JPS5971346A - Flame-retardant, low-smoking polyolefin resin composition - Google Patents

Flame-retardant, low-smoking polyolefin resin composition

Info

Publication number
JPS5971346A
JPS5971346A JP18059282A JP18059282A JPS5971346A JP S5971346 A JPS5971346 A JP S5971346A JP 18059282 A JP18059282 A JP 18059282A JP 18059282 A JP18059282 A JP 18059282A JP S5971346 A JPS5971346 A JP S5971346A
Authority
JP
Japan
Prior art keywords
polyolefin resin
filler
flame
zinc borate
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18059282A
Other languages
Japanese (ja)
Inventor
Keiji Ueno
上野 桂二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18059282A priority Critical patent/JPS5971346A/en
Publication of JPS5971346A publication Critical patent/JPS5971346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled composition having low smoking tendency and free from emission of corrosive gas, and suitable for the wiring in a building, by compounding a polyolefin resin with a filler composed of a hydrated metallic oxide and zinc borate at a specific ratio. CONSTITUTION:The objective composition is prepared by compounding 100pts.wt. of a polyolefin resin with >=50pts.wt. of a filler composed of a hydrated metallic oxide (e.g. aluminum hydroxide) and zinc borate. The weight ratio of the hydrated metallic oxide in the filler is 0.25-0.75. The maximum amount of the filler added to the polyolefin resin is about 300pts.wt. when the resin is amorphous ethylene/alpha-olefin copolymer and about 150pts.wt. when it is crystalline polyethylene.

Description

【発明の詳細な説明】 本発明は、難燃性で煙の発生が少なくかつ腐食性ガスを
発生しない難燃、低煙ポリオレフィン樹脂組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame-retardant, low-smoke polyolefin resin composition that is flame-retardant, generates little smoke, and does not generate corrosive gases.

〔発明の背景〕[Background of the invention]

近年、ビル用配線や機器内配線山難燃性に対する要求は
益々厳しくなっており、難燃性であることは言うまでも
なく、発煙性も少なく、その上人体及び機器に悪影響を
及ぼす有害なガスを発生しないことが求められている。
In recent years, the requirements for flame retardancy for building wiring and equipment internal wiring have become increasingly strict.It goes without saying that it is flame retardant, but also has low smoke generation, and is free from harmful gases that have a negative impact on the human body and equipment. It is expected that this will not occur.

これらの要求を満たすには、ポリ塩化ビニル樹脂等のハ
ロゲンを分子構造に含む樹脂では、燃焼時に腐食性の有
害ガスを発生する為使用できない。又ポリオレフィン樹
脂等のハロゲンを含まない樹脂では、一般的にハロゲン
化合物から成る難燃剤を添加して難燃化を計っており、
この場合も、燃焼時にハロゲンガスが発生する。そこで
ハロゲンを使用しないいわゆる水和金属酸化物を添加し
て難燃性を付与する方法が有効となり、水利金属酸化物
として水酸化アルミニウム、、水酸化マ グネシウム等を使用することがよく知られている。
To meet these requirements, resins containing halogen in their molecular structure, such as polyvinyl chloride resin, cannot be used because they generate corrosive and harmful gases when burned. In addition, for resins that do not contain halogens such as polyolefin resins, flame retardants made of halogen compounds are generally added to make them flame retardant.
In this case, halogen gas is also generated during combustion. Therefore, a method of imparting flame retardance by adding so-called hydrated metal oxides that do not use halogens has become effective, and it is well known that aluminum hydroxide, magnesium hydroxide, etc. are used as water-use metal oxides. .

