JPS5971122A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS5971122A
JPS5971122A JP18073082A JP18073082A JPS5971122A JP S5971122 A JPS5971122 A JP S5971122A JP 18073082 A JP18073082 A JP 18073082A JP 18073082 A JP18073082 A JP 18073082A JP S5971122 A JPS5971122 A JP S5971122A
Authority
JP
Japan
Prior art keywords
thin film
head
magnetic
magnetically permeable
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18073082A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
健 高橋
Kenji Kanai
金井 謙二
Kiyoshi Sasaki
清志 佐々木
Ryuji Sugita
龍二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18073082A priority Critical patent/JPS5971122A/en
Priority to DE8383302024T priority patent/DE3374622D1/en
Priority to EP83302024A priority patent/EP0091812B1/en
Priority to US06/483,614 priority patent/US4613918A/en
Publication of JPS5971122A publication Critical patent/JPS5971122A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/399Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reproduce the short wavelength signal magnetization being a characteristic of the vertical magnetic recording efficiently and stably, by eliminating the ruggedness on the recording medium running surface, in an MR head for vertical magnetization signal reproduction without width loss, and thickness loss corresponding to gap loss. CONSTITUTION:A groove 2 having a depth being the sum of a desired groove depth (about 5mum) and an abrasion margin (about 5mum) is formed by polishing the surface of an insulating base 1 such as ferrite and applying electrolytic etching. Then, a nonmagnetic member 3 such as SiO is formed into a thickness over the depth of the groove 2. Further, the surface is polished and Ni-Fe alloy, e.g., is vapor-deposited by about 500Angstrom on the surface having the same mating plate of the ferrite base 1 with the SiO plane of the groove 2 and having a desired groove depth, electrodes 5, 6 are arranged at both ends in lengthwise direction of the MR element by photo etching, the MR element 4 is provided in parallel with the lengthwise direction of the notch groove 2, and an SiO protection film is formed into a thickness >=10mum by vapor-deposition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直磁化の再生に好適な薄膜磁気ヘッドに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film magnetic head suitable for reproducing perpendicular magnetization.

従来例の構成とその問題点 垂直磁気記録は従来の長手方向磁気記録よシ本質的に高
密度記録に適していることが知られている。しかし、再
生過程においてはまだいろいろ問題があった。例えば、
電磁誘導による巻線形磁気ヘッドで再生する場合には、
単磁極形ヘッドや、リング形ヘッドが提案されている。
Conventional Structures and Problems Perpendicular magnetic recording is known to be inherently more suitable for high-density recording than conventional longitudinal magnetic recording. However, there were still many problems during the regeneration process. for example,
When playing with a wound magnetic head using electromagnetic induction,
Single magnetic pole heads and ring heads have been proposed.

リング形ヘッドで再生する場合、垂直記録の特徴である
短波長信号を再生するためには、ギャップ長を極端に小
さくする必要があり、その場合磁気ヘッドの磁気回路能
率が非常に悪くなる。再生感度を上げるために巻線数を
増やしていくと、ヘッドインダクタンスの増大による自
己共振周波数が低下する。一方、記録波長の短波長化に
伴い信号周波数が高くなるため、磁気ヘッドの自己共振
周波数の低下は信号再生において、極めて不都合であっ
た。また、3  l−ニー’ 単磁極形ヘッドにおいても、巻線形であるため、同様の
問題をもっている0電磁誘導形ヘツドで共通したさらに
大きな問題は、ヘッドと記録媒体間の相対速度が小さい
場合、再生出力電圧が小さくなり、その対策としては巻
線数の増大となり、上記問題を大きくする。一方、磁気
ヘッドを多数並設するマルチトラック構成においては、
巻線スペースが問題となる0さらに、薄膜技術で構成す
る場合には、巻線数が限られ、高感度な再生ヘッドを実
現できない。
In the case of reproduction using a ring-shaped head, the gap length must be made extremely small in order to reproduce the short wavelength signal, which is a characteristic of perpendicular recording, and in this case, the efficiency of the magnetic circuit of the magnetic head becomes extremely poor. When the number of windings is increased in order to increase reproduction sensitivity, the self-resonant frequency decreases due to an increase in head inductance. On the other hand, since the signal frequency becomes higher as the recording wavelength becomes shorter, a decrease in the self-resonant frequency of the magnetic head is extremely inconvenient in signal reproduction. Also, since the 3L-knee single-pole head has a wound type head, a larger problem common to the 0 electromagnetic induction head, which has similar problems, is that when the relative speed between the head and the recording medium is small, The reproduced output voltage becomes smaller, and the countermeasure is to increase the number of windings, which increases the above problem. On the other hand, in a multi-track configuration in which many magnetic heads are arranged in parallel,
Furthermore, when using thin film technology, the number of windings is limited and a highly sensitive reproducing head cannot be realized.

