JPS5970636A - Preparation of 1,4-naphthoquinone - Google Patents

Preparation of 1,4-naphthoquinone

Info

Publication number
JPS5970636A
JPS5970636A JP57181379A JP18137982A JPS5970636A JP S5970636 A JPS5970636 A JP S5970636A JP 57181379 A JP57181379 A JP 57181379A JP 18137982 A JP18137982 A JP 18137982A JP S5970636 A JPS5970636 A JP S5970636A
Authority
JP
Japan
Prior art keywords
catalyst
naphthalene
gas
bed
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57181379A
Other languages
Japanese (ja)
Other versions
JPH0149249B2 (en
Inventor
Akira Matsuura
亮 松浦
Nariyuki Yoshimura
吉村 成幸
Yasuo Asanuma
浅沼 靖生
Haruo Yoshizumi
吉住 治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP57181379A priority Critical patent/JPS5970636A/en
Publication of JPS5970636A publication Critical patent/JPS5970636A/en
Publication of JPH0149249B2 publication Critical patent/JPH0149249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare the titled compound stably for a long period, without increasing the gas-flow resistance of the catalyst bed, by the catalytic vapor- phase oxidation of a raw material composed of an oxygen-containing gas containing a small amount of easily handleable sulfur dioxide and naphthalene using a fixed bed comprising a stationary catalyst layer and a mixed packed layer placed at the upstream side of the stationary layer. CONSTITUTION:1,4-naphthoquinone is prepared by the catalytic vapor-phase oxidation of naphthalene with O2 gas using a stationary catalyst layer composed of vanadium oxide, an alkali metal sulfate, and an alkali metal pyrosulfate. In the above process, the catalytic vapor-phase oxidation of naphthalene is carried out by using a fixed bed comprising the stationary catalyst layer and a mixed packed layer composed of a mixture of a catalyst similar to the above catalyst and an inert granular material and supplying an oxygen-containing gas containing >=1ppm of sulfur dioxide and naphthalene to the fixed bed, wherein the mixed packed layer is placed at the upstream side of the oxygen gas-inlet of the stationary catalyst layer. The sulfur dioxide is converted to sulfur trioxide in the mixed filler layer, and the increase of the gas-flow resistance of the stationary catalyst layer can be prevented.

Description

【発明の詳細な説明】 本発明は、1竣化バナジウム、アルカリ゛金属硫酸塩及
びアルカリ金属ピロ硫酸塩を主成分とする触媒成分を不
活性担体IC担持させた触媒の固定触媒層を用いナフタ
レンを接触気相+1化する方法を、工業的有利に行い得
るように改善したL+4一ナフ1・キノンの製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a fixed catalyst layer of a catalyst in which a catalyst component mainly consisting of monomerized vanadium, an alkali metal sulfate, and an alkali metal pyrosulfate is supported on an inert carrier IC. The present invention relates to a method for producing L+4-naf-1-quinone, which is an improved method for converting L+4 into a catalytic gas phase to +1 so as to be industrially advantageous.

■,4ーナフトキノン製造用のナフタレ/の接触気相+
化触媒としては、五脳化バリージウム、アルカリ金属硫
゛酸塩及びアルカリ金属ピロ硫酸塩を主成分とする触媒
成分を不活性担体に担持させた触媒が、特公昭42−5
533号!特公昭43ー15063号,特公昭52−1
0831号,特公昭5 +3  2 2 5 5 9 
’?5等の各公報により公知である。また、上記の触媒
を用い接触気相一化する際に反応空間中に硫黄化合物を
存在させ.てナフタレンを酸イLする方法は、特公昭5
3−28911号,特公昭55−3049号の各公報、
あるいは米国特許第べ897464号及び第4. 0 
3 5, 3 9 9号の各明細用等によりα知であっ
て、これら公知の方法では、ナフタレンには通常、硫黄
として01〜09重量係のチオナフテン等の有機硫黄化
合物が含まれているので、この上うな含會硫黄ナフタレ
ンを適当な硫黄含有量に調節して使用しているのである
■、4 Contact gas phase of naphthalene for the production of naphthoquinone +
As a catalyst, a catalyst in which a catalytic component mainly consisting of pentate barydium, an alkali metal sulfate, and an alkali metal pyrosulfate is supported on an inert carrier is disclosed in Japanese Patent Publication No. 42-5.
No. 533! Special Publication No. 43-15063, Special Publication No. 52-1
No. 0831, Special Publication Showa 5 +3 2 2 5 5 9
'? It is publicly known from various publications such as No. 5. In addition, when carrying out catalytic gas phase integration using the above catalyst, a sulfur compound is allowed to exist in the reaction space. The method of converting naphthalene into acid is described in
Publications No. 3-28911 and Special Publication No. 55-3049,
Or US Patent Nos. 897,464 and 4. 0
35, 399, etc., and in these known methods, naphthalene usually contains an organic sulfur compound such as thionaphthene with a weight ratio of 01 to 09 as sulfur. Moreover, the sulfur-containing naphthalene is adjusted to an appropriate sulfur content before use.

本発明者らは、上記の触媒と同糸列の触媒を管型反応器
に充填し含硫黄ナフタレンの接触空気酸化反応を行った
ところ、管型反応器の固定触媒層の通気抵抗は反応時間
が誂過するに従って増加し、特に反応を一旦中断した際
に温度低下した固定触媒層を反応温度まで加熱空気で昇
温する操作を繰り返した場合に著しい通気抵抗の増加か
認められた。そして、多管式反応器を用い工業的規摸で
行った場合には、各反応管におけるかかる通気抵抗の増
加は、ナフタレンの接触気相酸化反応の進行を著しく妨
げ、往々にしてこれを不用能とするものである。
The present inventors performed a catalytic air oxidation reaction of sulfur-containing naphthalene by filling a tubular reactor with the same number of catalysts as the above catalyst. increased as the reaction temperature increased, and in particular, when the fixed catalyst bed, whose temperature had dropped when the reaction was once interrupted, was repeatedly heated with heated air to the reaction temperature, a significant increase in ventilation resistance was observed. When carried out on an industrial basis using a multi-tubular reactor, this increase in ventilation resistance in each reaction tube significantly impedes the progress of the catalytic gas phase oxidation reaction of naphthalene, and it is often unnecessary to use it. It is something that can be done.

本発明者ら7(1 、上記の固定1甥媒層のj…気低抵
抗増加原因を発明ずべく種々検討した結果、通気抵抗の
凡“加は固定触媒層全体で起るものてはなく、固定触媒
層の人口最上端部から下;30岨までの間の主として上
部約1(Jmmにわたる触媒,1曽部分の触媒1)′L
が相互に触着したような状況になり、さらにこの触媒粒
をVa着させているのは触媒粒から突出しだ触媒成分で
あり、これが固定触媒層を通過ずるガスの流路をせ−ま
くして通気抵抗を・増加させている原因であることを見
い出しだ。
The present inventors7 (1) As a result of various studies to discover the cause of the increase in the airflow resistance of the above-mentioned fixed catalyst layer, we found that the addition of airflow resistance does not occur in the entire fixed catalyst layer. , below the artificial top of the fixed catalyst bed; mainly from the top up to about 1 (catalyst over 1 Jmm, 1 part catalyst 1)′L
The catalyst particles touch each other, and what causes the catalyst particles to adhere to each other is the catalyst component protruding from the catalyst particles, which narrows the flow path of the gas passing through the fixed catalyst layer. It was discovered that this is the cause of increased ventilation resistance.

