to obtain positive iW shaft horsepower in steady operation at a constant rotational speed, it is necessary to use a torsion meter that can calculate the average value of torsion. In the case of the official trial run, the hull will be displayed on Takarasoku and i! The rotational speed N and rotational power factor T of lI]3 are independent and approximately constant. Therefore, average values are obtained for the rotational speed N using a tachometer and the rotational power factor T using a torsion meter, and the shaft horsepower P is calculated from the following formula (first
(See Figure (1))).
P=π2D’GNθ/ 7.2− L ・1. G6−
(i)D゛軸径clrL)
G:軸胴の剛性率(kg/Crり
N゛軸の回転数(rpm)
Loねじり基準軸長(cm )
065間のねじり6r4 (rad )4−
しかるに、風波のめる一般外洋航海中では船内の動揺が
加わり、回転軸3の回転数N i−よび回転力率Tは船
の操縦法に関連して互いに干渉し合いそれぞれ独立では
ない。従って時々刻々変動する回転数N、回転力率T、
および両者の4?J (T X N)である軸馬力Pの
時間的変化が計測できる高精度で耐久性のある安価なね
じり計およびこれを用いた軸馬力計が要求されていた。P=π2D'GNθ/ 7.2- L ・1. G6-
(i) D゛Shaft diameter clrL) G: Rigidity modulus of shaft body (kg/CrN゛Rotation speed of shaft (rpm) Lo torsion reference shaft length (cm) Torsion between 065 6r4 (rad) 4- However, During a general ocean voyage in the presence of wind and waves, the inside of the ship is shaken, and the rotational speed N i- of the rotating shaft 3 and the rotational power factor T interfere with each other in relation to the ship's maneuvering method and are not independent of each other.Therefore, they fluctuate from time to time. Rotation speed N, rotation power factor T,
and both 4? There has been a demand for a highly accurate, durable, and inexpensive torsion meter capable of measuring temporal changes in shaft horsepower P, which is J (T x N), and for a shaft horsepower meter using the same.
多くのねじり計はその基本的な構造面から長い基線を用
いる円板型、スリーブ型、円環型、その他の型に大別さ
れ、比較的に新しいものでもl。Many torsion gauges are broadly classified into disk type, sleeve type, toroidal type, and other types based on their basic structure, and even relatively new types are l.
数種類をかぞえることができ、さらに、ねじれの検出・
測定方法によってそれぞれ機械的、光学的、電気的な型
に分類される。例えば、第1図tc)はスリーブ型、同
図(d)は円環型のねじり計を示したもので、回転する
伝達軸3の基線5(長さL)の各々にディスク6、スリ
ーブ7、(あるいは円環8.8′)をそれぞれ固定し、
回転中の軸3のねじれθすなわちディスク6とスリーブ
7(あるいは円環8.8’)との微小な変位δ(δ−R
θ)を、それぞれ機械的、光学的、電気的な方法によっ
て測定するものである。また、光学的測定方法は、近年
尤学的デバイスの進歩と共に反射手段を用いないで直接
に変位δを計測することができるようになりつつある。It is possible to measure several types, and it is also capable of detecting twists and
They are classified into mechanical, optical, and electrical types depending on the measurement method. For example, Fig. 1 (tc) shows a sleeve-type torsion meter, and Fig. 1 (d) shows a torsion meter of an annular type. , (or ring 8.8') are fixed respectively,
The torsion θ of the shaft 3 during rotation, that is, the minute displacement δ (δ−R
θ) is measured by mechanical, optical, and electrical methods, respectively. Further, with the recent advances in optical devices, it has become possible to directly measure the displacement δ without using a reflecting means in the optical measurement method.
従来例として第1図(d)に示した円環型の光学的ねじ
り計について簡単に説明する。As a conventional example, an annular optical torsion meter shown in FIG. 1(d) will be briefly described.
中・間伝達軸3の長さLの基線5の各々に金属環8.8
′を回転軸Q几と垂直に固定し、その上に光イア1 S
と曲率半径りの凹面鏡Mを対向して設け、さらにレンズ
■、プリズムG1フィルムFとがそれぞれ軸3に設けて
あり、Oは曲率中心、Cは鏡心、従ってOCは主軸で、
軸3の回転軸の中心線QRと平行になるように固定しで
ある。0を通りかつ主軸OCと直角ななす直M X+
、X2の延長上の任意のへにスリット状の光源sl置く
と、0点に関して対称かつ同大の反射像Pが得られる。A metal ring 8.8 is attached to each of the base lines 5 of the length L of the intermediate and intermediate transmission shafts 3.