今、難燃性の評価方法の1つである酸素指数法(JIS
−に−7201 )によって、水和金属酸化物を充填し
たポリオレフィン樹脂の酸素指数を測定し、難燃化(酸
素指数が22以上になること)するに必要な水和金属酸
化物の添加量を求めると、第1図に示した様に50重量
部以上必要であることがわかる。次に、MBSスモーク
デンシティ−チャンバーを用いて発煙量を測定した所、
金属水和物50重量部添加のポリオレフィン樹脂では、
その最大煙密度(Dm )は187であった。一方、ポ
リオレフィン樹脂単体では、Dm=165、酸素指数は
19.0であった。このことから水和金属酸化物を添加
することにより難燃化は計れるものの、発煙特性はむし
ろ悪くなっていることがわかった。水和金属酸化物とし
て、水酸化アルミニウム、水酸化マグネシウム、水酸化
カルシウム等について検討した所、いずれも未添加に比
べこれらの充填剤を添加したポリオレフィン樹脂は、い
ずれも発煙量が多くなった。更に炭酸マグネシウム、炭
酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウ
ム等についても検討した結果、酸素指数の向上は計れる
ものの、発煙量は未添加よりも増加した。
Currently, one of the evaluation methods for flame retardancy is the oxygen index method (JIS
-7201) to measure the oxygen index of polyolefin resin filled with hydrated metal oxide, and calculate the amount of hydrated metal oxide added to make it flame retardant (oxygen index becomes 22 or more). As shown in FIG. 1, it is found that 50 parts by weight or more is required. Next, the amount of smoke produced was measured using an MBS smoke density chamber.
In polyolefin resin with addition of 50 parts by weight of metal hydrate,
Its maximum smoke density (Dm) was 187. On the other hand, for the polyolefin resin alone, Dm was 165 and the oxygen index was 19.0. From this, it was found that although flame retardance can be achieved by adding hydrated metal oxides, the smoke generation properties are rather worsened. When aluminum hydroxide, magnesium hydroxide, calcium hydroxide, etc. were investigated as hydrated metal oxides, polyolefin resins to which these fillers were added produced more smoke than those to which none were added. Furthermore, as a result of examining magnesium carbonate, calcium carbonate, aluminum silicate, magnesium silicate, etc., although it was possible to improve the oxygen index, the amount of smoke generated increased compared to when no additive was added.

そこで難燃性で、且つ低発煙性をもつポリオレフィン樹
脂を開発すべく鋭意検討した結果、本発明に到達した。
Therefore, as a result of intensive studies to develop a polyolefin resin that is flame retardant and has low smoke generation properties, the present invention was achieved.

〔発明の要約〕 本発明は、前述の水和金属酸化物にホウ酸亜鉛を添加す
ることにより、低煙化と難燃化を同時に計ることが出来
ることを見い出され、この知見に基いて為されたもので
、その要旨とするところはポリオレフィン樹脂に、充填
剤として水和金属酸化物とホウ酸亜鉛とを両者あわせて
50重量部とし、かつ、充填剤中の水和金属酸化物の比
率を〔発明の詳細な説明〕 本発明において、ポリオレフィン樹脂とは、ポリエチレ
ン、ポリプロピレン、エチレン−酢ビ共重合体、エチレ
ン−エチルアクリレート共重合体、エチレン−αオレフ
ィン共重合体、エチレン−プロピレン共重合体を意味す
る。
[Summary of the Invention] The present invention has discovered that by adding zinc borate to the above-mentioned hydrated metal oxide, it is possible to simultaneously achieve low smoke and flame retardancy, and based on this knowledge, improvements have been made. The gist of this is that a hydrated metal oxide and zinc borate are added as a filler to a polyolefin resin in a total of 50 parts by weight, and the ratio of the hydrated metal oxide in the filler is [Detailed Description of the Invention] In the present invention, polyolefin resins include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-α-olefin copolymer, and ethylene-propylene copolymer. It means union.

水和金属酸化物としては、水酸化アルミニウム、水酸化
マグネシウム、水酸化カルシウムなどが挙げられる。
Examples of hydrated metal oxides include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and the like.

水和金属酸化物とホウ酸亜鉛とを両者あわせた配合量が
50重量部以上である理由は、50重量部以上添加しな
いと樹脂組成物の酸素指数が21を越えず、可燃性であ
るからである。その最大配合量は、ポリオレフィン樹脂
の種類によって非常に異なるため一律に定められない。
The reason why the combined amount of hydrated metal oxide and zinc borate is 50 parts by weight or more is because if 50 parts by weight or more is not added, the oxygen index of the resin composition will not exceed 21 and it will be flammable. It is. The maximum blending amount varies greatly depending on the type of polyolefin resin and cannot be uniformly determined.

例えばポリオレフィン樹脂が、非結晶性のエチレンとα
−オレフィンの共重合体の場合は、300重量部程度ま
で配合が可能であるが、結晶性のポリオレフィン樹脂で
あるポリエチレンの場合は、最大配合量は150重量部
程度である。
For example, polyolefin resin is mixed with amorphous ethylene and α
- In the case of an olefin copolymer, it can be blended up to about 300 parts by weight, but in the case of polyethylene, which is a crystalline polyolefin resin, the maximum blending amount is about 150 parts by weight.

