JPS5969920A - Thin-film semiconductor device - Google Patents
Thin-film semiconductor deviceInfo
- Publication number
- JPS5969920A JPS5969920A JP57180448A JP18044882A JPS5969920A JP S5969920 A JPS5969920 A JP S5969920A JP 57180448 A JP57180448 A JP 57180448A JP 18044882 A JP18044882 A JP 18044882A JP S5969920 A JPS5969920 A JP S5969920A
- Authority
- JP
- Japan
- Prior art keywords
- film
- added
- layer
- impurity
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02425—Conductive materials, e.g. metallic silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、例えばその活性領域がシランのグロー放電
によって形成されたアモルファスシリコンから成る光起
電力素子、および整流素子のような薄膜半導体装置に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to thin film semiconductor devices such as photovoltaic elements and rectifiers whose active regions are made of amorphous silicon formed by glow discharge of silane.
シランガスのグロー放電で得られたHを含むアモルファ
スシリコン(以下a −S i ト記ス)ハ、結晶シリ
コンと同様に価電子制御が可能で、接合型半導体装置が
出来ることが示されて以来、低コスト、大面積半導体装
置への応用が・進められている。このa−8iを用いた
p i n、型半導体装置では、金属基板あるいは透明
導電膜をつけたガラス基板上に、シランあるいは添加不
純物元素を含むガスの直流あるいは高周波の高圧印加に
よるグロー放電分解番こより、p形層、i形層(添加不
純物元素を含まない層)、n形層を積層させて構成する
。ショットキー形の場合には、同様の基板にn形層ある
いはp形層そしてi層、バリア金属を積層して構成する
。この場合、n形層およびp形層中の添加不純物濃度は
1%にも達するのが普通である。その理由は、a−8i
は結晶シリコンとちがって不規則構造のために不純物添
加効率が悪く、第1図(W、E、5pear、P、G、
LeComber’:雑誌[フイロソフイカル+1−7
ガジy J (Ph1los、Mag、 ) 33巻9
35〜945頁(19,76年)に示すように1チの不
純物添加でも、その導電率が1O−3(Ω・crn)−
1活性化エネルギー0.2eVl、か得られない。この
ためにa−8iのp形あるいはn形層には不純物濃度を
高くせさるを得ない。Since it was shown that amorphous silicon containing H (hereinafter referred to as a-Si) obtained by glow discharge of silane gas can control valence electrons in the same way as crystalline silicon, and can be used for junction-type semiconductor devices. Application to low-cost, large-area semiconductor devices is progressing. In a pin-type semiconductor device using this a-8i, glow discharge decomposition is performed by applying direct current or high frequency high voltage of a gas containing silane or an added impurity element onto a metal substrate or a glass substrate coated with a transparent conductive film. Therefore, a p-type layer, an i-type layer (layer containing no added impurity element), and an n-type layer are stacked. In the case of a Schottky type, an n-type layer or a p-type layer, an i-layer, and a barrier metal are laminated on a similar substrate. In this case, the concentration of added impurities in the n-type layer and the p-type layer typically reaches as much as 1%. The reason is a-8i
Unlike crystalline silicon, impurity doping efficiency is low due to its irregular structure, as shown in Figure 1 (W, E, 5pear, P, G,
LeComber': Magazine [Philosophical +1-7
Gaziy J (Ph1los, Mag, ) Volume 33 9
As shown on pages 35-945 (1976), even with the addition of 1 tres of impurity, the conductivity is 1O-3(Ω・crn)-
1 activation energy of 0.2 eVl cannot be obtained. For this reason, it is unavoidable to increase the impurity concentration in the p-type or n-type layer of a-8i.
したがって、a −S i半導体装置の製作においては
、n形あるいはp形層中およびこの層を形成中、反応器
の壁についた高濃度の不純物、およびガス中に残留して
いる添加不純物が、続く工程であるi膜の成膜時にi膜
中に取り込まれ、半導体装置の特性上最も重要であるi
膜の膜質を低下させる欠点があった。Therefore, in the fabrication of a-Si semiconductor devices, high concentrations of impurities in the n-type or p-type layer and during the formation of this layer are present on the walls of the reactor and doped impurities remaining in the gas. It is incorporated into the i-film during the subsequent step of forming the i-film, and is most important for the characteristics of semiconductor devices.