' is fixed perpendicular to the rotation axis Q, and optical ear 1 S is placed on top of it.
A concave mirror M with a radius of curvature of .
It is fixed so as to be parallel to the center line QR of the rotation axis of the shaft 3. A straight line M X+ that passes through 0 and is perpendicular to the main axis OC
, X2, if a slit-shaped light source sl is placed anywhere on the extension, a reflected image P that is symmetrical and the same size with respect to the 0 point is obtained.
今、軸3が右廻りに回転する推進器とすれば、反対の向
きにねじれるので、凹面鏡Mは一亀源Sを通る直線XI
S X2と平行にδだけ変位してM′の位置すなわち
主軸OCは0′C′に移動する。従って、光源Sの像は
O′と対称な(ゝ′に移動して明らかにPP’ =2a
(基線5の長さLlmで約0.5 ynm程度)となる
。Now, if the shaft 3 is a propulsion device that rotates clockwise, it will twist in the opposite direction, so the concave mirror M will pass through the straight line
The position of M', that is, the main axis OC, moves to 0'C' by displacing δ in parallel to S X2. Therefore, the image of the light source S is symmetrical to O' (moves to '' and clearly PP' = 2a
(The length Llm of the base line 5 is about 0.5 ynm).
この変位2δをレンズ■で拡大し、特殊プリズムGを通
して回転軸3の回転方向X、I:’X、、 と直交す
る@X′IPIX′2で回転するフィルム1面上にP′
の像P1を結像させることができる。このようにねl〕
れθは全く光学的方法によってフィルムFの面上((現
われるので、回転中の軸3の回転力率Tの変化は、軸3
の回転に伴いフィルムFを矢印方向に回転することによ
って連α的に得られる。そ1.て軸3の外周面上の両側
に対称に、同−光学系金一封装備して両者の平均値から
常に正しい零点を求め、軸3のたわみによる影響分を除
く考慮を払うようにしである。零負荷の状態で回転軸3
を左右一回転さ4tだ画記録の平均値、すなわち静的零
、ガの記録を無負荷時の読みΔ0としてフィルム1面上
にとる。次に負荷時のねじれの変化を動的零、〒9とし
て記働し、1回転分のモ均・;直をΔ′とする。これよ
り両者の差Δ′−Δ0−Δが−12−向回転力率に相7
−
当するねじれとなる。従ってとの時の回転軸3の1川転
数−zNとすれば軸馬力Pは次式から得られる。This displacement 2δ is magnified by a lens ■, and passed through a special prism G onto the surface of the film rotating at @X'IPIX'2 perpendicular to the rotational direction X, I:'X,, of the rotating shaft 3.
An image P1 can be formed. Like this]
Since the angle θ appears on the plane of the film F ((() by an optical method, the change in the rotational power factor T of the shaft 3 during rotation is
can be obtained continuously α by rotating the film F in the direction of the arrow along with the rotation of . Part 1. The same optical system is mounted symmetrically on both sides of the outer peripheral surface of the shaft 3, and the correct zero point is always determined from the average value of both, and consideration is given to excluding the influence due to the deflection of the shaft 3. . Rotating shaft 3 under zero load
The average value of the image recorded after one rotation left and right by 4t, that is, the recording of static zero, is taken on one side of the film as the reading Δ0 at no load. Next, the change in torsion under load is recorded as the dynamic zero, 〒9, and the average straightness for one rotation is expressed as Δ'. From this, the difference Δ'-Δ0-Δ between the two becomes the -12-direction rotational power factor of phase 7.
− The torsion will be the same. Therefore, if the one-river rotation number of the rotating shaft 3 at the time of is -zN, the shaft horsepower P can be obtained from the following equation.