しかも、この触媒粒を融着させている触媒粒から突出し
た成分はに2 8041 5V2 0a・3に+ 80
4  に類似した成分及び4V205・K2O  に類
似した成分であり、いずれも触媒成分から803分が減
少した組成物に相当することを確認した。そこで、この
原因は触媒粒からガス中に三酸化硫黄が飛散することに
よると推定し、これを実験室的に確認した。すなわち、
触媒粒をガラス管(22間φ)に充填し、該固定触媒層
にナフタレンのi膜化反応条件と同じ415℃で三酸化
1流哉を含有しない空気を線速度2 0 on/’se
cで約100時間供給した。このとき、固定触媒層の入
口上端部の触媒1<1の先端/・ら結晶が生長し突出す
るのが観察され、この生長し突出しだ結晶の分析値は前
記した触媒粒を融着させている突出しだ成分の組成と一
致した。しかも、通常の触媒粒及びこの結晶が成長l〜
突出しだ触媒粒に三煎化硫黄を含有させた空気を供給す
ると、結晶の生長を阻止することができるばかりではな
く、生長した結晶を消失させることもできたのに対し、
チオフェンやチオナフテンのような有機硫黄化合物を含
有させた空気では結晶の生長を阻止したり消失させるこ
とはできない、という事実を見い出した。その結果、本
発明者らは、特1jN昭56ー125511号(以下、
先願という。)において、固定触媒層に供給する酸素含
有ガス中には常に三酸化硫黄を添加して存在させる方法
を提案したのである。
Moreover, the components protruding from the catalyst grains that fuse these catalyst grains are 2 8041 5V2 0a・3 + 80
It was confirmed that these were a component similar to 4V205.K2O and a component similar to 4V205.K2O, and both corresponded to a composition in which 803 min was reduced from the catalyst component. Therefore, we assumed that the cause of this was the scattering of sulfur trioxide into the gas from the catalyst particles, and confirmed this in a laboratory. That is,
Catalyst particles were packed in a glass tube (22 mm diameter), and air not containing trioxide was introduced into the fixed catalyst layer at a linear velocity of 20 on/'se at 415°C, the same conditions as the naphthalene i-film formation reaction conditions.
c for about 100 hours. At this time, crystals were observed to grow and protrude from the tip of catalyst 1 < 1 at the upper end of the inlet of the fixed catalyst layer, and the analysis value of this growing and protruding crystal was determined by the fusion of the catalyst grains described above. The composition of the prominent components was consistent. Moreover, normal catalyst grains and these crystals grow l~
By supplying air containing tri-decomposed sulfur to the protruding catalyst grains, it was possible to not only prevent the growth of crystals, but also to eliminate the grown crystals.
They discovered that air containing organic sulfur compounds such as thiophene and thionaphthene cannot inhibit the growth of crystals or eliminate them. As a result, the inventors of the present invention have obtained the following
It is called first-to-file. ) proposed a method in which sulfur trioxide is always added to the oxygen-containing gas supplied to the fixed catalyst bed.

しかしながら、さらに本発明者らは、酸素含有ガス中に
は常に三酸化硫黄を添加して固定触媒層に供給するので
はなく、ナフタレンを含む1設素含有ガスを固定触媒層
に供給してナフタレンの接触酸化反応を行うとぎは、取
扱いの無しい三酸化硫黄の代りに取扱いの容易な二酸化
硫黄を有効に利用し得る方法を提供すべく検討した。そ
の結果、固定1’」9!媒層の禦素言有カス人口部の前
に該固定触媒層の触媒と同様fL、触媒と不活性粒状物
とを混合した混合充填層を設けた固定床を用い、該固定
床にl PPm以上の二酸化硫黄と原石ナフタレ/を含
む酸素官有カスを供給してナフタレンの接触気相酸化を
行えは、まずI PPm以上の二酸化硫黄は容易に混合
充填層内で接触気相ば化されて三酸化硫黄を生成し、そ
れだけでも該固定床において混合充填層を通り該混合充
填層の次の固定触媒層の入口に到達する酸素含有ガス中
にはl PPm以上の三酸化硫黄を存在させることがで
きるから、原料ナフタレンの接触気相酸化の際供給する
酸素含有ガス中には、前記先願の方法における取扱いの
難しい三酸化硫黄の代りに取扱いの容易な二酸化硫黄を
J PPm以上添加しても、前記先願と同様な効果を奏
して固定触媒層の通気抵抗の増加を解消し卸るものであ
ることを初めて見い出し、本発明に到達した。すなわち
、本発明の要旨は、酸化バナジウム、アルカリ金属硫酸
塩及びアルカリ金属ピロ硫酸塩を主成分とする触媒成分
を不活性担体に担持させた触媒からなる固定触媒層を用
い、ナフタレンを酸素含有ガスで接触気相酸化して1,
4−ナフトキノンを製造するに当り、前記固定触媒層の
ぼ素含有カス入口部の前に前記触媒と不活性粒状物とを
混合した混合充填層を設けた固定床反応器を用い、33
0℃以上の該固定床に、ナフタレンを含まない酸系含有
ガス中にl PPm以上の三酸化硫黄を存在させた加熱
ガスを供給して該固定床の触媒を昇温及び/又は焙焼し
て後、該固定床に、酸系含有ガス中にl PPm以上の
二酸化硫・黄と原料ナフタレンを存在させた原料カスを
供給してナフタレンを接触気相鹸化することを特徴とす
るl+4−ナフトキノンの製造方法に存する。
However, the present inventors further discovered that instead of always adding sulfur trioxide to the oxygen-containing gas and supplying it to the fixed catalyst layer, a single element-containing gas containing naphthalene was supplied to the fixed catalyst layer to produce naphthalene. In order to carry out the catalytic oxidation reaction, we investigated to provide a method that can effectively utilize sulfur dioxide, which is easy to handle, in place of sulfur trioxide, which cannot be handled. As a result, fixed 1'''9! A fixed bed is used in which a mixed packed bed containing a mixture of fL, catalyst and inert particulates similar to the catalyst of the fixed catalyst bed is provided in front of the medium layer, and l PPm is added to the fixed bed. To carry out the catalytic vapor phase oxidation of naphthalene by supplying the above oxygen-owned scum containing sulfur dioxide and raw naphthalene, first, the sulfur dioxide of IPPm or more is easily catalytically vaporized in the mixed packed bed. 1 PPm or more of sulfur trioxide is present in the oxygen-containing gas which produces sulfur trioxide and which alone passes through the mixed packed bed in the fixed bed and reaches the inlet of the fixed catalyst bed next to the mixed packed bed. Therefore, sulfur dioxide, which is easy to handle, is added to the oxygen-containing gas supplied during the catalytic gas phase oxidation of raw material naphthalene in place of the difficult-to-handle sulfur trioxide in the method of the earlier application. It was discovered for the first time that the method of the present invention has the same effect as that of the prior application and completely eliminates the increase in ventilation resistance of the fixed catalyst layer, and the present invention was achieved based on this discovery. That is, the gist of the present invention is to convert naphthalene into oxygen-containing gas by using a fixed catalyst layer consisting of a catalyst supported on an inert carrier with a catalyst component mainly consisting of vanadium oxide, alkali metal sulfate, and alkali metal pyrosulfate. After catalytic gas phase oxidation,
In producing 4-naphthoquinone, a fixed bed reactor is used, which is provided with a mixed packed bed in which the catalyst and inert particulates are mixed in front of the boron-containing scum inlet of the fixed catalyst bed.
A heated gas containing 1 PPm or more of sulfur trioxide in an acid-containing gas not containing naphthalene is supplied to the fixed bed at 0°C or higher to raise the temperature and/or roast the catalyst in the fixed bed. l+4-naphthoquinone characterized in that the naphthalene is saponified in a catalytic vapor phase by supplying raw material sludge in which 1 PPm or more of sulfur dioxide/yellow and raw material naphthalene are present in an acid-containing gas to the fixed bed. It consists in the manufacturing method.