これらの問題を解決するために、最近、磁気抵抗効果(
以下MRと略記する)ヘッドが注目されている。従来の
MRヘッドは、例えば、短冊状MR素子の長手方向に電
流を流し、記録媒体にMR素子を垂直に配置し、信号磁
界が素子面内に、長手方向と直角に入る素子単体形MR
ヘッドがある。このタイプのMRヘッドでは、ヘッド構
造のみに起因する波長応答特性はMR素子幅Wによって
決定されることが知られている0この波長損失を充分小
さくするためには素子幅Wを波長λ程度にする必要があ
り、これは短波長指向の−、ラドにとっては極めて不利
である。一方、MR素子の厚さ方向の両側に高透磁率の
磁性体を配置したシールド形MRヘッドがある。このタ
イプのMl’Lヘッドは従来のリング形巻線ヘッドと略
同じ波長応答を示し、かなり短波長まで高感度に使用で
きることが知られている。しかし、MR素子と両側の高
透磁率磁性体との間には磁気的、電気的な絶縁を施す必
要があり、この間の絶縁層厚q1 + 92が従来のリ
ング形巻線ヘッドのギャップ長に相当する。
In order to solve these problems, recently the magnetoresistive effect (
(hereinafter abbreviated as MR) heads are attracting attention. A conventional MR head is, for example, a single-element MR head in which a current is passed in the longitudinal direction of a strip-shaped MR element, the MR element is arranged perpendicularly to the recording medium, and a signal magnetic field enters the element plane at right angles to the longitudinal direction.
There is a head. In this type of MR head, it is known that the wavelength response characteristic caused only by the head structure is determined by the MR element width W. In order to sufficiently reduce this wavelength loss, the element width W must be set to approximately the wavelength λ. This is extremely disadvantageous for short-wavelength oriented RAD. On the other hand, there is a shield type MR head in which a magnetic material with high magnetic permeability is arranged on both sides of the MR element in the thickness direction. It is known that this type of Ml'L head exhibits substantially the same wavelength response as a conventional ring-shaped wire-wound head, and can be used with high sensitivity up to considerably short wavelengths. However, it is necessary to provide magnetic and electrical insulation between the MR element and the high permeability magnetic materials on both sides, and the insulation layer thickness q1 + 92 between them is equal to the gap length of the conventional ring-shaped wire-wound head. Equivalent to.

さらに、近似的にはql のギャップ損失と92のギャ
ップ損失の積の形になるため、短波長におけるギャップ
損失を充分小さくするためには、ql。
Furthermore, since the approximate form is the product of the gap loss of ql and the gap loss of 92, in order to make the gap loss at short wavelengths sufficiently small, ql.

q2共極端に小さくする必要があり、この状況下で磁気
的、電気的にリークのない狭ギャップ長を形成すること
は極めて困難である。
Both q2 must be extremely small, and under this situation it is extremely difficult to form a narrow gap length free from magnetic and electrical leakage.