P=k・Δ N −−−−−−(2)k、ねじυ計
定数
Δ:フイルム面上の像の平均変位(mm)N:軸の回転
数(rpm)
ところで、相対的微小変位δを光学的方法で拡大する上
述のような円環型・ねじり計では、基本軸長■」が長く
、装置類を装備するのに要する空間が広く装置の調整、
取付けが困難であったCまだ、スリーブ等を用いるもの
にあっては、装置類の機械的要素が装着されるため、そ
の質量分布が回転軸9丁(、に対して不均等となり、遠
心力等の慣性力を受ける。また、光源部や反射手段等の
質量が太きいため、外界から振動を受けやすく、それに
よる誤差が大きくなる。また、装備上光源のスリット像
の幅が広くなりすぎ、光学的倍率を高めることができか
かった。そして、軸3の回転数Nは、−走航間の平均値
を求めているためその誤差が太8−
きかった。しかもねじ!l′1訂によっては、試運転完
了エンジン停止後でなければ軸馬力の請宋ハ得られない
等の多くの難点があった。P=k・Δ N −−−−−−−(2) k, screw υ meter constant Δ: average displacement of image on film surface (mm) N: rotation speed of shaft (rpm) By the way, relative minute displacement δ The annular torsion meter described above, which uses optical methods to magnify the image, has a long basic axis length and requires a large space to install equipment, making it difficult to adjust the equipment.
Installation was difficult.However, in the case of devices that use sleeves, etc., the mechanical elements of the devices are attached, so the mass distribution becomes uneven with respect to the nine rotating shafts, and centrifugal force In addition, because the mass of the light source and the reflecting means is large, it is susceptible to vibration from the outside world, which increases errors.Also, due to the equipment, the width of the slit image of the light source becomes too wide. , it was almost impossible to increase the optical magnification.And since the rotation speed N of shaft 3 was calculated as an average value over a period of 100-0000 0000000000000000000 Depending on the revision, there were many drawbacks, such as the fact that the shaft horsepower could not be obtained until after the test run was completed and the engine was stopped.
本発明は上述のような従来の錐点ケ解消するためになさ
れたもので、回転する軸の外周面上に、その長手方向に
対向して設けた光源と、光源からの光線を反射する反射
手段と、反射手段からの反射光を受光する一次元装置検
出素子とを塔載して、素子により回転する軸のねじれを
検出すると共に、素子からの出力が印I1口されて、こ
れに対応する回転する軸のねじれ量を表示し記録する外
部裟Mを備えたねじり計、および回転する軸のねじれ量
と回転計からの回転数とを演算処理し、回転する軸の軸
馬力を算出して軸馬力を表示し記録する外部装置を備え
た軸馬力計を提供することを目的とする。本発明によれ
ば、高精度で耐久性のある@量コンパクトで安価な直読
式のねじり計およびこれを用いた軸馬力計4得ることが
できる。The present invention was made in order to solve the problem of conventional conical points as described above, and includes a light source provided on the outer peripheral surface of a rotating shaft so as to face each other in the longitudinal direction thereof, and a light source that reflects the light rays from the light source. and a one-dimensional device detecting element that receives the reflected light from the reflecting means, the element detects the twist of the rotating shaft, and the output from the element is marked I1 to correspond to this. A torsion meter equipped with an external sleeve M that displays and records the amount of twist of the rotating shaft, and calculates the shaft horsepower of the rotating shaft by calculating the amount of twist of the rotating shaft and the number of rotations from the tachometer. An object of the present invention is to provide a shaft horsepower meter equipped with an external device for displaying and recording shaft horsepower. According to the present invention, it is possible to obtain a highly accurate, durable, compact, and inexpensive direct-reading torsion meter and a shaft horsepower meter 4 using the same.
以下本発明の一実施例を図面にもとづき詳細に説明する
。第2nta)は本発明のねじり計およびこれを1羽い
た軸馬力計の説明図である。ねじれおよび軸馬力の測定
原理は従来の測定原理と同一である。す々わち回転する
軸3の無負荷時における反射う℃の受光面における受光
位置と、負荷時における反射光の受光面における受光位
置との変位は、回転する・軸3のねじれ、つオり回転力
率(トルク)Tに比例する。従ってこの変位を検出して
電気信号として取り出しねじれ量とし、これにその時屯
での軸3の回転速度(回転数N)との積を演算回路によ
り処理して軸馬力Pの時間的変化が得ら・ルる。An embodiment of the present invention will be described in detail below with reference to the drawings. 2nd nta) is an explanatory diagram of the torsion meter of the present invention and a shaft horsepower meter including one of the torsion meters. The measurement principle of torsion and shaft horsepower is the same as the conventional measurement principle. In other words, the displacement between the light receiving position on the light receiving surface of the reflected light when the rotating shaft 3 is not loaded and the light receiving position on the light receiving surface of the reflected light when the rotating shaft 3 is loaded is determined by the rotation, twisting of the shaft 3, It is proportional to the rotational power factor (torque) T. Therefore, this displacement is detected and extracted as an electrical signal, which is used as the torsion amount, and the product of this and the rotational speed (rotational speed N) of the shaft 3 at that time is processed by an arithmetic circuit to obtain the temporal change in the shaft horsepower P. La Lulu.