本発明において固定触媒層に使用する触媒の触媒成分は
、酸化バナジウム、アルカリ金属咳鹸塩及びアルカリ金
楓ピロ睡酸塩を主成分とするものである。そして上記ア
ルカリ金属眺tllW塩及びアルカリ金属ピロ(m M
塩におけるアルカリ金属としては、リチウム、ナトリウ
ム、カリウム、ルビジウム、セフラム等が挙げられるが
、通常はカリウムが用いられる。これらの主成分の他に
、は化バナジウムとともに他の金属の飯化°物を併用す
ることもでき、そのような場合に酸化バナジウムと併用
してもよい金、属醒化物としては、例えばアルミニウム
、タン′ダステン、モリブデン、スズ、アンチモノ、チ
タン、ジルコニウム、クロム、マンガン、コバルト、ニ
ッケル、鉛、唾鉛、ニオブ、り;/タル、セリウム、タ
リウム、ビスマス、ホウ素等のば化物が挙げられるが、
これらの金属ば化物゛の添加算は酸化バナジウムの2倍
モル以上であってはならない。
The catalyst components of the catalyst used in the fixed catalyst layer in the present invention are mainly composed of vanadium oxide, alkali metal cough salt, and alkali gold maple pyrophosphate. And the above alkali metal salt and alkali metal pyro(m M
Examples of the alkali metal in the salt include lithium, sodium, potassium, rubidium, and cephram, but potassium is usually used. In addition to these main components, it is also possible to use vanadium hydrides together with other metal oxides. In such cases, examples of metal oxides that may be used in combination with vanadium oxide include, for example, aluminum. , tan'dusten, molybdenum, tin, antimono, titanium, zirconium, chromium, manganese, cobalt, nickel, lead, salivary lead, niobium, lithium; /tal, cerium, thallium, bismuth, boron, etc. ,
The amount of these metal oxides to be added must not be more than twice the molar amount of vanadium oxide.

本発明で用いる触媒における上記の触媒成分の組成比率
は、通常、例えば主として酸化ケイ素からなる担体1重
量部に対して、(a)五は化バナ・/ラムとして計算し
て0.1〜1.0重量部の範囲の酸化バナジウム、(b
)カリウム塩として計算して0.1〜2.0重量部の範
囲のアルカリ金属硫酸塩、及び(c)カリウム塩として
計算して0.3〜5.0重置部の範囲のアルカリ金属ピ
ロ硫酸塩からなるものである。
The composition ratio of the above-mentioned catalyst components in the catalyst used in the present invention is usually 0.1 to 1, calculated as (a) vanadium/ram, for example, to 1 part by weight of a support mainly consisting of silicon oxide. vanadium oxide, (b
) an alkali metal sulfate in the range from 0.1 to 2.0 parts by weight, calculated as the potassium salt; and (c) an alkali metal pyrochloride in the range from 0.3 to 5.0 parts by weight, calculated as the potassium salt. It consists of sulfate.

上記の触媒成分を担持させる不活性担体としては、主と
して酸化ケイ素、酸化チタン又はアルミノンリケードか
らなるもの等が挙げられるが、好ましくはIメ化ケイ素
を主体とする担体が用いられる。主として順化ケイ識J
・らなる担体は天然物又は合成物のいずれでもよく、そ
の調製法としては、例えばケイばアルミニウム・を鉱酸
又は有機酸で処理し・てアルミニウム含有率を5%以下
として1實比ケイ素からなる担体を得る方法(特公昭5
 :s  225L) 9号公報)なとが挙けられる。
Examples of the inert carrier on which the above-mentioned catalyst component is supported include those mainly composed of silicon oxide, titanium oxide, or aluminone oxide, but preferably a carrier mainly composed of silicon meride is used. Mainly acclimatization knowledge J
The carrier may be either a natural product or a synthetic material, and its preparation method includes, for example, treating silica aluminum with a mineral acid or organic acid to reduce the aluminum content to 5% or less and converting it from silicon to 1% silicon. Method for obtaining a carrier
:s 225L) Publication No. 9).

本発明で固定8虫煤層に用いる触媒を、上記成分の原料
と上記の方法で調製した不活性[[」体を用(八てi内
装するに当っては、例えば目押Jアむ・清、鋳型成型、
押出成型又は打錠成型なとの公知の成型触媒の調製方法
会・適用することができる。
The catalyst used in the fixed insect soot layer in the present invention is prepared by using the raw materials for the above components and the inert body prepared by the above method. , molding,
Known methods for preparing shaped catalysts such as extrusion molding or tablet molding can be applied.

かかる触媒の形状としては種々採用し得るが、一般的に
は円柱形又は円筒形が採用され、通常3〜10間φ×3
〜l Q l1lli 11の大きさである。その除用
いる前記の触媒成分の三つの主成分(a) 、 (b)
 。
Various shapes can be adopted as the shape of such a catalyst, but generally a cylindrical shape or a cylindrical shape is adopted, and it is usually 3 to 10 mm in diameter x 3
It has a size of ~l Q l1lli 11. The three main components (a) and (b) of the above catalyst components used
.

(C)のうち、(a)酸化バナジウムの原料としては、
焼成した時に五酸化バナジウムになるようなバナジウム
化合物であれば特に限定されない。例えば、五酸化バナ
ジウム、メタハナ/ン酸アンモニウム、硫酸バナジル、
/ユウ酸バナジル等があげられる。寸だ、もう一つの主
1戊分、(C)アルカリ金属ピロ硫酸塩の原料としては
、焼成してアルカリ金属ピロ硫酸塩になるような化合物
なら用いられ、例えばアルカリ金属重硫酸塩、アルカリ
金属硫酸塩と硫酸もしくは硫酸アンモニウムなとが挙げ
られる。すなわち、前記の触媒成分の三つの主成分のう
ち、(b)アルカリ金属1流酸塩は、これを硫酸もしく
は硫酸アンモニウムと共に用いることにより、同時にそ
の一部を上記の主成分(C)の原料ともなし得るもので
ある。
Among (C), as raw materials for (a) vanadium oxide,
It is not particularly limited as long as it is a vanadium compound that becomes vanadium pentoxide when fired. For example, vanadium pentoxide, ammonium metahana/phosphate, vanadyl sulfate,
/Vanadyl oxalate, etc. Another main point is that (C) as a raw material for alkali metal pyrosulfate, any compound that can be calcined to become alkali metal pyrosulfate can be used, such as alkali metal bisulfate, alkali metal pyrosulfate, etc. Examples include sulfates and sulfuric acid or ammonium sulfate. That is, among the three main components of the catalyst component, (b) alkali metal monosulfate can be used together with sulfuric acid or ammonium sulfate, and a portion of it can also be used as a raw material for the main component (C) above at the same time. It is possible.