以上のような問題点を解決したものとして本発明者らは
次のような薄膜ヘッドを提案したC特願昭57−627
31号)。即ち、同薄膜ヘッドは、両端に電極を有する
N i −F e 、 N 1−Coなどの強磁5 ノ
ーン 性体よりなるMR素子の幅方向の一端が記録媒体に面し
、他端部を記録媒体と接する透磁性体の一端を磁気的に
結合した構造の薄膜ヘッドで、高密度記録領域における
電磁変換特性に大きく関与する磁気ギャップを有せず、
MR素子幅に起因する幅損失が解消されているという特
徴を有する。図面を用いて具体的に説明すると、第1図
及び第2図に示すように、フェライトのような絶縁性磁
性基板1の表面に切欠き溝2を設け、その切欠き部に非
磁性材3を充填し基板1の表面と同−而に仕上げられた
新たな表面上に例えば、Ni−Fe合金を蒸着手段で5
0’O人程度の厚さに被着し、写真食刻技術で電極6,
6をMR素子4の長手方向の両端に配置し、MR素子4
を切欠き溝2の長手方向と平行に設ける。その後、MR
素子を保護する為、保護膜あるいは保護基板13(第1
図には表示せず)を配置する。MR素子4の上端部を磁
性基板1中に設けられた切欠き溝2の上端部9と磁気的
に結合し、MR素子4の下端部は記録媒体7と当接して
いる。磁性基板1のMR素子4と略直6ページ 角な面1oは記録媒体7と当接する面であり、矢印8は
媒体の移動方向である。なお、切欠き溝の媒体移動方向
の寸法は、リングヘッドのギャップとして動作しない程
度に大きく、扱う信号波長によっても異なるが、5μm
以上あるのが望ましい。
In order to solve the above-mentioned problems, the present inventors proposed the following thin film head in Japanese Patent Application No. 57-627.
No. 31). That is, in the thin film head, one end in the width direction of an MR element made of a ferromagnetic 5-non material such as Ni-Fe or N-Co, which has electrodes at both ends, faces the recording medium, and the other end faces the recording medium. A thin-film head with a structure in which one end of a magnetically permeable material in contact with the recording medium is magnetically coupled, and it does not have a magnetic gap that greatly affects electromagnetic conversion characteristics in high-density recording areas.
A feature is that width loss caused by the MR element width is eliminated. To explain specifically using the drawings, as shown in FIGS. 1 and 2, a notch groove 2 is provided on the surface of an insulating magnetic substrate 1 such as ferrite, and a non-magnetic material 3 is placed in the notch. For example, 55% of Ni-Fe alloy is deposited on the new surface which is filled with Ni-Fe alloy and finished in the same manner as the surface of the substrate 1.
The electrode 6 is deposited to a thickness of about 0'O,
6 are arranged at both ends of the MR element 4 in the longitudinal direction, and the MR element 4
are provided parallel to the longitudinal direction of the notch groove 2. After that, M.R.
In order to protect the element, a protective film or protective substrate 13 (first
(not shown in the figure). The upper end of the MR element 4 is magnetically coupled to the upper end 9 of the notch 2 provided in the magnetic substrate 1, and the lower end of the MR element 4 is in contact with the recording medium 7. A surface 1o of the magnetic substrate 1 that is approximately perpendicular to the MR element 4 is the surface that comes into contact with the recording medium 7, and an arrow 8 is the direction of movement of the medium. Note that the dimension of the notch groove in the medium movement direction is large enough that it does not act as a gap in the ring head, and although it varies depending on the signal wavelength handled, it is about 5 μm.
It is desirable that there be more than that.

以上のようなMRヘッドは、記録媒体として、ベース1
2と垂直磁化膜7の間に軟磁性層11を介在させた垂直
2層膜媒体を用いることによって高性能の特性が実現で
きる。即ち、垂直記録媒体7に記録された信号磁化から
発生する磁束は、MR素子4の下端部から導かれ、MR
素子4を通ってその上端部から基板1中の切欠き溝2の
端部9に導かれ、基板1を通って媒体7との当接面1゜
に導かれ、媒体7に戻り、軟磁性層11を通ってMR素
子4の下端部に戻る閉磁路構成を形成する。
The above MR head uses base 1 as a recording medium.
By using a perpendicular two-layer film medium in which a soft magnetic layer 11 is interposed between the perpendicularly magnetized film 7 and the perpendicularly magnetized film 7, high performance characteristics can be achieved. That is, the magnetic flux generated from the signal magnetization recorded on the perpendicular recording medium 7 is guided from the lower end of the MR element 4, and
It passes through the element 4, is guided from its upper end to the end 9 of the notch groove 2 in the substrate 1, is guided through the substrate 1 to the contact surface 1° with the medium 7, and returns to the medium 7, and the soft magnetic A closed magnetic path configuration is formed through the layer 11 and back to the lower end of the MR element 4.