There was a drawback that the quality of the membrane deteriorated.
更に、i膜上につけた高濃度のp形層(あるいはn形層
)から、i膜中に不純物元素が拡散するという欠点もあ
った。その上、この半導体装置を光起電力素子として使
う場合には、この高濃度不純物を含む層の光吸収が大き
いために、光活性領域であるi膜に到達する光量が減少
せられるという欠点もあった。Furthermore, there is also the drawback that impurity elements diffuse into the i-film from the highly concentrated p-type layer (or n-type layer) formed on the i-film. Furthermore, when this semiconductor device is used as a photovoltaic element, there is a drawback that the amount of light reaching the i-film, which is a photoactive region, is reduced due to the large light absorption of this layer containing high concentration impurities. there were.
この発明はこれらの欠点をすべて解決し、前に形成され
た膜中の添加不純物の影響を受けない良質なi膜をもつ
薄膜半導体装置を得ることを目的とする。The object of the present invention is to solve all of these drawbacks and to obtain a thin film semiconductor device having a high-quality i-film that is not affected by added impurities in previously formed films.
この目的は、少なくとも基板上にアモルファスシリコン
からなる複数の層が積層され、i層の基板側にn層が存
在する薄膜半導体装置において、n層がv族元素を添加
しない原料ガスの分解によって生成された微結晶を含む
シリコン膜であるこ本発明は以下の知見に基づく。This purpose is to develop a thin film semiconductor device in which multiple layers of amorphous silicon are laminated on at least a substrate, and an n layer exists on the substrate side of an i layer, in which the n layer is formed by decomposition of a raw material gas to which group V elements are not added. The present invention is based on the following findings.
第2図fat 、 (blはシランのガス流量10 c
c/分。Figure 2 fat, (bl is silane gas flow rate 10c
c/min.
水素流量250CCZ分、放電パワー0.07〜0.3
W/cI!で得た膜の導電率(曲線C)と活性化エネル
ギ−(曲線A)をB2几およびPH3ガス濃度をパ゛ラ
メ−ターにして示したものである。これらの膜は第1図
のアモルファス膜とちがって、30〜200Aの結晶シ
リコン粒を30〜100%(体積率)含む微結晶化膜で
ある。この膜は、第2図(b)に示すようにPI−1,
不純物元素を意図的に添加しなくてもn形導電性を示し
、その導電率は4X10 (Ωcn1)−’活性化エ
ネルギーは0.2 e Vである。この値は1係もの高
い不純物濃度をもつアモルファスn形層と同程度である
。更にn形不純物を添加すれば導電率は増加し活性化エ
ネルギーは減少する。これでも不純物濃度はa−8iの
n形層に比べればl/ 1000以下である。Hydrogen flow rate 250CCZ, discharge power 0.07-0.3
W/cI! The electrical conductivity (curve C) and activation energy (curve A) of the film obtained in the above are shown using the B2 gas concentration and the PH3 gas concentration as parameters. These films, unlike the amorphous films shown in FIG. 1, are microcrystalline films containing 30 to 100% (volume percentage) of crystalline silicon grains of 30 to 200 A. As shown in FIG. 2(b), this film is composed of PI-1,
It exhibits n-type conductivity even without intentionally adding impurity elements, and its conductivity is 4X10 (Ωcn1) -'activation energy is 0.2 eV. This value is comparable to that of an amorphous n-type layer having an impurity concentration as high as a factor of 1. Furthermore, if n-type impurities are added, the conductivity will increase and the activation energy will decrease. Even with this, the impurity concentration is 1/1000 or less compared to the n-type layer of a-8i.
