JPS5968978A - Method for inspecting solar battery - Google Patents

Method for inspecting solar battery

Info

Publication number
JPS5968978A
JPS5968978A JP57179450A JP17945082A JPS5968978A JP S5968978 A JPS5968978 A JP S5968978A JP 57179450 A JP57179450 A JP 57179450A JP 17945082 A JP17945082 A JP 17945082A JP S5968978 A JPS5968978 A JP S5968978A
Authority
JP
Japan
Prior art keywords
solar cell
test
solar battery
continuously
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57179450A
Other languages
Japanese (ja)
Inventor
Koji Sakurai
宏治 桜井
Takao Fujita
藤田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57179450A priority Critical patent/JPS5968978A/en
Publication of JPS5968978A publication Critical patent/JPS5968978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To previously confirm the weatherability of a solar battery device and the characteristic against a mechanical load by a method wherein a plurality of pieces are electrically connected each other, exposed to an atmosphere for characteristic test, and put in an operating state, and evaluating observation is continuously performed by monitoring output signals. CONSTITUTION:The solar battery element 3 is set up in a chamber 1, which is set at the pressure of 1X10<-5>mm.Hg, a temperature cycle of +100--150 deg.C is applied by utilizing an infrared ray lamp 7 and a cooling plate by a liquid N2, and the characteristics of the element 3 during the time is continuously measured 5 from outside and then recorded 6. This constitution enables to record also instantaneous abnormality generated in the test, and thus to continuously evaluation-observe the passage of the abnormality and the recovery time thereof, etc. Therefore, it is useful, because the data for improving the reliability of the solar battery can be obtained besides the data for environmental conditions.

Description

【発明の詳細な説明】 本発明は太陽電池の性能を検査する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for testing the performance of solar cells.

太陽電池が電力用として利用される場合、通常戸外に設
置されて厳しい自然環境に晒される。太陽電池装置は、
単体の素子だけでは充分な出力が得られないため、電力
用として利用する場合複数個の太陽電池素子が直・並列
に電気的接続されて使用されている。従って上記のよう
に厳しい環境に晒した場合、各太陽電池素子もさること
ながら特に素子間の相互接続部分において劣化や損傷を
生じることがしばしばある。上記のような不都合を防ぐ
ためには、電気的接続された太陽電池装置に対して予め
耐候性9機械的負荷に対する特性を確認することが必要
である。
When solar cells are used for electricity, they are usually installed outdoors and exposed to harsh natural environments. The solar cell device is
Since sufficient output cannot be obtained from a single element alone, multiple solar cell elements are electrically connected in series and parallel when used for electric power. Therefore, when exposed to such a harsh environment as described above, not only each solar cell element but also the interconnections between the elements often deteriorate or be damaged. In order to prevent the above-mentioned inconvenience, it is necessary to check the weather resistance 9 mechanical load characteristics of the electrically connected solar cell device in advance.

従来から実用化されている太陽電池装置においても一応
性能評価が行われているが、従来装置の場合に採られて
いる検査方法は、熱ショック、温度サイクル、衝撃、振
動等の負荷を与える試験前の一太陽電池特性と、負荷を
力えた試験後の特性を検査するのみで、試験中の特性変
化を監視することは行われていなかった。そのため試験
前後で特性に変化が見い出されなければ、太陽電池素子
は試験に合格したものとして扱われていた。
Performance evaluations have been conducted for solar cell devices that have been in practical use for some time, but the testing methods used for conventional devices are tests that apply loads such as thermal shock, temperature cycling, impact, and vibration. They only inspected the solar cell characteristics before the test and the characteristics after the test under load, but did not monitor changes in the characteristics during the test. Therefore, if no change was found in the characteristics before and after the test, the solar cell element was considered to have passed the test.

しかし、たとえば人工衛星に搭載された太陽電池の場合
、太陽電池としての動作が行われている期間にも予想外
の劣化や故障モードの発生がしばしば観察され、特に太
陽電池アレーの電気的な導通の有無が不定期的に繰返さ
れる現象が見い出され、従来の検査方法のみでは検出で
きない故障モードがあると考えられ、従来の方法では不
充分であった。
However, for example, in the case of solar cells mounted on artificial satellites, unexpected deterioration and failure modes are often observed even during the period when the solar cells are operating as a solar cell. A phenomenon was discovered in which the presence or absence of defects was irregularly repeated, and it was thought that there was a failure mode that could not be detected by conventional inspection methods alone, and conventional methods were insufficient.

本発明は上記従来の検査方法の欠点を除去し、試験雰囲
気に置かれた太陽電池装置からも出力信号を取勺出して
特性を連続的に監視し得る検査方法を提供するものであ
る。次に実施例を挙げて本発明の詳細な説明する。
The present invention eliminates the drawbacks of the conventional testing methods described above and provides an testing method that can extract output signals even from solar cell devices placed in a test atmosphere and continuously monitor characteristics. Next, the present invention will be explained in detail with reference to Examples.