通常、上記のようにして調製された触媒の固定触媒1※
を用いナフタレンを接触気相酸化して1+4−ナフトキ
ノンを製造する装置としては、固定床反応器、一般的に
は内径19〜40咽の反応、管を多数備え、該反応管の
外周には溶融塩なとの伝熱媒体を満たした、いわゆる多
管式固定床反応器が用いられる。該反応器の各反応管に
は」二記の触媒を充填して、通常、長さl、 500〜
:3.QQQmmの固定触媒層とする。
Usually fixed catalyst 1* of the catalyst prepared as above
The apparatus for producing 1+4-naphthoquinone by catalytic gas phase oxidation of naphthalene is a fixed bed reactor, generally equipped with a large number of reaction tubes with an inner diameter of 19 to 40 mm, and a molten metal on the outer periphery of the reaction tube. A so-called multi-tubular fixed bed reactor filled with a heat transfer medium of salt is used. Each reaction tube of the reactor is filled with a catalyst described in 2. Usually, the length is l, 500 ~
:3. A fixed catalyst layer of QQQmm is used.

しかしながら、本発明にあっては、固定触媒層の酸素含
有ガス入口部の前に該固定触媒層の触媒とは同じ触媒と
不活性粒状物とを混合した混合充填層を設けた固定床反
応器を用いる。かかる反応器では、通常、酸素含有ガス
は直立した固定用(煤層の上端入口部から下部へと供給
されるから、−h記の混合充填層を固定触媒層の上に設
けた固定床反応器を1史用する。上記の触媒と混合して
混合プし填層を形成する不活性粒状物としては、カーボ
ランダム、アランダム及びそれらの成41毘物であって
、3〜l(Jmmφの粒径を有する非多孔性粒状物が選
ばれる。これは、非多孔性粒状物を用いると、混合充填
層中における触媒からのII函媒成分の移動が、該不活
1生粒状物の非多孔性のだめに妨げられて生起し、ない
点て好都合である51だ、混合充填層中の触媒の比率は
io〜30谷唱係が好ましい。これは、混合充填層中の
触媒の比率が少なすぎては二l設化硫黄の酸化により必
要な三酸化硫黄を生成する効験がなく、大きすぎると混
合充填層中の触媒粒相互で融着するおそれがあることに
よる。捷だ、混合充填層の長さは固定触媒層の長さの5
〜2゜係にするのが好ましい。
However, in the present invention, a fixed bed reactor is provided with a mixed packed bed in which the same catalyst as the fixed catalyst bed and inert particulates are mixed before the oxygen-containing gas inlet of the fixed catalyst bed. Use. In such a reactor, the oxygen-containing gas is usually supplied from the upper end of the soot layer to the lower part of the upright fixed bed. The inert particulates to be mixed with the above catalyst to form a filling bed include carborundum, alundum, and their constituents, with a total of 3 to 1 (Jmmφ). Non-porous granules having a particle size are selected because the non-porous granules allow the migration of the II carrier component from the catalyst in the mixed packed bed to The ratio of the catalyst in the mixed packed bed is preferably io~30. This is because the ratio of the catalyst in the mixed packed bed is small. If it is too large, it will not be effective in producing the necessary sulfur trioxide by oxidizing the sulfur added, and if it is too large, there is a risk that the catalyst grains in the mixed packed bed will fuse together. The length of the layer is 5 times the length of the fixed catalyst layer.
It is preferable to set the temperature to 2°.

本発明の方法により上記の固定床反応器を用いてナフタ
レンを接触気相酸化するには、まず固定触媒層を所定の
反応温度まで上昇させなければならず、又必要に応じて
同定床(混合充填層及び固定触媒層)の触媒の熱ガスに
よる加熱処理、例えば触媒の焙焼(焼成)を行う。この
場合、固定床の触媒の昇温及び/又は・焙焼には、11
u常、(〆L哉化合物及びナフタレンを含まない加熱さ
れた1設素含有ガス、例えば加熱望気又は・燃焼ガスを
用いるために、固定床の触媒が330℃以上に達しだな
らば、該固定床に供給する酸素含有゛ガス中にはl P
Pm以上の三酸化硫黄を存在させる必要がある。その方
法としては、一般的には酸素含有ガス中に三酸化硫黄を
所定量添加する方法が好ましいが、場合によっては、二
酸化硫黄等の硫黄化合物を酸基含有ガスに添加したのち
、白金を五酸化バナジウム等の公知の触媒によって三酸
化硫黄に接触気相酸化して供給する方法を採用すること
もできる。
In order to perform catalytic gas phase oxidation of naphthalene using the fixed bed reactor described above according to the method of the present invention, the fixed catalyst bed must first be raised to a predetermined reaction temperature, and if necessary, a single bed (mixed bed) The catalyst (packed bed and fixed catalyst bed) is heated with hot gas, for example, the catalyst is roasted (calcined). In this case, heating and/or roasting of the fixed bed catalyst requires 11
(Usually, if the temperature of the fixed bed catalyst reaches 330°C or higher due to the use of a heated single element-containing gas that does not contain compounds and naphthalene, such as heated air or combustion gas, The oxygen-containing gas supplied to the fixed bed contains lP
It is necessary to have sulfur trioxide of Pm or more present. Generally speaking, it is preferable to add a predetermined amount of sulfur trioxide to the oxygen-containing gas, but in some cases, platinum is added to the acid group-containing gas after adding a sulfur compound such as sulfur dioxide. It is also possible to adopt a method of supplying sulfur trioxide through catalytic gas phase oxidation using a known catalyst such as vanadium oxide.

次に、上記の固定床の触媒の昇温及び/又は焙焼後に行
うナフタレンの接触気相酸化反応は、反応管外周温度を
800〜450℃に昇温し;反応温度は:350〜・1
50℃、また原料の硫黄化合物含有ナックレノ濃度が2
0〜50f/Nm”q気(酸素含有カスとしては最も一
般的に空気が用いられる。)の原料ガスの空間速度(S
、 V、 )は1.、000〜5,0OOHr’で行う
。上記のナフタレン中には、チオナフテンのような有機
硫軟化合物か通常、硫黄としてIl、 05〜0.5重
址%(ナツタレノ濃度を40 t / Nm  空気と
すれば、ガス中には三酸化硫黄として[・1〜1・l(
lPPm)  含まれているので、上記の原料ガスは、
固定床の混合充填層を通過すると、その中に含捷れる該
硫黄化合物の一部分が三1鋲化硫戴に1投化され、実質
的に該原料ガス中にl PP+n以」二〇三酸化硫黄が
存在する状態で固定触媒層の人口IC達する。
Next, in the catalytic gas phase oxidation reaction of naphthalene, which is carried out after raising the temperature and/or roasting of the catalyst in the fixed bed, the outer peripheral temperature of the reaction tube is raised to 800 to 450°C; the reaction temperature is: 350 to 1
50℃, and the concentration of sulfur compound-containing raw material is 2.
The space velocity of the raw material gas (S
, V, ) is 1. , 000 to 5,0 OOHr'. The naphthalene mentioned above usually contains organic sulfur-softened compounds such as thionaphthene, or sulfur, which contains Il, 0.5 to 0.5% by weight (assuming the Naphthalene concentration is 40 t/Nm air, the gas contains sulfur trioxide). As [・1~1・l(
lPPm), so the above raw material gas is
When passing through the mixed packed bed of the fixed bed, a part of the sulfur compound contained therein is thrown into the 31-stacked sulfur, and substantially more than 1PP+n'20 trioxide is added to the raw material gas. The population IC of the fixed catalyst bed is reached in the presence of sulfur.