は、無添加微結晶化膜が既にn形であるために、p形化
するためには、n形層に比べて多くの不純活性化エネル
ギー0.2eVであり、1%ものほう素を添加したp形
アモルファス膜と同程度の特性を示す。その上、これら
の微結晶化n形あるいはp形層は、同等の特性をもつa
−8i膜に比べて光吸収係数が小さく、この膜は光を透
しやすいという性質をもっている。この様子を第3図に
示した。曲線31は微結晶化n形あるいはp形層の吸収
係数を表わし曲線32.33はそれぞれりん。Since the undoped microcrystalline film is already n-type, in order to change it to p-type, the impurity activation energy is 0.2 eV, which is higher than that of the n-type layer, and it is necessary to add as much as 1% boron. The properties are comparable to those of p-type amorphous films. Moreover, these microcrystalline n-type or p-type layers have similar properties.
The light absorption coefficient is smaller than that of the -8i film, and this film has the property of easily transmitting light. This situation is shown in Figure 3. Curve 31 represents the absorption coefficient of a microcrystalline n-type or p-type layer, and curves 32 and 33 respectively represent phosphorus.
はう素を含んだa −S i膜の吸収係数を表わす。It represents the absorption coefficient of an a-Si film containing boronate.
微結晶化膜の吸収係数はa−8i膜のそれに比べて小さ
くなっている。The absorption coefficient of the microcrystalline film is smaller than that of the a-8i film.
以上のように、微結晶化膜に微量の添加不純物(a−8
iに比べて1/100〜1/1000以刀を含む膜の特
性は高添加不純物濃度をもつa−8i膜と同程度の特性
をもち、なおかつ、先の透過性もよいことを示した。特
に微結晶化n形層は、原料ガスにv族元素を添加しなく
てもこのような特性を示す。本発明はこれをpin構造
のn層として利用したものである。As mentioned above, a trace amount of added impurity (a-8
It was shown that the properties of the film containing 1/100 to 1/1000 of that of the a-8i film were comparable to those of the a-8i film with a high concentration of added impurities, and the permeability was also good. In particular, the microcrystalline n-type layer exhibits such characteristics even without adding group V elements to the source gas. The present invention utilizes this as an n layer of a pin structure.
以下図を引用して本発明の実施例について述べる。第4
図において、金属基板1の上に無添加の微結晶化n形2
を前述した条件で100〜100OAの厚さに成膜し、
つづいて通常の無添加a−8i膜3を0.4〜1μmの
厚さに成膜し、次に10″′2%以下の添加不純物を含
む微結晶化p形層4を100〜500の厚さに成膜し、
その上に透明導電膜5をつけ、さらに金属格子電極6を
設けてpin構造の光起電力素子が形成されている。し
かしn。Embodiments of the present invention will be described below with reference to the figures. Fourth
In the figure, an additive-free microcrystalline n-type 2 is placed on a metal substrate 1.
was formed into a film with a thickness of 100 to 100 OA under the conditions described above,
Next, a normal additive-free A-8I film 3 is deposited to a thickness of 0.4 to 1 μm, and then a microcrystalline p-type layer 4 containing 10"'2% or less of added impurities is deposited to a thickness of 100 to 500 μm. A film is formed to a thickness of
A transparent conductive film 5 is applied thereon, and a metal grid electrode 6 is further provided to form a pin-structured photovoltaic element. But n.
p両膜2,4さも微結晶化膜を用いないで、第5図に示
すようにn形層2だけを微結晶化膜とし、p形層は通常
のp形膜−8i膜7で構成してもよい。このようにI膜
3の形成前に基板上に設けられるn形層2に不純物が添
加されていないので、i膜の成膜時にi膜中に不純物が
取り込まれてi膜の膜質を低下させることがない。Both p-type films 2 and 4 do not use a microcrystalline film, but only the n-type layer 2 is made of a microcrystalline film, as shown in FIG. 5, and the p-type layer is composed of a normal p-type film-8i film 7. You may. In this way, since no impurity is added to the n-type layer 2 provided on the substrate before the formation of the I film 3, impurities are incorporated into the i film during the formation of the i film, reducing the film quality of the i film. Never.