一方、磁気記録媒体として最近金属蒸着テープが盛んに
開発されるようになっているが、このような導電性記録
媒体を用いた場合、前記Ml(ヘッドのようにMR素子
が媒体と接触する構造では電気的リークの問題が生じる
。このような場合でも71ノ 使えるヘッドとして本発明者は第3図に示すようなMR
ヘッドを提案した(特願昭57−62728号)0即ち
、基本構成および動作原理は先に提案したMRヘッドと
同様であるが、MR素子4を媒体から離して配置し、一
端が記録媒体7に面し、他端がMR素子4と磁気的に結
合すると同時に電気的にはMR素子4と絶縁された透磁
性薄膜14を配置した構成である。第4図は他の実施例
を示し、MR素子4と透磁性薄膜14の間に非磁性材よ
りなる絶縁薄膜15を配置した構成である。
On the other hand, metal-deposited tapes have recently been actively developed as magnetic recording media, but when such conductive recording media are used, the Ml (a structure in which the MR element contacts the medium like a head) In this case, the problem of electrical leakage occurs.Even in such a case, the inventor has developed an MR head as shown in Fig. 3 as a usable head.
The head was proposed (Japanese Patent Application No. 57-62728) 0. That is, the basic structure and operating principle are the same as the previously proposed MR head, but the MR element 4 is placed away from the medium, and one end is connected to the recording medium 7. In this configuration, a magnetically permeable thin film 14 is disposed, which faces the MR element 4 and whose other end is magnetically coupled to the MR element 4 and at the same time electrically insulated from the MR element 4. FIG. 4 shows another embodiment, in which an insulating thin film 15 made of a non-magnetic material is disposed between the MR element 4 and the magnetically permeable thin film 14.

上記提案したMRヘッドは垂直磁化の再生に好適な磁気
ヘッドであるが、いずれの場合もその製造において切欠
溝3の中に充填する非磁性材としては充填作業に適した
比較的低融点のガラスを用い、保護膜13としては薄膜
部に密着するようにSiO等を蒸着で厚く形成していた
。このような構成のヘッド表面を記録媒体が走行すると
、第5図に示すように偏摩耗によって大きな凹凸が発生
し、Si□□□)らなる保護膜の部分がガラス充填部に
対し約0.1〜0.2μm程突出してしまい、垂直磁気
記録の特徴である短波長信号の再生に際し大きなスペー
ス損失になってしまい、上記MRヘッドの高密度な特性
を充分に引き出すことが出来なかった。
The MR head proposed above is a magnetic head suitable for reproducing perpendicular magnetization, but in any case, the non-magnetic material to be filled into the notch groove 3 during manufacture is glass with a relatively low melting point suitable for the filling operation. was used, and the protective film 13 was formed thickly by vapor deposition of SiO or the like so as to be in close contact with the thin film portion. When a recording medium runs on the head surface with such a configuration, large irregularities occur due to uneven wear as shown in FIG. It protruded by about 1 to 0.2 μm, resulting in a large space loss when reproducing short wavelength signals, which is a characteristic of perpendicular magnetic recording, and the high-density characteristics of the MR head could not be fully exploited.

発明の目的 本発明は、上記のように、幅損失、ギャップ損失に相当
する厚み損失のない垂直磁化信号再生用MRヘッドにお
いて記録媒体走行面の凹凸を解消し垂直磁気記録の特徴
である短波長信号磁化を効率よく安定に再生する薄膜磁
気ヘッドを提供することを目的とするものである。
Purpose of the Invention As described above, the present invention is an MR head for perpendicular magnetization signal reproducing without width loss or thickness loss corresponding to gap loss, which eliminates unevenness on the running surface of a recording medium and achieves a short wavelength characteristic of perpendicular magnetic recording. The object of the present invention is to provide a thin film magnetic head that efficiently and stably reproduces signal magnetization.

発明の構成 本発明は上記の目的を達成するために以下の部材によっ
て構成することを特徴とする。
Structure of the Invention In order to achieve the above object, the present invention is characterized by being structured by the following members.

(a)1端が記録媒体側に面した少なくともMR素子を
含む透磁性薄膜群。
(a) A group of magnetically permeable thin films including at least an MR element with one end facing the recording medium side.

(b)1端部が記録媒体近傍に配置され、他端部が前記
MR素子に磁気的に結合した透磁性体。
(b) A magnetically permeable body having one end disposed near the recording medium and the other end magnetically coupled to the MR element.