尚太陽電池装置の検査・評価のためには通常法の耐候性
及び機械的負荷に対する特性を確認することが望ましい
For inspection and evaluation of solar cell devices, it is desirable to confirm weather resistance and mechanical load characteristics using conventional methods.

1)耐温度特性・・・・・・熱シジック、温度サイクル
2)真 空  ・・・・・・熱真空 3)機械的負荷・・・・・・衝撃、振動、音響試験等い
ずれの試験内容においても、太陽電池素子に光を照射し
て光起電力を生じている状態で試験することができるが
、光照射が行われない場合には、太陽電池にバイアス電
圧を印加して順方向に電流を供給することによって動作
状態を作り出し、試験のためのモ、−ドとする。
1) Temperature resistance characteristics...thermal sizic, temperature cycle 2) Vacuum...thermal vacuum 3) Mechanical load...any test content such as shock, vibration, or acoustic testing , it is possible to test the solar cell element in a state where it is irradiated with light and generates a photovoltaic force, but if no light irradiation is performed, a bias voltage is applied to the solar cell and the test is performed in the forward direction. By supplying current, an operating state is created and used as a mode for testing.

以下の説明で実施例1は光を照射しながら試験する場合
であり、実施例2はバイアス電圧を印加して試験する場
合である。
In the following description, Example 1 is a case in which a test is performed while irradiating light, and Example 2 is a case in which a test is performed while applying a bias voltage.

実施例1 試験内容として太陽電池装置を熱真空中に晒
して、真空状態下で温度サイクルを与えて適否を判定す
るだめの検査方法を説明する。
Example 1 As a test content, an inspection method will be described in which a solar cell device is exposed to a thermal vacuum and subjected to a temperature cycle under a vacuum condition to determine suitability.

第1図において、真空ポンプに連結された気密チャンバ
ー1内には、複数個の太陽電池素子2が電気的接続され
た太陽電池パネル3が納められている。太陽電池パネル
3に設置された太陽電池素子2には、重力を導出するた
めのリード線4が接続され、該リード線4の他端は電気
出力特性測定装置5に導かれ、出力が取シ出されてレコ
ーダ6によシ記録される。上記気密チャンバー1内には
上記太陽電池パネル3に対向させて赤外線ランプ7が納
められ、該赤外線ランプ7から昇温のだめのエネルギー
と共に光が太陽電池素子面に注がれる。
In FIG. 1, a solar cell panel 3 to which a plurality of solar cell elements 2 are electrically connected is housed in an airtight chamber 1 connected to a vacuum pump. A lead wire 4 for deriving gravity is connected to the solar cell element 2 installed on the solar cell panel 3, and the other end of the lead wire 4 is led to an electrical output characteristic measuring device 5 to measure the output. It is output and recorded by the recorder 6. An infrared lamp 7 is housed in the airtight chamber 1 so as to face the solar cell panel 3, and light from the infrared lamp 7 is poured onto the surface of the solar cell element along with energy for raising the temperature.

上記試験装置に太陽電池素子3がセットされた後、チャ
ンバー1内が真空度I X 10 ”’mmHg以下に
吸引され、次に温度範囲+100℃〜−150℃の温度
サイクルが与えられる。昇温時に外部擬人陽光又はチェ
ンバー内の赤外線ランプによって光を与えると共に加熱
し、降温時はチャンバー内部に設けられたシュラウドを
液体窒素で冷却することによって温度サイクルを生じる
。上記昇温・降温の温度サイクル時に太陽電池2の短絡
電流、開放電圧及びI−V特性等がチェンバー外部から
連続的に監視される。即ち太陽電池2を試験しながら、
−試験中の特性がモニターされることになる0第2図(
a)〜(d)は上記試験装置にセットされた太陽電池2
から出力された信号を検出するだめの電気的ブロック図
で、光が照射されている太陽電池パネル3の出力端子A
、B間に、試験内容に応じて夫々次の回路が接続される
After the solar cell element 3 is set in the test apparatus, the inside of the chamber 1 is sucked to a vacuum level of I x 10'' mmHg or less, and then a temperature cycle is applied in a temperature range of +100°C to -150°C. At times, external anthropomorphic sunlight or an infrared lamp inside the chamber is used to provide light and heat, and when the temperature is lowered, a shroud provided inside the chamber is cooled with liquid nitrogen to generate a temperature cycle.During the temperature cycle of temperature increase and decrease described above, The short circuit current, open circuit voltage, IV characteristics, etc. of the solar cell 2 are continuously monitored from outside the chamber. That is, while testing the solar cell 2,
- the properties during the test will be monitored (Fig. 2)
a) to (d) are solar cells 2 set in the above test device.
This is an electrical block diagram for detecting the signal output from the output terminal A of the solar panel 3 that is irradiated with light.
, B, the following circuits are connected depending on the test content.