第6図、第7図はガラス基板8を用い、基板側から光が
入射する光起電力素子における本発明の実施例を示し、
第4.第5図と共通の部分には同一の符号が付されてい
る。ガラス板8の上に透明導電膜5があり、上面電極9
が全面に設けられているちがいはあるが、1層2,1層
3およびp層4あるいは9層7の形成法、順序などは金
属基板i膜に入る光景が増加する効果も生ずる。6 and 7 show an embodiment of the present invention in a photovoltaic device using a glass substrate 8 and in which light enters from the substrate side,
4th. Components common to those in FIG. 5 are given the same reference numerals. There is a transparent conductive film 5 on the glass plate 8, and a top electrode 9
Although there is a difference in whether the 1st layer 2, 1st layer 3, and the p layer 4 or 9th layer 7 are formed, the formation method, order, etc. of the 1st layer 2, 1st layer 3, and the 9th layer 7 have the effect of increasing the amount of sight that enters the metal substrate i-film.
第8図はショットキー構造の実施例を示す。金属基板1
の上に無添加n形微結晶化膜2を100〜xoooXの
厚さに形成し、次に0.4〜1μmの厚さのa−8iの
1層3、P t 、 A nなどのバリア金属10の順
に構成する。FIG. 8 shows an example of a Schottky structure. Metal substrate 1
An additive-free n-type microcrystalline film 2 is formed thereon to a thickness of 100 to xooooX, and then a layer 3 of a-8i with a thickness of 0.4 to 1 μm, a barrier such as P t , An etc. Constructed in the order of metal 10.
以上にのべたこの発明による光起電力素子の構造は、−
見上従来のa −S i光起電力素子の構造と変わりが
ないが、基板上のn形層に不純物を添加しない微結晶化
a −8i膜を用いた結果、次の点において、大きなち
がいがある。The structure of the photovoltaic device according to the present invention described above is -
Although the structure is apparently the same as that of a conventional a-Si photovoltaic element, there are major differences in the following points as a result of using a microcrystalline a-8i film without adding impurities to the n-type layer on the substrate. There is.
その一つはn形層に不純物が添加されていないこと、お
よびこの膜をつくるときのガス中に不純物がないために
、次いで形成される光電流発生領域として重要であるi
膜が添加不純物によって汚染されることがない結果、良
質なi膜が保持されていることである。One of them is that no impurities are added to the n-type layer, and since there are no impurities in the gas used to form this film, it is important as a photocurrent generating region that will be formed next.
Since the film is not contaminated by added impurities, a high quality i film is maintained.
その二つめは、微結晶化膜の光透過性がよいために光損
失が少なく、これを光の入射側に用いたときはi膜によ
り多くの光を導入出来る。Cbる窓効果が大きいことで
ある。The second reason is that the microcrystalline film has good light transmittance, so there is little light loss, and when it is used on the light incident side, more light can be introduced into the i-film. Cb has a large window effect.
以上の前にも述べた利点のほかに三つめとして、添加不
純物元素は毒性であることが多く、安全上その原料ガス
きしては出来るだけ希釈して使用し原料ガスの使用が少
なくて済む利点がある。In addition to the above-mentioned advantages, the third advantage is that added impurity elements are often toxic, so for safety reasons, the raw material gas should be diluted as much as possible to reduce the amount of raw material gas used. There are advantages.
この発明はいままで説明した光起電力素子のほかにpi
nまたはni接合をもつアモルファスシリコン半導体装
置に応用できる。In addition to the photovoltaic device described above, this invention
It can be applied to amorphous silicon semiconductor devices having n or ni junctions.