すなわち、固定触媒層の前に混合充填j曽を設けた固定
床を用いれば、硫黄化合物を言むナフタレンの接触酸化
反応の櫂1合は、原料カス中に三醒化値訛を添加しなく
ても、ナフタレン中に含まれる硫黄化合物が混合充填層
中で酸化されて生成するL PPm以上の三酸化硫黄に
より、通気抵抗を増加せずに長期間実施することができ
るともいえるのである。しかしながら、かかる場合にも
混合充填層中の触媒に三酸化硫黄の減少による結晶生長
がみられることがあるのは、硫黄化合物のなかにも酸化
されて三酸化硫黄を生成、し易いものと比較的生成し難
いものとがあるためである。それ故、原料ナフタレンに
含ま耗る硫黄化合物とは別に、原料ガス中にI PPm
以上、好ましくは1〜30 PPm 、さらに好ましく
は1〜l OPPmの二酸化硫黄を存在させることは、
混合充填層及び同定触媒層の通気抵抗を増加することな
くさらに長期間安定操業を実施するためには特に有効で
ある。すなわち、二酸化硫黄は、ガス状であり反応性も
比較的乏しくナフタレンには直接反応せず取扱いが容易
で、しかも混合充填層中では容易に酸化されて三酸化・
硫黄を生成するという利点を有する点で、特に好適なの
である。これに対して、三ば化値黄は、気相の水分を結
合してvAt Mを生じナフタレンとは直接反応して例
えばスルホノ化する恐れがあり、後添加するには特に好
適とはいえないものである0 本発明において、ナフタレンの接触気相酸化反応に用い
る原料ガス中に少なくとも固定触媒層の入口において存
年させるべき三塩化硫黄は、混合充填層中で二酸化硫黄
の;酸化により生成するIPPm以上の三酸化硫黄でよ
いのであるが、好ましくは該ガス中に含まれる全硫黄化
合物、即ち、二酸化硫黄と原料ナフタレン中に一=1れ
るチオナフテン等との全硫黄化合物の合計を該ガスに対
し三酸1ヒ1流黄として300 PPm以下に調節する
。これは、全硫黄化合物の合計量が多くなると、排ガス
中の硫1放含有率が犬となり、反応器以後の装置に凝縮
し腐蝕等のトラブルを起こし、さらに極1匣に高濃度の
硫黄化合物を含)有させると触媒の1,4−ナフトキノ
ン選択性が低下するからである。また、330℃以上の
固定床に触媒の加熱(昇温及び/又は焙焼)処理のだめ
供給するナフタレンを含まない酸素含有ガス中へ三酸化
硫黄を添加するのは、固定床(混合充填層及び固定触媒
層)の触媒粒、とりわり゛固定触媒層の入口上端部の触
媒粒−からの加熱処哩中における三酸化硫黄の飛散を抑
えて異常な結晶生長を比重することが目的であるから、
三厳化硫黄の添加量はかかる効果を委するために必要な
範囲内でなるべく少量にととめるのがよい。
In other words, if a fixed bed with a mixed packing provided in front of the fixed catalyst bed is used, the catalytic oxidation reaction of naphthalene, which is a sulfur compound, can be carried out without adding any oxidation value to the raw material waste. However, it can be said that the sulfur trioxide, which is produced by oxidation of the sulfur compounds contained in naphthalene in the mixed packed bed, can be used for a long period of time without increasing ventilation resistance. However, even in such cases, crystal growth may be observed due to a decrease in sulfur trioxide in the catalyst in the mixed packed bed, compared to some sulfur compounds that are easily oxidized to produce sulfur trioxide. This is because there are some things that are difficult to generate. Therefore, apart from the sulfur compounds contained in the raw material naphthalene, IPPm is present in the raw material gas.
As mentioned above, preferably 1 to 30 PPm, more preferably 1 to 1 OPPm of sulfur dioxide is present,
This is particularly effective for achieving stable operation for a longer period of time without increasing the ventilation resistance of the mixed packed bed and the identified catalyst bed. In other words, sulfur dioxide is gaseous and has relatively low reactivity, so it does not react directly with naphthalene and is easy to handle. Moreover, it is easily oxidized in the mixed packed bed to form trioxide and trioxide.
It is particularly suitable because it has the advantage of producing sulfur. On the other hand, tribaric value yellow binds moisture in the gas phase to form vAt M and may react directly with naphthalene, resulting in, for example, sulfonation, and is therefore not particularly suitable for post-addition. In the present invention, sulfur trichloride, which should remain in the raw material gas used for the catalytic gas phase oxidation reaction of naphthalene at least at the inlet of the fixed catalyst bed, is produced by the oxidation of sulfur dioxide in the mixed packed bed. Sulfur trioxide with an IPPm or more may be used, but preferably, the total sulfur compounds contained in the gas, that is, the sum of sulfur dioxide and thionaphthene, etc., which is 1=1 in the raw material naphthalene, are added to the gas. On the other hand, it is adjusted to 300 PPm or less as 3 acids, 1 h, 1 flow yellow. This is because as the total amount of all sulfur compounds increases, the content of sulfur in the exhaust gas increases, condensing in the equipment after the reactor and causing problems such as corrosion. This is because if the catalyst contains 1,4-naphthoquinone selectivity, the 1,4-naphthoquinone selectivity of the catalyst decreases. In addition, adding sulfur trioxide to a naphthalene-free oxygen-containing gas that is supplied after heating (temperature raising and/or roasting) the catalyst to a fixed bed at 330°C or higher is not recommended. The purpose is to suppress the scattering of sulfur trioxide during heat treatment from the catalyst particles of the fixed catalyst layer, especially the catalyst particles at the upper end of the inlet of the fixed catalyst layer, and to prevent abnormal crystal growth. ,
The amount of sulfur added is preferably kept as small as possible within the range necessary to achieve this effect.

1メCって、好ましくは上記の酸素含有カス中に三+呟
化硫黄を1〜30 PPm存在させればよいが、その量
は、三酸化硫黄が触媒粒から高温程飛散しやすいことか
ら、温度が高くなる程徐々に増加するのが好ましい。例
えばこの三塩化硫黄の存在率゛を、380〜380℃で
はL PPm 、  :380〜430℃では3〜20
 PPm 、 430〜450℃では5〜30PPmと
温度が高くなるにつれ保々に増加させるのがよい。
1 meC is preferably 1 to 30 PPm of trioxide sulfur present in the above oxygen-containing scum, but the amount is determined because sulfur trioxide is more likely to scatter from catalyst particles at higher temperatures. , preferably increases gradually as the temperature increases. For example, the abundance rate of sulfur trichloride is L PPm at 380-380°C, 3-20 at 380-430°C.
PPm is preferably 5 to 30 PPm at 430 to 450°C, and is preferably increased steadily as the temperature increases.

以上詳記したように、本発明の方法は、ば化バナジウム
−硫酸アルカリ−ピロ硫ホアルカリ系の担持触媒からな
る固定触媒層の酸素含有ガス入口部の前に該触媒と不活
性粒状物との混合充填層を設けた固定床反応器を用いナ
フタレンを接触気相酸比して1.4−ナフトキノンを製
造する際、酸素含有ガス中にl PPm以上の二酸1ヒ
硫黄と原料ナフタレンを存在させた原料ガスを前記固定
床反応器に供給することにより、従来の難点であった固
定触媒層の通気抵抗の1習加を容易かつほとんと完全に
防止して長期間の安定した操業を可能にする、という工
業的′1IIl値ある顕著な効果を奏するものである。
As described in detail above, in the method of the present invention, a fixed catalyst layer consisting of a supported catalyst of vanadium varide-alkali sulfate-alkali pyrosulfate system is mixed with an inert particulate material before the oxygen-containing gas inlet part of the fixed catalyst bed. When producing 1,4-naphthoquinone by catalytic gas phase acid ratio of naphthalene using a fixed bed reactor equipped with a mixed packed bed, 1 PPm or more of sulfur diacid and naphthalene are present in the oxygen-containing gas. By supplying the raw material gas to the fixed bed reactor, it is possible to easily and almost completely prevent the addition of ventilation resistance of the fixed catalyst bed, which was a drawback in the conventional method, and to enable stable operation over a long period of time. It has a remarkable effect of achieving an industrial value of '1III1'.