この測定原理にもとづき、本発明によるねじれ計および
これを用いた軸馬力計は、第2図(a)に示すように、
回転する中間伝達軸3の外周面上に塔載されて、軸3と
共に回転する装置部分10(屯線内)と、この装置10
と適切な接続方式をとることにより装置10から送られ
る信号を演算処理し、かつ装置10に電力を供給する床
に設置される外部装置部分11(一点鎖線)あるいは1
1′(二点鎖線内)とからなっている。接続方式とじて
は光学的、機械的(例えばスリップコノククト等)、無
線変調波等その他種々の方式ケとることができるが、接
続信号数を少なくしてより正確に信号を伝達するため、
ある程度の前処理回路全軸3に塔載して無線変調波によ
る接続方式を採用し7である。Based on this measurement principle, the torsion meter according to the present invention and the shaft horsepower meter using the same are as shown in FIG. 2(a).
A device part 10 (inside the tomb line) mounted on the outer circumferential surface of the rotating intermediate transmission shaft 3 and rotating together with the shaft 3, and this device 10
External device section 11 (dotted chain line) or
1' (within the two-dot chain line). Various connection methods can be used, such as optical, mechanical (for example, slip connector), radio modulated waves, etc., but in order to reduce the number of connected signals and transmit signals more accurately,
A certain amount of preprocessing circuits are mounted on all the axes 3 and a connection method using radio modulated waves is adopted.
装置部10は第2図:a)に示すように、長手方向に基
線12に沿って所定の距離(20〜30儒)に、軸3の
回転軸QR,と直角に固定された金属環8.8′を介し
て対置された光源(例えばヘリウム−ネオン・カスレー
ザーあるいは半導体レーザー発射装置)13と、直角プ
リズム14あるいは:2向の直角プリズム15.15”
(第2図(b))、または直角プリズムの代りにそれぞ
れコーナーキューブを用いた反射手段と、光源13に隣
接して配設てれた例えは−次元位置検出素子(PSD
: positionsensitive detec
tor )からなる受光部16と、受光面16の受光位
置からの電気信号を演算する処理回路17と、電気信号
を送信するための発振器1Bおよび変調器1りと、変調
された電気信号全発射するアンテナ20と、光源13お
よび各装置晩類は蹄硯力を供給する電源装置21とから
なり、それぞれ軽情小型化しである。As shown in FIG. 2:a, the device section 10 includes a metal ring 8 fixed at a predetermined distance (20 to 30 degrees) along the base line 12 in the longitudinal direction and perpendicular to the rotation axis QR of the shaft 3. A light source (for example, a helium-neon gas laser or a semiconductor laser emitting device) 13 and a right-angle prism 14 or a two-way right-angle prism 15.
(Fig. 2(b)), or a reflection means using a corner cube instead of a right-angle prism, and a -dimensional position detection element (PSD) disposed adjacent to the light source 13.
: position sensitive detect
tor), a processing circuit 17 that calculates the electrical signal from the light receiving position of the light receiving surface 16, an oscillator 1B and a modulator 1 for transmitting the electrical signal, and a modulated electrical signal emitting device. The antenna 20, the light source 13, and the power supply device 21 supplying power to each device are compact and compact.