本発明において充填剤中の水和金属酸化物の重量比率が
0.25〜0.75のとき優れた低発煙性と難燃性を示
す。すなわち、重量比率が0.25未満のとき酸素指数
が21以下となり、0.75越えのとき発煙量が未添加
ポリオレフィン樹脂組成物より増加することになる。
In the present invention, when the weight ratio of the hydrated metal oxide in the filler is 0.25 to 0.75, excellent low smoke generation properties and flame retardance are exhibited. That is, when the weight ratio is less than 0.25, the oxygen index becomes 21 or less, and when it exceeds 0.75, the amount of smoke generated increases compared to a polyolefin resin composition without additives.

以下に本発明について具体例をもって説明する。The present invention will be explained below using specific examples.

第1表に示した配合で、所定のサイズの試料を作り、N
BSスモークチャンバーによる発煙量と酸素指数を測定
した。
Prepare a sample of a predetermined size using the formulation shown in Table 1, and
The smoke amount and oxygen index were measured using a BS smoke chamber.

その結果を第2図、第3図に示した。第2図から明らか
な様に、ホウ酸亜鉛を添加するに従い、発煙量の低下が
みられ、充填剤をすべてホウ酸亜鉛に置かえた場合には
第3図の難燃性が満たされない。第2図、第3図より、
水和金属酸化物/ホウ酸亜鉛の比率は0.25〜0.7
5が最適であることがわかる。この様に本発明による水
和金属酸化物とホウ酸亜鉛の組合せにより、低煙性かつ
難燃性で腐食性のガスを発生しないポリオレフィン組成
物が得られた。ポリオレフィン樹脂として、エチレン酢
酸ビニル共重合体以外の樹脂(ポリエチレン、エチレン
、エチルアクリレート共重合体、エチレンプロピレン共
重合体、エチレン−α=ニオレフイン重合体)について
同様の試験を行なった結果も第1〜8図と同様であった
。エチレン・エチルアクリレート共重合体及びエチレン
−プロピレン共重合体組成物についての結果をそれぞれ
第2表及び第3表に示す。又、水和金属酸化物として水
酸化マグネシウム及び水酸化カルシウムを用いた結果も
同様であった。水酸化マグネシウムを配合[7たエチレ
ン酢酸ビニル共重合体組成物についての結果を第4表に
示す。
The results are shown in FIGS. 2 and 3. As is clear from FIG. 2, as zinc borate is added, the amount of smoke generation decreases, and when all the filler is placed in zinc borate, the flame retardance shown in FIG. 3 is not satisfied. From Figures 2 and 3,
Hydrated metal oxide/zinc borate ratio is 0.25-0.7
It can be seen that 5 is optimal. Thus, the combination of hydrated metal oxide and zinc borate according to the present invention resulted in a polyolefin composition that is low smoke, flame retardant, and does not generate corrosive gases. Results of similar tests conducted on resins other than ethylene-vinyl acetate copolymer (polyethylene, ethylene, ethyl acrylate copolymer, ethylene propylene copolymer, ethylene-α=niolefin polymer) as polyolefin resins are also shown in Sections 1 to 1. It was the same as Figure 8. The results for the ethylene-ethyl acrylate copolymer and ethylene-propylene copolymer compositions are shown in Tables 2 and 3, respectively. Similar results were obtained when magnesium hydroxide and calcium hydroxide were used as the hydrated metal oxides. Table 4 shows the results for ethylene vinyl acetate copolymer compositions containing magnesium hydroxide.

第  1  表 ])エチレン−酢酸ビニル共重合体(酢酸ビニル量25
%)2)水酸化アルミニウム 第2表 EEA(エチレン−エチルアクリレート共重合体)  
100重量部・I=(a)  水酸化アルミ部数 *(b)ホウ酸亜鉛部数 第  3  表 EPゴム(エチレン−プロピレン共重合体)  100
重量部第  4  表 EVA(エチレン−酢ビ共重合体) 100重量部*(
b)ホウ酸亜鉛   (C)水酸化マグネシウム
Table 1]) Ethylene-vinyl acetate copolymer (vinyl acetate amount 25
%) 2) Aluminum hydroxide Table 2 EEA (ethylene-ethyl acrylate copolymer)
100 parts by weight / I = (a) Parts of aluminum hydroxide * (b) Parts of zinc borate Table 3 EP rubber (ethylene-propylene copolymer) 100
Parts by weight Table 4 EVA (ethylene-vinyl acetate copolymer) 100 parts by weight*(
b) Zinc borate (C) Magnesium hydroxide