次に本発明を実施例により更に具体的に説明するが、本
発明はこれらの実施例により限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

なお、触媒の調製については実、1例により更に具体的
に説明する。まだ、「係」は特に断わらない限り「重笥
゛係」である。
Incidentally, the preparation of the catalyst will be explained in more detail using one example. However, unless otherwise specified, "person in charge" is "person in charge of heavy duty".

実験例1.(触媒の調製例) 酸化ケイ素4.4kg、メタバナクン酸アンモニウム1
.7 kq及びmWカリウムλ8に9を充分混合し、こ
れに72N硫酸41を加え、捏和機で15分間捏和した
。得られた混練物を粉砕してから乾燥し、20 メッン
ユ以上の粗粒を除いて打錠用の顆粒を得だ。この顆粒を
外径5+++#+、高さ4間の円柱形でかつ[粒の重l
ia′128■に打錠成型して触媒を7調製した。
Experimental example 1. (Catalyst preparation example) 4.4 kg of silicon oxide, 1 ammonium metavanacnate
.. 9 was thoroughly mixed with 7 kq and mW potassium λ8, 72N sulfuric acid 41 was added thereto, and the mixture was kneaded for 15 minutes using a kneader. The obtained kneaded material was crushed and dried, and coarse particles of 20 mm or more were removed to obtain granules for tabletting. The granules have a cylindrical shape with an outer diameter of 5+++#+, a height of 4 mm, and a grain weight of 1
Seven catalysts were prepared by compressing into tablets of ia'128.

実施例[。Example[.

実験例1によって調製した触媒を、単位反応型が25 
+nmφ×aO00rnIllhである多管式反応器に
、単位反応管当り14ずつ充填して同庁触媒層とし、さ
らにその上部に上記触媒と6μsφの成型カーボランダ
ムとを容積比15:85の割合でよく混ぜ合せた混合物
を0.I Eずつ充填して混合充填層を設け、各固定床
を形成した。この多管式固定床反応器の各固定床を、各
単位反応管の上端入口からS、V、1000Hr ”の
加熱空気を供給して平均昇温速度4℃/Hrで約100
時間を要し420℃にまで昇温しだ。この昇温時間中、
三酸化硫黄を330〜380℃では3 PPm 、 ’
380〜410℃ではl OPPm 、 410℃以上
では15 PP’mの割合で添加した。次いで、該反応
器に、各単位反応管の上端入口から反応温度420°C
で二ば化硫黄を3 PPm及びナフタレン(チオナフテ
ンを1.4%含有)を4097 Nhn’の割合で含む
空気をS、 V、 1,400Hr ’で供給してナフ
タレンを連続的に接触気相酸化し、1年間運転した。こ
の間のナフタレン転化率は約98%、ナフトキノン収率
は約40%、無水フタル酸収率は約70係であった。
The catalyst prepared according to Experimental Example 1 had a unit reaction type of 25
A multi-tubular reactor of + nmφ The combined mixture was reduced to 0. A mixed packed bed was provided by filling each IE to form each fixed bed. Each fixed bed of this multi-tubular fixed bed reactor was heated at an average heating rate of 4°C/Hr by supplying heated air of 1000Hr at an average heating rate of 4°C/Hr from the upper end inlet of each unit reaction tube.
It took some time to raise the temperature to 420℃. During this heating time,
3 PPm of sulfur trioxide at 330-380℃,'
It was added at a rate of 1 OPPm at 380 to 410°C and 15 PP'm at temperatures above 410°C. Next, the reaction temperature was 420°C from the upper end inlet of each unit reaction tube to the reactor.
Air containing 3 PPm of sulfur divanide and 4097 Nhn' of naphthalene (containing 1.4% thionaphthene) was supplied at S, V, 1,400 Hr' for continuous catalytic gas phase oxidation of naphthalene. I drove it for a year. During this period, the naphthalene conversion rate was about 98%, the naphthoquinone yield was about 40%, and the phthalic anhydride yield was about 70%.

その間、10回、装置の点検等のために反応を停止した
とき、反応器の各固定床の温度は300〜二380°C
に低下し、その都度該固定床に前記と同様の割合て三酸
化硫苑を添加したS、 V。
During that time, when the reaction was stopped for equipment inspection etc. 10 times, the temperature of each fixed bed in the reactor was 300-2380°C.
S, V, in which sulfur trioxide was added to the fixed bed in the same proportion as above.

1000Hr’の加熱空気を供給して420℃まて昇温
した。
The temperature was raised to 420° C. by supplying heated air for 1000 hours.

反応器の各固定床における運転時の通気抵抗は、運転開
始時102〜10(1mHf’であるのに対し、1年運
転後も102〜10611LIIIHグであり、1年運
転後でも通気抵抗の増加は認められなかった。なお、各
固定床において、混合充填層中の触媒には全<1諷着は
認められず、固定触媒層上端部の通気抵抗の増加もなか
った。
The ventilation resistance during operation in each fixed bed of the reactor was 102 to 10 (1mHf') at the start of operation, but it was still 102 to 10611LIIIHg after one year of operation, and even after one year of operation, the ventilation resistance increased. In each fixed bed, no <1 binding was observed in the catalyst in the mixed packed bed, and there was no increase in ventilation resistance at the upper end of the fixed catalyst bed.

比較例1゜ 実施例1によって調製した触媒を、単位反応管が25闘
φX 3000+11111hである多管式反応器に、
単位反応管当り171ずつ充填して固定触媒層とし、そ
れぞれの上部(ガス入口部)に予熱層として平均粒径5
閣φのカーボランダムを0.IEずつ充填した。この多
管式固定床反応器の各固定床を、S、V’、 1..0
00Hr ’の加熱空気を用いて、平均昇温速度4°C
/Hr、約100時間で420℃にまで昇温し、次いで
該各固定床に、反応温度420°CXS、V、1,40
0Hr ’でナフタレン(チオナフテン1.4係含有)
を40 q /IJrrrの割合で含む加熱空気を供給
してナフタレンを連続的に接触気相酸化し、8力月運転
した。
Comparative Example 1゜The catalyst prepared according to Example 1 was placed in a multi-tubular reactor having a unit reaction tube of 25mm x 3000+11111h.
171 catalysts are packed per unit reaction tube to form a fixed catalyst layer, and a preheating layer with an average particle size of 5
The carborundum of cabinet φ is 0. Each IE was filled. Each fixed bed of this multi-tubular fixed bed reactor is S, V', 1. .. 0
Average heating rate 4°C using heated air of 00Hr'
/Hr, the temperature was raised to 420°C in about 100 hours, and then each fixed bed was heated to a reaction temperature of 420°CXS, V, 1,40
Naphthalene (contains 1.4 units of thionaphthene) at 0Hr'
Naphthalene was continuously oxidized in a catalytic gas phase by supplying heated air containing 40 q/IJrrr, and the reactor was operated for 8 months.

その間、8回、装置の点検等のだめに反応を停止したと
き、反応器の各固定床の温度は300〜380℃に低下
したので、その都度該各固定床にS、V、 1,000
Hr ”の加熱空気を供給して420℃まで昇温した。
During that time, when the reaction was stopped 8 times to inspect the equipment, etc., the temperature of each fixed bed in the reactor dropped to 300 to 380°C, so each time, S, V, 1,000
The temperature was raised to 420° C. by supplying heated air of 100 hr.