PSDは一次元型半導体装置検出器で、例えば浜松テレ
ビ■のS l 352は、平板状ンリコンの表面にP層
の均一な抵抗層全構成し、両辺にそれぞれ電極が設けで
ある。そして電極と光スポットの距離に応じて光゛電流
が按分されるように々っていて、2つの電極からの光電
流の差が電極と光スポットの距離を正確にリアルタイム
に表わすことができ、直線的に移動する光スポットの位
置を連続した電気信号として出力することができる。ま
だ、広い波長領域で高感度であり、位置直線性、位置分
解能に優れ、応答速度が速く光強度と位置信号とを同時
に測定できるプレナー型のP I INフォトダイオー
ドである。この]) S j)は第2図telに示すよ
うに一次元の受光部16と3本の電極22−24からな
る。入射光は輔3のねじれθに比例した位置に与えられ
る。そして電極22.23間の距離を/!(抵抗値@、
l)、電極23から入射光の受光位置までの距離をX(
抵抗値aX )とすると、光の入射エネルギーはとれf
比例し7た光電流として、光の受光位置Xから電1ポ2
2.23までの低抗貞Rxに逆比例]、て分に1」され
、電極22.23から敗りIBされる。すなわち入射光
により生成したフ℃電流全To、電極′)、2.23か
ら取り出される直流をIA。A PSD is a one-dimensional semiconductor device detector, and for example, Hamamatsu TV's S 1 352 consists of a uniform resistance layer of a P layer on the surface of a flat silicone, and electrodes are provided on both sides. The photocurrent is divided proportionally according to the distance between the electrode and the light spot, and the difference in photocurrent from the two electrodes can accurately represent the distance between the electrode and the light spot in real time. The position of a linearly moving light spot can be output as a continuous electrical signal. However, it is a planar type P I IN photodiode that has high sensitivity in a wide wavelength range, excellent positional linearity and positional resolution, has a fast response speed, and can simultaneously measure light intensity and positional signals. This Sj) consists of a one-dimensional light receiving section 16 and three electrodes 22-24, as shown in FIG. The incident light is applied to a position proportional to the twist θ of the support 3. And the distance between electrodes 22 and 23 is /! (Resistance value@,
l), the distance from the electrode 23 to the receiving position of the incident light is X(
If the resistance value is aX ), then the incident energy of light is f
As a proportional photocurrent of 7, the electric current from the light receiving position
Inversely proportional to the low resistance Rx up to 2.23], it is 1' per minute and is defeated from electrode 22.23. That is, the total current To generated by the incident light and the direct current taken out from the electrode 2.23 are IA.
IB として、IA−(L−x)・■o/l、IB=x
−T、/lとなる。そして・寅SされIAとIBとの′
+1](■A七IB)、差(IA−IB )の比(IA
−IB)/(IA +IB )が求められて、出力■
。は(IA−IB>/(IA+IB )= 1−Kx、
(K= Vi )となる。このように入射エネルギーに
無関係に光の入射位11tに比例した直線性を待つ位置
信号が得らnる。As IB, IA-(L-x)・■o/l, IB=x
−T, /l. And then, the relationship between IA and IB
+1] (■A7IB), the ratio of the difference (IA-IB) (IA
-IB)/(IA +IB) is calculated, and the output ■
. is (IA-IB>/(IA+IB)=1-Kx,
(K=Vi). In this way, a position signal whose linearity is proportional to the light incident position 11t is obtained regardless of the incident energy.
外部装置4部11は、受信用アンテナ20′と装置部1
0からの変調波を受信し復調する受1笥器、復調器25
と、復調されて得られたねじりθ(ねじりθに比例する
トルク”f )についてのデータを示すアナログ表示話
2B、デジタル記錬器29からなっている。The external device 4 section 11 includes a receiving antenna 20' and a device section 1.
A receiver and demodulator 25 that receives and demodulates the modulated wave from 0
, an analog display 2B showing data on the demodulated torsion θ (torque "f" proportional to the torsion θ), and a digital recorder 29.
また外部装置部11′は、アンテナ20′と、受悟器、
″01調器25と、褒詞されて得られたねじりθ()a
じりθに比例するトルクT)についての信号と、軸回転
計26からの回転数Nについての信号とを演算処理する
処理装置27と、得られた軸馬力21回転数Nのデータ
をアナログあるいはデジタルに表示し記・録する装置3
11〜33とからなっている。そして装置部11.11
′には各装置にそれぞれ電力を供給する電源装置34が
設けてあり、′Ft 孫装置34と電源装置21とは軸
3に設けたプラン35を介してスリップコンタクセしで
ある。Further, the external device section 11' includes an antenna 20', a receiver,
″01 Adjustment 25 and the torsion θ()a obtained by complimenting
A processing device 27 that arithmetic processes a signal regarding the torque T) proportional to the torque θ and a signal regarding the rotation speed N from the shaft tachometer 26, and an analog or Digital display and recording device 3
It consists of numbers 11 to 33. and equipment section 11.11
'Ft is provided with a power supply device 34 for supplying power to each device, respectively, and the 'Ft grandchild device 34 and the power supply device 21 are slip-contacted via a planar 35 provided on the shaft 3.
このように構成された装置部10.11(あるいは11
′)は、軸3の回転と共にそれぞれ次のように動作する
。The device section 10, 11 (or 11) configured in this way
') operate as follows as the shaft 3 rotates.