(C)前記透磁性薄膜群と透磁性体の間の少くとも記録
媒体に面する近傍に配置された非磁性体、(d)  前
記非磁性体と略等しいビッカース硬度の91°−ジ 非磁性材料よりなる透磁性薄膜の保護部材。
(C) a nonmagnetic material disposed at least in the vicinity facing the recording medium between the magnetically permeable thin film group and the magnetically permeable material; (d) a 91° di-nonmagnetic material having a Vickers hardness approximately equal to that of the nonmagnetic material; A magnetically permeable thin film protective member made of material.

本発明によれば、部材a、b、cの構成で垂直記録媒体
に記録された信号磁化を閉磁路構成を形成して再生する
ことにより、幅損失やギャップ損失に相当する厚み損失
がなく、更に部材dを導入する事により、透磁性薄膜群
の両側の非磁性体のビッカース硬度を等しくする事によ
って偏摩耗が無くなり、透磁性体薄膜群近傍の記録媒体
走行面の凹凸によるスペース損失を解消し、短波長信号
を高効率で再生する事ができる。
According to the present invention, by forming a closed magnetic circuit configuration and reproducing signal magnetization recorded on a perpendicular recording medium with the configuration of members a, b, and c, there is no thickness loss corresponding to width loss or gap loss. Furthermore, by introducing member d, the Vickers hardness of the non-magnetic material on both sides of the magnetically permeable thin film group is made equal, thereby eliminating uneven wear and eliminating space loss due to unevenness on the recording medium running surface near the magnetically permeable thin film group. Therefore, short wavelength signals can be regenerated with high efficiency.

実施例の説明 構成は第1図〜第4図に示すものと同一であるが、ここ
では、第1図および第2図を用いて説明する。
Although the explanation structure of the embodiment is the same as that shown in FIGS. 1 to 4, it will be explained here using FIGS. 1 and 2.

フェライトのような絶縁性基板1の表面を研磨したのち
、写真食刻技術で溝部を除いた部分を7オトレジストで
覆い、電解エツチング技術を用い所望の溝深さく約6μ
m)に研磨式(約6μm)を加えた深さの溝を形成する
。7オトレジストを取り除いた後、5illの非磁性材
3を少くとも溝1oベージ の深さ以上の厚さに形成する。その後表面を研磨して溝
2の5i03の面とフェライト基板1の表面が同一面で
、且つ所望の溝深さになるように仕上げた表面上に、例
えばNi−Fe合金を蒸着手段で500人程鹿の厚さに
被着し、写真食刻技術で電極5,6をMR素子4の長手
方向の両端に配置し、MR素子4を切欠溝2の長手方向
と平行に設ける。
After polishing the surface of an insulating substrate 1 such as ferrite, the portions except the grooves are covered with photoresist using photolithography, and then the desired groove depth of about 6μ is formed using electrolytic etching.
A groove with a depth equal to m) plus the polishing method (approximately 6 μm) is formed. 7 After removing the photoresist, 5ill of non-magnetic material 3 is formed to have a thickness at least equal to or greater than the depth of the groove 1o. After that, the surface is polished so that the surface 5i03 of the groove 2 and the surface of the ferrite substrate 1 are on the same plane and the desired groove depth is formed.For example, Ni-Fe alloy is deposited by 500 people using a vapor deposition method on the surface. Electrodes 5 and 6 are arranged at both ends of the MR element 4 in the longitudinal direction by photolithography, and the MR element 4 is provided parallel to the longitudinal direction of the notched groove 2.

その後MR素子を保護する為、蒸着手段でSi帷護膜1
3を10μm以上の厚さで形成する。
After that, in order to protect the MR element, a Si protective film 1 is applied by vapor deposition.
3 with a thickness of 10 μm or more.

このようにして作製されたMRヘッドは前述したような
動作でサブミクロンのビット長を有する高密度垂直磁化
を効率良く再生するとともに、記録媒体が走行しても透
磁性薄膜群の両側の非磁性材料が同一材料である為透磁
性薄膜群近傍に偏摩耗による凹凸が出きす、上記透磁性
薄膜群の記録媒体側先端部が常に安定に記録媒体に接し
ている為、従来例で示したような大きな短波長損失が生
じず、極めて高分解能の再生特性が得られる。
The MR head fabricated in this way efficiently reproduces high-density perpendicular magnetization with a submicron bit length through the operation described above, and even when the recording medium runs, the non-magnetic magnetization on both sides of the magnetically permeable thin film group Because they are made of the same material, irregularities occur near the magnetically permeable thin film group due to uneven wear, but because the tip of the magnetically permeable thin film group on the recording medium side is always in stable contact with the recording medium, as shown in the conventional example. There is no large short-wavelength loss, and extremely high-resolution reproduction characteristics can be obtained.