反応器に各固定床における運転時の通気抵抗は、運転開
始時は102〜l fJ OM Hfてあったか、8ケ
月運転後には大幅に増加して2::IO−2l0−25
Oとなり、以後の運転が困難になった。
The ventilation resistance during operation of each fixed bed in the reactor was 102~l fJ OM Hf at the start of operation, but after 8 months of operation it increased significantly to 2::IO-2l0-25
0, making further driving difficult.

なお、上記の反応器中のテストL目反応管30本につい
て下記の実施例2と同様の測定方法で測定した通気抵抗
値は、運転開始時には8ト″89陥Hg(平均85鼠H
f )、8ケ月運転後にはL L 7〜:428mmH
!7 (平均2 OflmnlHf 、 )てあった。
The ventilation resistance value measured for the 30 test L-th reaction tubes in the above reactor using the same measurement method as in Example 2 below was 8t''89hg (average 85gHg) at the start of operation.
f), after 8 months of operation L L 7~: 428 mmH
! 7 (average 2 OflmnlHf, ).

実施例2 A:混合充填層中の月lJi妹とカーボランダムとの混
合容積比を15:85 (触媒比率15容tA′係)に
した多管式固定床反応器を用い本発明方法を実施した実
施例1の1易合の学位反応管のテストチューブ28本。
Example 2 A: The method of the present invention was carried out using a multi-tubular fixed bed reactor in which the mixing volume ratio of moon lji and carborundum in the mixed packed bed was 15:85 (catalyst ratio 15 volume tA'). 28 test tubes of 1 degree reaction tube of Example 1 were prepared.

B:混合充填層中の触媒とカーボランダムとの混合容(
前止を30ニア0 (触媒比率:(0容搦頒)にした以
外は、実施例1と同様にして本発明方法を実施した実施
例の場合の学位反応管のテストチー−ブ28本。
B: Mixing volume of catalyst and carborundum in mixed packed bed (
Twenty-eight test tubes were prepared by carrying out the method of the present invention in the same manner as in Example 1, except that the pre-stop was set to 30 Nia0 (catalyst ratio: (0 volume)).

C:a、合充填層をカーボランダムのみ′(触妹比率0
)の単一充填層にした以外は、実施例1と同様にして実
施した場合の単位反応管のテストチューブ30本。
C: a, only carborundum is used as the combined packed layer (touch ratio 0
30 test tubes of unit reaction tubes were carried out in the same manner as in Example 1 except that a single packed bed was used.

上記A + B + 0のそれぞれの場合において、運
転開始時及び−年運転後に、各単位反応管のテストチュ
ーブ毎に15℃、2r11′/Hr の空気を流し、そ
の時の通気抵抗を測定した結果は、次の表−1に示すと
おりであった。
In each case of A + B + 0 above, air was flowed at 15°C and 2r11'/Hr into each test tube of each unit reaction tube at the start of operation and after - years of operation, and the ventilation resistance at that time was measured. were as shown in Table 1 below.

なお、Bの場合は、単位反応管の混合充填層中の触媒に
ごく僅かの?fi着か認められたが、該単位反応管の固
定触媒層上端の触媒粒には融着は全く認められなかった
。これは、混合充填層中の触媒の比率が10〜30容量
係という好ましい範囲内でも最も大きい場合だからであ
る。
In the case of B, there is a very small amount of catalyst in the mixed packed bed of the unit reaction tube. Fi adhesion was observed, but no fusion was observed in the catalyst particles at the upper end of the fixed catalyst layer of the unit reaction tube. This is because the ratio of the catalyst in the mixed packed bed is the largest within the preferred range of 10 to 30 volumetric ratios.

表−[の結果に示すように、固定床の触媒の昇温及び/
又は彌1焼には三咳1ヒ1流黄を海原した酸素含有ガス
を用い、ナフタレンの接触気相I酸化反応では1. P
Pm以上の二咽1ヒ1lrf 黄と原料ナフタレ/をS
む淑素J有ガスを用いる方法においても、朋媒とカーボ
ランダムとの混合充填層及び固定触媒層からなる固定床
反応器による実施例のA+Bの場合は、触媒を含まない
・カーボランダムの中−充填層及び固定触媒層から在る
固定床反応器による比較例のCの場合に比へ、通気抵抗
の増加は格段に少なく固定床の全層でみてもほとんどM
)められないか又は全く認められない程度である。捷た
、実施例のAIBQ比牧から、混合充填層における触媒
の比率が】O〜;30容吊係という好捷しい範囲内でも
とりわけ好適な値に近いAの場合は、通気抵抗の増加が
、混合充填層と固定触媒層のいずれにも全く認められな
いのに対し、混合充填層における触媒の比率が10〜3
0谷匍%という好ましい範囲内でも最も大きいBの場合
は、通気抵抗の増加が、混合充填層にのみごく僅かみら
れ、固定触媒層には全く認められないことが分る。
As shown in the results in Table-[, the fixed bed catalyst temperature rise and/or
Alternatively, an oxygen-containing gas containing 1,000,000 yen was used for Yai 1 yaki, and 1. P
Pm or higher, 1 lrf yellow and raw material naphthalene/S
Even in the case of the method using a gas containing MUSUJ, in the case of Example A+B using a fixed bed reactor consisting of a mixed packed bed of a friend medium and carborundum and a fixed catalyst bed, in the case of A + B of the example using a fixed bed reactor consisting of a mixed packed bed of a friend medium and carborundum and a fixed catalyst bed, it is possible to use a gas containing no catalyst. - Compared to the case of Comparative Example C, which uses a fixed bed reactor consisting of a packed bed and a fixed catalyst bed, the increase in ventilation resistance is much smaller, and even when looking at all the layers of the fixed bed, it is almost M
) is not observed or is not observed at all. From the AIBQ Himaki of the example, when the ratio of catalyst in the mixed packed bed is 】O ~; A, which is close to a particularly preferable value even within the preferable range of 30 volume suspension, the increase in ventilation resistance is , it was not observed at all in either the mixed packed bed or the fixed catalyst bed, whereas the catalyst ratio in the mixed packed bed was 10 to 3.
It can be seen that in the case of B, which is the largest within the preferred range of 0%, a very slight increase in ventilation resistance is observed only in the mixed packed bed, and not at all in the fixed catalyst bed.