まず電源装置21.34によって4!r装置に所定の電
力が供給される。まず光源13から発射されたレーザー
光線は対向して設けられた直角プリズム14 (あるい
は21固の直角プリズム15.15“(% 21d(b
) ) )で反射され、受光部16の受光位置Pで受光
されて静的零点が測定される。そして、合軸3が右まわ
りに回転するとすれば、軸3のねじれθに従って軸3の
回転軸Q1%と直角な方向に移動したプリズム14’(
6るいは1・5′(第2 iZ)山))の変位cc’(
−δ)に応じて受光面16において受光位置が2δ(あ
るいは4δ)たけ変位したP′で受光される。そして受
光面16に訃ける受光位置の、電極23からの変位X(
第21図・cl )に比例した位置信号vo = (1
−Kx ) が演算回路17によって得られる。この
位置信号■。)は、発振器1Q訃よび変調器19全介し
て変調され、この変調信号をアンテナ2gによって装置
11 (あるい+411Jのアンテナ21)′へ発射す
る。そしてアンテナ20′ヲ介して受信された信号は、
受信器、復調器25によって復調され位置信号■oとな
る。First, 4 by power supply 21.34! A predetermined power is supplied to the r device. First, the laser beam emitted from the light source 13 is transmitted through a right-angle prism 14 (or a 21-piece right-angle prism 15.15" (% 21d(b
) ) ) and is received at the light receiving position P of the light receiving section 16 to measure the static zero point. If the joint shaft 3 rotates clockwise, the prism 14' (
6 or 1.5' (second iZ) mountain)) displacement cc'(
-δ), the light receiving position on the light receiving surface 16 is received at P', which is displaced by 2δ (or 4δ). Then, the displacement X (
Fig. 21: Position signal vo = (1
-Kx) is obtained by the arithmetic circuit 17. This position signal ■. ) is modulated through the oscillator 1Q and the modulator 19, and the modulated signal is emitted by the antenna 2g to the device 11 (or +411J antenna 21)'. The signal received via the antenna 20' is
The signal is demodulated by the receiver and demodulator 25, and becomes a position signal (i).
この信号はねじれθ(ねじれθに比jIAJするトルク
′P)についてのは号で、この信号はアナログ表示器2
8およびデジタル記録器29に入力され、それぞれのデ
ータを表示する。This signal is a symbol for the torsion θ (torque 'P relative to the torsion θ), and this signal is displayed on the analog display 2.
8 and a digital recorder 29, and the respective data are displayed.
また、ねじれθ(ねじれθに比i夕11 jるトルク′
1゛)の信号は、装置11′の処理装置27に入力され
、軸3に別に設置された軸回幅計26による回転数Nの
信号が装置27に入力される。そして装置271ま、ト
ルクTと回転数Nとの積TxNを演算して軸馬力Pの時
間的変化を出力する。このようにして得られたi%l+
3に関する軸馬力11回転数Nのデータは、連続して
アナログ表示器30.32、およびデジタル記録器31
.33にそれぞれ表示され記録されるCまだ得られたチ
ー タは他の磯躇に供給することができる。Also, the torsion θ (torque 11 j relative to the torsion θ)
The signal 1') is input to the processing device 27 of the device 11', and the signal of the rotation speed N from a shaft width meter 26 separately installed on the shaft 3 is input to the device 27. Then, the device 271 calculates the product TxN of the torque T and the rotational speed N and outputs the temporal change in the shaft horsepower P. i%l+ obtained in this way
The data of shaft horsepower 11 rotation speed N regarding 3 is continuously displayed on the analog display 30, 32 and the digital recorder 31.
.. The resulting cheetahs can be fed to other Isohara.