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水和金属酸化物と酸素指数の関係を示すグラフ
である。 第2図は水和金属酸化物とホウ酸亜鉛混合物と発煙量関
係を示すグラフである。 第8図は水和金属酸化物とホウ酸亜鉛混合物と酸素指数
の関係を示すグラフである。 11図
FIG. 1 is a graph showing the relationship between hydrated metal oxides and oxygen index. FIG. 2 is a graph showing the relationship between a hydrated metal oxide, a zinc borate mixture, and the amount of smoke generated. FIG. 8 is a graph showing the relationship between hydrated metal oxide, zinc borate mixture, and oxygen index. Figure 11

Claims (1)

【特許請求の範囲】[Claims] (1)ポリオレフィン樹脂に、充填剤として水利金属酸
化物とホウ酸亜鉛とを両者あわせて50重量部以上とし
、かつ、充填剤中の水和金属酸化物の(2)水和金属酸
化物が水酸化アルミニウム、水酸1′ヒマグネシウム、
水酸化カルシウムから成る群より選ばれたものである特
許請求の範囲第(1)項記載の難燃、低煙ポリオレフィ
ン樹脂組成物
(1) The polyolefin resin contains a total of 50 parts by weight or more of a water-use metal oxide and zinc borate as a filler, and (2) the hydrated metal oxide in the filler is aluminum hydroxide, 1'hymagnesium hydroxide,
The flame-retardant, low-smoke polyolefin resin composition according to claim (1), which is selected from the group consisting of calcium hydroxide.
JP18059282A 1982-10-14 1982-10-14 Flame-retardant, low-smoking polyolefin resin composition Pending JPS5971346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18059282A JPS5971346A (en) 1982-10-14 1982-10-14 Flame-retardant, low-smoking polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18059282A JPS5971346A (en) 1982-10-14 1982-10-14 Flame-retardant, low-smoking polyolefin resin composition

Publications (1)

Publication Number Publication Date
JPS5971346A true JPS5971346A (en) 1984-04-23

Family

ID=16085951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18059282A Pending JPS5971346A (en) 1982-10-14 1982-10-14 Flame-retardant, low-smoking polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS5971346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213246A (en) * 1985-03-20 1986-09-22 Dainichi Nippon Cables Ltd Flame-retardant resin composition
CN1035438C (en) * 1993-02-19 1997-07-16 胡小弟 High temp. compounded binder
EP0850983A3 (en) * 1996-12-27 2001-01-24 Kaneka Corporation Flame-resistant resin material, flame-resistant resin magnet material, and electron beam controller comprising the flame-resistant resin magnet material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213246A (en) * 1985-03-20 1986-09-22 Dainichi Nippon Cables Ltd Flame-retardant resin composition
CN1035438C (en) * 1993-02-19 1997-07-16 胡小弟 High temp. compounded binder
EP0850983A3 (en) * 1996-12-27 2001-01-24 Kaneka Corporation Flame-resistant resin material, flame-resistant resin magnet material, and electron beam controller comprising the flame-resistant resin magnet material

Similar Documents

Publication Publication Date Title
US4791160A (en) Flame-retardant resin compositions
JPS59117549A (en) Flame-retardant low-smoking polyolefin resin composition
JPS6366339B2 (en)
JPS5971346A (en) Flame-retardant, low-smoking polyolefin resin composition
TW201137093A (en) Flameproofed polymer compositions
JP2592191B2 (en) Low smoke emitting flame retardant resin composition
JPS58109546A (en) Fire-retardant composition
JP2869817B2 (en) Flame retardant composition
KR0124033B1 (en) Wire insulating thermosetting resin composition
JPS62215644A (en) Flame-retardant resin composition
JPS5974138A (en) Lowly smoking flame-retardant polyolefin resin composition
JPS6088048A (en) Low-smoking flame-retardant resin composition
JPS6253358A (en) Flame-retardant composition
JPS60161444A (en) Low-smoking flexible composition
JP2003268250A (en) Nonhalogen flame-retardant composition and flame- retardant power source cord
JP2717269B2 (en) Flame retardant resin composition
JPS624734A (en) Flame-retarding composition
JPH03281553A (en) Flame retardant resin composition
JPH07149965A (en) Flame-retardant resin composition
JPS6227447A (en) Flame-retardant composition and flame-retardant wire and cable
JPS59202243A (en) Flame-retardant polyolefin resin composition
JPS58185638A (en) Polyvinyl chloride composition
JPS6222839A (en) Flame-retardant composition
JPS60252646A (en) Flame-retardant composition
JPH03182533A (en) Flame-retarding composition