又、上述のように透磁性体基板としてフェライトを用い
、透磁性薄膜群の両側の非磁性材料とし11’ −ソ てSiOのようにフェライト材料と同程度以上のビッカ
ース硬度を有する材料を配置することにより上記利点の
他に、極めて耐摩耗性の優れた薄膜磁気ヘッドが得られ
る。
Further, as described above, ferrite is used as the magnetically permeable substrate, and a material having a Vickers hardness equal to or higher than that of the ferrite material, such as 11'-SiO, is arranged as a nonmagnetic material on both sides of the magnetically permeable thin film group. As a result, in addition to the above-mentioned advantages, a thin film magnetic head with extremely excellent wear resistance can be obtained.

本発明による磁気ヘッドと従来の磁気ヘッドとの波長応
答特性を比較すると第6図に示すようになる。横軸に波
長λの逆数、即ち、周波数に対応したものをとり、縦軸
に相対出力をとシ、素子単体形MRヘッドは曲線イで、
シールド形MRヘッドは口で、先に提案したヘッドで透
磁性薄膜群の両側の非磁性体のビッカース硬度が大きく
異なるMRヘッドはハで、本発明によるMRヘッドは二
でそれぞれに示す。ただしこの場合、ヘッド、媒体間の
スペース損失はどのヘッドでも共通のため算入されてい
ない。
A comparison of the wavelength response characteristics of the magnetic head according to the present invention and a conventional magnetic head is shown in FIG. The horizontal axis is the reciprocal of the wavelength λ, that is, the one that corresponds to the frequency, and the vertical axis is the relative output.The single-element MR head is curve A.
The shield type MR head is shown by ``1'', the previously proposed MR head in which the Vickers hardness of the non-magnetic material on both sides of the magnetically permeable thin film group is greatly different is shown by ``c'', and the MR head according to the present invention is shown by ``2''. However, in this case, the space loss between the head and the medium is not included because it is common to all heads.

発明の効果 以上のように本発明の薄膜磁気ヘッドは幅損失、ギャッ
プ損失に相当する厚み損失が無く、又ヘッド表面の凹凸
によるスペース損失を極めて小さくおさえ、効率良く高
慴度の垂直磁化信号を再生できる。
Effects of the Invention As described above, the thin-film magnetic head of the present invention has no thickness loss equivalent to width loss or gap loss, and also minimizes space loss due to unevenness on the head surface, and can efficiently generate high-sensitivity perpendicular magnetization signals. Can be played.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜磁気ヘッドの斜視図、第2図は第1図のA
A’に沿った断面図、第3図は他の薄膜磁気ヘッドの斜
視図、第4図は第3図に示す同ヘッドの要部の他の実施
例を示す断面図、第5図は、従来の薄膜磁気ヘッドの記
録媒体走行面の表面形状を示す図、第6図は従来例と本
発明による磁気ヘッドの波長応答特性を比較して示す図
である。 1・・・・・・透磁性体、3・・・・・・非磁性体、4
・・・・・・MR素子、7・・・・・・記録媒体、13
・・・・・・保護部材、14・・・・・・透磁性薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名V図
                         
   \\ 第3図 第5図 第6図 0、f  /  10 −(しΔ)/1L7Lゴ
Figure 1 is a perspective view of a thin film magnetic head, and Figure 2 is A of Figure 1.
3 is a perspective view of another thin film magnetic head, FIG. 4 is a sectional view showing another embodiment of the main part of the same head shown in FIG. 3, and FIG. 5 is a sectional view taken along line A'. FIG. 6 is a diagram showing the surface shape of the recording medium running surface of a conventional thin-film magnetic head, and FIG. 6 is a diagram showing a comparison of the wavelength response characteristics of the conventional example and the magnetic head according to the present invention. 1...Magnetic permeable material, 3...Nonmagnetic material, 4
...MR element, 7...Recording medium, 13
...Protective member, 14... Magnetically permeable thin film. Name of agent: Patent attorney Toshio Nakao and one other person
\\ Figure 3 Figure 5 Figure 6 0, f / 10 - (shi Δ) / 1L7L Go