以上の実施例からも明らかなように、本発明によるねじ
り計およびこれを用いた軸馬力計では、回転する軸の外
周面上に、その長手方向に対向して設けた光源と光源か
らの光線を反射する反射手段と、反射手段からの反射光
を受光する一次元位置検出素子とを塔載して、素子によ
シ回転する軸のねじれを検出すると共に、素子からの出
力が印加されて、これに対応する回転する軸のねじれ量
を喪示し記録する外部装置を備えたねじり計、および、
回転する軸のねじれ量と回転計からの回転数とを演算処
理し、回転する軸の軸馬力を算出して軸馬力を表示し記
録する外部装置を備えた軸馬力計としだので、高拮度で
耐久性のある軽量コンパクトでかつ安価となり、例えば
マイルポスト間の公試運転はその都度軸馬力Pが直読で
き、正常、異常、過度現象も蕗めたデータが得られるね
じり計およびこれを用いた軸馬−力計を堤供することが
できる。As is clear from the above embodiments, in the torsion meter according to the present invention and the shaft horsepower meter using the same, a light source is provided oppositely in the longitudinal direction on the outer peripheral surface of a rotating shaft, and a light beam from the light source is emitted from the light source. The device is equipped with a reflecting means for reflecting light and a one-dimensional position detecting element for receiving the reflected light from the reflecting means, and the twist of the rotating shaft is detected by the element, and the output from the element is applied. , a torsion meter having an external device for indicating and recording the corresponding amount of twist of the rotating shaft, and
The shaft horsepower meter is equipped with an external device that calculates the shaft horsepower of the rotating shaft by calculating the amount of torsion of the rotating shaft and the number of rotations from the tachometer, and displays and records the shaft horsepower, so it is highly competitive. The torsion meter is durable, lightweight, compact, and inexpensive, and for example, during test runs between mileposts, shaft horsepower P can be directly read each time, and data including normal, abnormal, and transient phenomena can be obtained using a torsion meter. The shaft horse-dynamometer can be provided.
第1図!、a)は中間伝達軸を介して連結さ′iする原
動機と受動機との関係を示す説明図、第1図市)は中間
伝達軸のねじれを示す説明図、第1図(C)は従来のス
リーブ型ねじシ計を示す説明図、第11.Xl(d)は
従来の光学式巴filをねしり計およびこれを用いた軸
馬力計を示す説明図、第2図(alは本発明のねじり計
およびこれを用(八た軸馬力計の説明図、第2図(b)
は2個の平面鏡を用いた反射装置潅の説明図、第2図(
C)は−次元位置検出素子(P8D7の演算処理回路の
説明図である、〜
3・・・・・・・・軸
10.11.11′・・・装置
12・・・・・・基線
13・・・・・光源
14.14′、15.15′、15”・・・反射手段1
13・・・・・−次元位置検出素子
17 ・・・・演算回路
1B ・・・・・発振器
19 ・・・・・変調器
20.20′・・・アンテナ
25・・・・・・受信器・復調器
26 ・・・・軸回幅計
27・・・・・・処理装置
28.30.32 ・・表示器
2!]、31.33 ・・記録器
代理人 弁理士 守 谷 −雄Figure 1! , a) is an explanatory diagram showing the relationship between a prime mover and a passive device connected via an intermediate transmission shaft, Figure 1 (C) is an explanatory diagram showing the torsion of the intermediate transmission shaft, and Figure 1 (C) is Explanatory diagram showing a conventional sleeve type thread gauge, No. 11. Xl (d) is an explanatory diagram showing a conventional optical torsion meter and a shaft horsepower meter using the same, and FIG. Explanatory diagram, Figure 2 (b)
Figure 2 is an explanatory diagram of a reflector using two plane mirrors.
C) is an explanatory diagram of the arithmetic processing circuit of the -dimensional position detection element (P8D7). ...Light source 14.14', 15.15', 15"...Reflection means 1
13...-dimensional position detection element 17... Arithmetic circuit 1B... Oscillator 19... Modulator 20.20'... Antenna 25... Receiver -Demodulator 26...Axis width meter 27...Processing device 28.30.32...Display device 2! ], 31.33 ...Recorder agent Patent attorney Moritani -Yu
Claims (1)
て設けた光源と該光源からの光線を反射する反射手段と
、該反射手段からの反射光を受光する一次元位置検出素
子とを塔載して、該素子により前記軸のねじれを検出す
ると共に、該素子からの出力が印加されて、これに対応
する前記軸のねじれ量を表示し記録する外部装置が設け
られたことを特徴とするねじり計。 2、回転する軸の外周面上に、その長手方向に対向して
設けた光源と該光源からの光plを反射する反射手段と
、該反射手段からの反射光を受光する一次元位置検出素
子とを塔載して、該素子により前記軸のねじれを検出す
ると共に、該素子からの出力が印加されて、これに対応
する前記軸の軸馬力を演算して表示し記録する外部装置