第1図はa −S iの不純物添加量と導電率および活
性化エネルギーとの関係曲線、第2図(a)、 (b)
は微結晶化a−8i膜の不純物添加量と導電率および活
性化エネルギーとの関係曲線で(a)はp形層、(b)
はn形層、第3図はa−8i膜と微結晶化膜の光吸収係
数と波長との関係線図、第4図、第5図はそれぞれ金属
基板をもつ光起電力素子における本発明の二つの実施例
の断面図、第6図、第7図はそれぞれガラス基板をもつ
光起電力素子における本発明の二つの実施例の断面図、
第8図はショットキー構造光起電力素子における本発明
の実施例の断面図である。
1・・・金属基板、2・・・微結晶化n膜、3・・・a
−8il膜、4・・・微結晶化p膜、7・・・a−8i
、p膜、8・・・ガラス板、10・・・バリア金属0原
料ガス組威
牙1図
(Q)(b)
72図
第3図
f5図
オフ図Figure 1 shows the relationship curve between the amount of a-Si impurity added, conductivity, and activation energy, Figure 2 (a), (b)
are the relationship curves between the amount of impurity added and the conductivity and activation energy of the microcrystalline A-8i film, (a) is the p-type layer, (b)
is an n-type layer, FIG. 3 is a diagram of the relationship between the light absorption coefficient and wavelength of the A-8I film and the microcrystalline film, and FIGS. 4 and 5 are the present invention in a photovoltaic device having a metal substrate, respectively. 6 and 7 are cross-sectional views of two embodiments of the present invention in a photovoltaic device having a glass substrate, respectively,
FIG. 8 is a sectional view of an embodiment of the present invention in a Schottky structure photovoltaic device. DESCRIPTION OF SYMBOLS 1... Metal substrate, 2... Microcrystallized n film, 3... a
-8il film, 4... Microcrystallized p film, 7... a-8i
, p film, 8...Glass plate, 10...Barrier metal 0 Raw material gas assembly 1 Figure (Q) (b) Figure 72 Figure 3 Figure f5 Off view
Claims (1)
積層され、i層の基板側にn層が存在するものにおいて
、n層が■族元素を添加しない原料ガスの分解によって
生成された微結晶を含むシリコン膜であることを特徴と
する薄膜半導体装置。l) In a structure in which multiple layers of amorphous silicon are laminated on a substrate, and an n layer exists on the substrate side of the i layer, the n layer contains microcrystals generated by decomposition of a raw material gas that does not contain group II elements. 1. A thin film semiconductor device characterized by being a silicon film containing silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57180448A JPS5969920A (en) | 1982-10-14 | 1982-10-14 | Thin-film semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57180448A JPS5969920A (en) | 1982-10-14 | 1982-10-14 | Thin-film semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5969920A true JPS5969920A (en) | 1984-04-20 |
Family
ID=16083403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57180448A Pending JPS5969920A (en) | 1982-10-14 | 1982-10-14 | Thin-film semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5969920A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0949685A2 (en) * | 1998-03-16 | 1999-10-13 | Canon Kabushiki Kaisha | Semiconductor element and its manufacturing method |
-
1982
- 1982-10-14 JP JP57180448A patent/JPS5969920A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0949685A2 (en) * | 1998-03-16 | 1999-10-13 | Canon Kabushiki Kaisha | Semiconductor element and its manufacturing method |
EP0949685A3 (en) * | 1998-03-16 | 2007-06-13 | Canon Kabushiki Kaisha | Semiconductor element and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4638111A (en) | Thin film solar cell module | |
US4591892A (en) | Semiconductor photoelectric conversion device | |
EP1724840B1 (en) | Photoelectric cell | |
US11810993B2 (en) | Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system | |
JPS6249672A (en) | Amorphous photovoltaic element | |
JPS59205770A (en) | Photovoltaic device | |
JP2001267598A (en) | Laminated solar cell | |
JPH04296063A (en) | Solar cell element | |
JPH0359588B2 (en) | ||
JPS58139478A (en) | Amorphous solar battery | |
US4903102A (en) | Semiconductor photoelectric conversion device and method of making the same | |
JPH0595126A (en) | Thin film solar battery and manufacturing method thereof | |
JP3025392B2 (en) | Thin film solar cell and manufacturing method | |
JPH065765B2 (en) | Photoelectric conversion device | |
JPS5969920A (en) | Thin-film semiconductor device | |
JPH0377382A (en) | Solar battery cell | |
JPH11274527A (en) | Photovoltaic device | |
JPS6074685A (en) | Photovoltaic device | |
JPS61135167A (en) | Thin-film solar cell | |
JPH0586677B2 (en) | ||
JPS6152992B2 (en) | ||
KR101100109B1 (en) | Method for Manufacturing Photovoltaic Device | |
JPS62165374A (en) | Amorphous photovoltaic element | |
JPS6284571A (en) | Multilayer structure type amorphous solar cell | |
JPH0571195B2 (en) |