Claims (3)

【特許請求の範囲】[Claims] (1)磁気抵抗効果素子を含む透磁性薄膜の一端が記録
媒体側に面し、他端部が透磁性体に磁気的に結合し、前
記透磁性体の一端部が記録媒体近傍に配置され、かつ、
前記透磁性薄膜の両側の少なくとも記録媒体に面する表
面近傍に非磁性材を具備し、前記透磁性薄膜弁の両側の
非磁性材料が硬度の略等しい材料からなることを特徴と
する薄膜磁気ヘッド。
(1) One end of the magnetically permeable thin film including the magnetoresistive element faces the recording medium, the other end is magnetically coupled to a magnetically permeable body, and one end of the magnetically permeable body is placed near the recording medium. ,and,
A thin film magnetic head comprising a non-magnetic material on both sides of the magnetically permeable thin film at least in the vicinity of the surface facing the recording medium, and wherein the non-magnetic materials on both sides of the magnetically permeable thin film valve are made of materials having substantially equal hardness. .
(2)透磁性薄膜の両側の非磁性材料が同一材料からな
ることを特徴とする特許請求の範囲第1項記載の薄膜磁
気ヘッド。
(2) The thin film magnetic head according to claim 1, wherein the nonmagnetic materials on both sides of the magnetically permeable thin film are made of the same material.
(3)透磁性体がフェライト材料よりなシ、透磁性薄膜
の両側に硬度が前記フェライト材料と同程度以上の非磁
性材料を具備したことを特徴とする特許請求の範囲第1
項または第2項記載の薄膜磁気ヘッド0 2 ベージ
(3) The magnetically permeable body is not a ferrite material, and the magnetically permeable thin film is provided with a non-magnetic material having a hardness comparable to or higher than that of the ferrite material on both sides of the magnetically permeable thin film.
Thin film magnetic head according to item 0 or 2
JP18073082A 1982-04-14 1982-10-14 Thin film magnetic head Pending JPS5971122A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18073082A JPS5971122A (en) 1982-10-14 1982-10-14 Thin film magnetic head
DE8383302024T DE3374622D1 (en) 1982-04-14 1983-04-11 A playback head for perpendicular magnetic recordings
EP83302024A EP0091812B1 (en) 1982-04-14 1983-04-11 A playback head for perpendicular magnetic recordings
US06/483,614 US4613918A (en) 1982-04-14 1983-04-11 Perpendicular magnetic playback head and a perpendicular magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18073082A JPS5971122A (en) 1982-10-14 1982-10-14 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS5971122A true JPS5971122A (en) 1984-04-21

Family

ID=16088296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18073082A Pending JPS5971122A (en) 1982-04-14 1982-10-14 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS5971122A (en)

Similar Documents

Publication Publication Date Title
GB1453288A (en) Record-replay magnetic transducers
JPH05266425A (en) Thin-film magnetic head
JPS6087417A (en) Thin film magnetic head
US5792546A (en) Magneto-resistive head and method of producing the same
JPS6275924A (en) Unified thin film magnetic head
JPS5971122A (en) Thin film magnetic head
US5933298A (en) System comprising a magnetic head, measuring device and a current device
JPH0440773B2 (en)
JPS6327772B2 (en)
JPS5971121A (en) Vertical magnetization reproducing head
JPS5971118A (en) Vertical magnetizing reproducing head
JPS60115013A (en) Thin film magnetic head
JPS6327773B2 (en)
JPS62141619A (en) Thin film magnetic head
JPH0441412B2 (en)
JPS6363117A (en) Thin film magnetic head
JPS5971119A (en) Magneto-resistance effect head
JPS5971120A (en) Vertical magnetization reproducing method and its magneto-resistance effect head
JPH0441411B2 (en)
JP2871055B2 (en) Thin film magnetic head and method of manufacturing the same
JPS60115012A (en) Thin film magnetic head
JP2000090417A (en) Thin-film magnetic head
JPS60182008A (en) Thin film magnetic head
JPS6286521A (en) Thin film magnetic head
JPS60113313A (en) Magneto-resistance effect head