が設けられたことを特徴とする軸馬力計。[Claims] 1. A light source provided on the outer circumferential surface of a rotating shaft so as to face each other in the longitudinal direction thereof, a reflecting means for reflecting the light from the light source, and a reflecting means for receiving the reflected light from the reflecting means. An external device equipped with a one-dimensional position detection element, which detects the torsion of the shaft by the element, and displays and records the corresponding amount of torsion of the shaft upon application of the output from the element. A torsion gauge characterized by being provided with. 2. A light source provided on the outer peripheral surface of the rotating shaft so as to face each other in the longitudinal direction thereof, a reflecting means for reflecting the light PL from the light source, and a one-dimensional position detection element for receiving the reflected light from the reflecting means. and an external device is provided which detects the torsion of the shaft by the element, and calculates, displays and records the corresponding shaft horsepower of the shaft by applying the output from the element. A shaft horsepower meter characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18319282A JPS5972011A (en) | 1982-10-18 | 1982-10-18 | Torsion meter and shaft horsepower meter using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18319282A JPS5972011A (en) | 1982-10-18 | 1982-10-18 | Torsion meter and shaft horsepower meter using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5972011A true JPS5972011A (en) | 1984-04-23 |
Family
ID=16131378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18319282A Pending JPS5972011A (en) | 1982-10-18 | 1982-10-18 | Torsion meter and shaft horsepower meter using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5972011A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6348128U (en) * | 1986-09-12 | 1988-04-01 | ||
JPS6348127U (en) * | 1986-09-12 | 1988-04-01 | ||
US5642123A (en) * | 1994-08-30 | 1997-06-24 | Harada Industry Co., Ltd. | Apparatus for electrically driving a retractable antenna |
JP2020109384A (en) * | 2019-01-07 | 2020-07-16 | 株式会社Ihi検査計測 | Torsion gauge, shaft horsepower meter, torque meter, and elastic modulus measuring device |
-
1982
- 1982-10-18 JP JP18319282A patent/JPS5972011A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6348128U (en) * | 1986-09-12 | 1988-04-01 | ||
JPS6348127U (en) * | 1986-09-12 | 1988-04-01 | ||
US5642123A (en) * | 1994-08-30 | 1997-06-24 | Harada Industry Co., Ltd. | Apparatus for electrically driving a retractable antenna |
CN1079172C (en) * | 1994-08-30 | 2002-02-13 | 原田工业株式会社 | Apparatus for electrically driving a retractable antenna |
JP2020109384A (en) * | 2019-01-07 | 2020-07-16 | 株式会社Ihi検査計測 | Torsion gauge, shaft horsepower meter, torque meter, and elastic modulus measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5438882A (en) | Rotating shaft vibration monitor | |
US2392293A (en) | Torque measuring apparatus | |
CN107505477B (en) | Three-dimensional fiber Bragg grating wind speed and direction sensor and system | |
US4524322A (en) | Fiber optic system for measuring electric fields | |
US3850030A (en) | Apparatus for measuring the torsion of a rotating shaft | |
US20150010386A1 (en) | System for determining target misalignment in turbine shaft and related method | |
EP1014064B1 (en) | Rotor thrust measurements using fiber optic sensors | |
US6795779B2 (en) | High resolution torque measurement on a rotating shaft | |
KR20020067588A (en) | Method and system for optical distance and angle measurement | |
US3804522A (en) | System for remote reading the angular position of a surface by detecting polarized light reflected therefrom | |
JPS5972011A (en) | Torsion meter and shaft horsepower meter using it | |
US4446729A (en) | Sailing course computer | |
CN106989852B (en) | A kind of fibre optical sensor measuring stress direction | |
US5061069A (en) | Fiber-optic bender beam interferometer accelerometer | |
JPS62100629A (en) | Torsion meter and shaft horsepower meter using same | |
US5044749A (en) | Fiber-optic bender beam interferometer rate sensor | |
CN106091990B (en) | The big working distance autocollimation of portable array zeroing high dynamic precision and method | |
GB2125958A (en) | Torque measurement | |
JPH07104165B2 (en) | 2-axis rate gyroscope | |
CN106352814B (en) | The big working distance autocollimation of array zeroing high dynamic precision and method | |
SU970146A1 (en) | Torgue meter | |
JP3239682B2 (en) | Segment position measurement method | |
CN106017361B (en) | The big working distance autocollimation of array zeroing high frequency sound and method | |
CN109839074B (en) | White light interference type fiber integrated universal bending sensor | |
US3122644A (en) | Binocular star sensing system |