特許用1頭人 川崎比成工業株式会社 代理人 弁理士  小 川 恒 部One person for patent Kawasaki Hisei Industries Co., Ltd. Agent: Patent Attorney Tsunebe Ogawa

Claims (1)

【特許請求の範囲】 1、 酸化バナジウム、アルカリ金属Wf、I¥12塩
及びを用い、ナフタレンを酸素含有ガスで接触気相酸化
して旨4−ナフトキノンを製造するに当り、前記固定触
媒層の酸素含有ガス入口部の前に前記触媒と不活性粒状
物とを混合した混合fc填層を設けた固定床反応器を用
い、:33υ℃以上の該固定床に、ナフタレンを含まな
い+賀素含有ガス中にL PPm以上の三・酸化硫黄を
存在させた加熱ガスを供給して該固定床の触媒を昇温及
び/スキ は・焙焼して後、該固定床に、酸素含有ガス中IPPm
以上の二酸化硫哉と原料ナフタレンを存在さぜた原料ノ
ノズを供給してナフタレンを接触気相酸化することを特
徴とする1、4−ナフトキノンの製造法。 2.330℃以上の該固定床に、ナフタレンを含まない
酸素含有ガス中に1〜30 PPmの三酸化硫黄を存在
させた加熱ガスを供給して、−該固定床の触媒を昇温及
び/又は焙焼する特許請求の範囲第1項記載の方法。 :(、該固定床に、酸素含有ガス中にl PPm以上の
二酸化硫黄と原料ナフタレンを存在させかつ該ガス中に
含まれる全硫黄化合物を計算上玉酸化硫黄として300
 PPm以下とした原料ガスを供給してナフタレンを接
触気相酸化する特許請求の範囲第1項又は第2項記載の
方法。 ・1 酸素含有ガス中に1〜30 PPmの二は比硫黄
′し存在させる特許請求の範囲第3項記載の方法。 5、 酸素含有ガス中に1〜lUPPmの三酸化硫黄を
存在させる特許請求の範囲第3項記載の方法。 (5,該固定床に、酸素含有カス中・に硫黄として0、
05〜05重量係重量値化合物を含む原料ナフタレンを
存在させた原料カスを供給してナフタレンを接触気相酸
化する特許請求の範囲第1項、第2項、第3項、第4項
又は第5項記載の方法。 7 混合充填層中の触媒の比率が10〜30容量係であ
る特許請求の範囲第1項、第2項、第8項、第・1項、
第5項又は第(5項に記載の方法。 & 混合充填層の長さが固定触媒層の゛長さの5〜20
%である特許請求の範囲第1項又は第7項記載の方法。 9、 ナフタレンを接触気相酸化する反応温度が350
〜450°Cである特許請求の範囲第1項、第7項又は
第8項記載の方法。
[Claims] 1. In producing 4-naphthoquinone by catalytic gas phase oxidation of naphthalene with an oxygen-containing gas using vanadium oxide, alkali metal Wf, I ¥12 salt and the fixed catalyst layer. Using a fixed bed reactor equipped with a mixed FC packed bed in which the catalyst and inert particulates are mixed in front of the oxygen-containing gas inlet, the fixed bed at 33υ°C or higher is filled with naphthalene-free + gas After heating and/or roasting the catalyst in the fixed bed by supplying a heated gas in which trisulfur oxide of LPPm or more is present in the containing gas, the catalyst in the fixed bed is heated in an oxygen-containing gas. IPPm
A method for producing 1,4-naphthoquinone, which comprises supplying a raw material containing the above sulfur dioxide and naphthalene as a raw material, and oxidizing naphthalene in a catalytic gas phase. 2. A heated gas containing 1 to 30 PPm of sulfur trioxide in a naphthalene-free oxygen-containing gas is supplied to the fixed bed at a temperature of 330° C. or higher to raise the temperature of the catalyst in the fixed bed and/or or roasting the method according to claim 1. :(, In the fixed bed, 1 PPm or more of sulfur dioxide and raw material naphthalene are present in the oxygen-containing gas, and the total sulfur compounds contained in the gas are calculated as 300% sulfur oxide.
3. The method according to claim 1 or 2, wherein naphthalene is catalytically oxidized in vapor phase by supplying a raw material gas having a PPm or less. -1 The method according to claim 3, wherein 1 to 30 PPm of sulfur is present in the oxygen-containing gas. 5. The method according to claim 3, wherein 1 to lUPPm of sulfur trioxide is present in the oxygen-containing gas. (5. In the fixed bed, 0 as sulfur in the oxygen-containing scum,
Claims 1, 2, 3, 4, or 5 for catalytic vapor phase oxidation of naphthalene by supplying raw material scraps in which raw material naphthalene containing a 05-05 weight value compound is present. The method described in Section 5. 7 Claims 1, 2, 8, and 1, in which the ratio of the catalyst in the mixed packed bed is 10 to 30 by volume;
Item 5 or Item 5 (The method described in Item 5. & The length of the mixed packed bed is 5 to 20 times the length of the fixed catalyst bed.
%, the method according to claim 1 or claim 7. 9. The reaction temperature for catalytic gas phase oxidation of naphthalene is 350
9. A method according to claim 1, 7 or 8, wherein the temperature is ~450°C.
JP57181379A 1982-10-18 1982-10-18 Preparation of 1,4-naphthoquinone Granted JPS5970636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181379A JPS5970636A (en) 1982-10-18 1982-10-18 Preparation of 1,4-naphthoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181379A JPS5970636A (en) 1982-10-18 1982-10-18 Preparation of 1,4-naphthoquinone

Publications (2)

Publication Number Publication Date
JPS5970636A true JPS5970636A (en) 1984-04-21
JPH0149249B2 JPH0149249B2 (en) 1989-10-24

Family

ID=16099694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181379A Granted JPS5970636A (en) 1982-10-18 1982-10-18 Preparation of 1,4-naphthoquinone

Country Status (1)

Country Link
JP (1) JPS5970636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014832A3 (en) * 2002-08-02 2004-05-13 Vanetta S P A Redox process particularly for the production of menadione and use of polyoxometalates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014832A3 (en) * 2002-08-02 2004-05-13 Vanetta S P A Redox process particularly for the production of menadione and use of polyoxometalates

Also Published As

Publication number Publication date
JPH0149249B2 (en) 1989-10-24

Similar Documents

Publication Publication Date Title
KR101096355B1 (en) Method for Long Term Operation of a Heterogeneously Catalysed Gas Phase Partial Oxidation of Acrolein in Order to Form Acrylic Acid
TW425386B (en) Heterogeneously catalyzed gas-phase oxidation of propane to acrolein and/or acrylic acid
CA2058083C (en) Catalytic composition for preparing .alpha.,.beta.-unsatured aldehydes by olefin oxidation in the vapour phase; process for the oxidation
JPS59136136A (en) Highly active transition metal catalyst and production thereof
KR20060097728A (en) Long-life method for heterogeneously-catalysed gas phase partial oxidation of propene into acrylic acid
NO302020B1 (en) Catalyst for selective oxidation of sulfur compounds to elemental sulfur, process for preparing the catalyst and process for selective oxidation of sulfur compounds to elemental sulfur
US4046780A (en) Preparation of phthalic anhydride
JP2004255343A (en) Composite oxide catalyst, and method for manufacturing acrylic acid by using the same
US6083471A (en) Method and catalyst for catalytically oxidizing a low concentration of H2 S in a gas to give sulphur
JPH04363147A (en) Molded or supported catalyst for synthesis of methacrolein and methacrylic acid having excellent mechanical strength and its production
CN1083732C (en) Catalyst for the selective oxidation of sulfur compounds to elemental sulfur, process for preparing such catalyst and process for the selective oxidation of sulfur compounds to elemental sulfur
TW200307575A (en) Method for reactivating catalyst for production of methacrylic acid
JPS5970636A (en) Preparation of 1,4-naphthoquinone
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP3797147B2 (en) Method for storing catalyst for methacrylic acid production
JPS6037108B2 (en) Method for producing phthalic anhydride
US2885409A (en) Maleic anhydride production and catalyst therefor
JPH0810621A (en) Production of catalyst for producing unsaturated carboxylic acid
JP2003532532A (en) Catalyst purification method for gas containing high concentration of sulfur disulfide
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JPS59183832A (en) Heteropolyacid base molded catalyst composition containing whisker
JPS5911340B2 (en) Improved shaped catalyst for nitrogen oxide purification
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH05293389A (en) Preparation of catalyst for production of acrolein and acrylic acid
US3790502A (en) Catalyst and method of manufacture