イ)短絡電流モード(第2図(a))  上記太陽電池
パネル3の出力端子AB間に負荷抵抗として10程度の
抵抗器8が接続され、両端の電圧をレコーダ6で連続的
に監視する。監視結果から太陽電池パネルの部分的な断
線等の変化だけではなく、光源の変動も監視することが
できる。
b) Short-circuit current mode (FIG. 2(a)) About ten resistors 8 are connected as load resistances between the output terminals AB of the solar cell panel 3, and the voltages at both ends are continuously monitored by the recorder 6. From the monitoring results, it is possible to monitor not only changes such as partial disconnections in the solar panel, but also changes in the light source.

口)開放電圧モード(第2図(b))  太陽電池パネ
ル3の出力端子A、B間を直ちにレコーダ6に接続して
電圧対時間の関係を監視する。これによりパネル全体の
断線等の有無を連続的に監視できる。
(a) Open voltage mode (FIG. 2(b)) Immediately connect the output terminals A and B of the solar panel 3 to the recorder 6 to monitor the relationship between voltage and time. This makes it possible to continuously monitor the entire panel for disconnections, etc.

7つ 定負荷モード(第2図(C))  太陽電池の最
大電力点近傍に見合う負荷抵抗9L75両端電圧を連続
的に監視する。これによシ実際の動作状態に近い条件下
での変動を監視することができる。
7. Constant load mode (Figure 2 (C)) Continuously monitors the voltage across the load resistor 9L75, which corresponds to the vicinity of the maximum power point of the solar cell. This allows fluctuations to be monitored under conditions close to actual operating conditions.

二)I−Vモード(第2図(d))  上記(イ)〜(
ハ)の各モ、−ドについて電流対電圧の特性をI−V測
定器10で検出し、XYレコーダ11を用いて記録する
。ただしとのI−Vモードについては連続的な監視は行
えないがより多くの情報を得ることができる。
2) IV mode (Figure 2 (d)) Above (a) to (
For each of the modes (c) and -, the current versus voltage characteristics are detected using the IV measuring device 10 and recorded using the XY recorder 11. However, in the IV mode, continuous monitoring cannot be performed, but more information can be obtained.

上記(a)〜(d)のモードは必ずしも全てが実施され
るものではなく、使用環境及び要求される太陽電池の出
力特性に応じて適切なモードが選択される0実施例2 
太陽電池素子に光が照射されない状態で特性試験を実施
するため、バイアス回路が付加される。試験内容は振動
、衝撃、音響試験等のように機械的な負荷を与えるもの
とする。
Not all of the modes (a) to (d) above are necessarily implemented, and an appropriate mode is selected depending on the usage environment and required output characteristics of the solar cell.0 Example 2
A bias circuit is added to perform characteristic tests without irradiating the solar cell element with light. The test content applies mechanical loads such as vibration, shock, and acoustic tests.

素子間の電気的接続が行われた太陽電池ノくネル3は第
3図に示す試験装置12にセットされ、太陽電池パネル
3からの出力は前記実施例1と同様に電気特性測定装置
5に入力され、出力が連続的に記録される。
The solar cell panel 3 with electrical connections between the elements was set in the testing device 12 shown in FIG. The input is input and the output is recorded continuously.

上記試験装置にセットされた太陽電池ツクネル3は、試
験中光を照射することによって光起電力を発生させ得る
が、本実施例では別の外部電源から順方向電画を供給す
ることによって太陽電池素子としての特性を試験する。
The solar cell Tsuknel 3 set in the above test apparatus can generate photovoltaic force by irradiating it with light during the test, but in this example, the solar cell Tsuknel 3 can generate photovoltaic power by supplying a forward voltage from another external power source. Test the characteristics of the device.

そのため検査用電気回路は、第4図(a)〜(c)に示
す如く外部バイアス電源13.14.15が設けられる
。該外部バイアス電源13,14.,15を用いて例え
ば以下のようなモードで試験が実行される。
Therefore, the test electric circuit is provided with external bias power supplies 13, 14, and 15 as shown in FIGS. 4(a) to 4(c). The external bias power supplies 13, 14 . , 15, the test is executed in the following mode, for example.

(イ)定電圧モード(第4図(a))  直流安定化定
電圧電源13が接続され、前記実施例と同様に負荷抵抗
8が接続された測定回路において、太陽電池に定電圧を
印加した状態で負荷抵抗8に流れる電流を連続的に監視
する @)定電流モード(第4図(b))  直流安定化定電
流電源14を接続して太陽電池に定電流を供給し、この
状態での太陽電池パネル3の両端電圧を連続的に監視す
る。
(b) Constant voltage mode (Fig. 4 (a)) A constant voltage was applied to the solar cell in the measurement circuit to which the DC stabilized constant voltage power supply 13 was connected and the load resistor 8 was connected as in the previous example. Constant current mode (Figure 4 (b)) Connect the DC stabilized constant current power supply 14 to supply constant current to the solar cell, and in this state The voltage across the solar cell panel 3 is continuously monitored.

(ハ) I−Vモード(第4図(C))  バイアス電
源ヲ備えたI−V特性測定器15で順方向特性and1
0r逆方向特性を測定することにより、上記(イ)。
(C) IV mode (Fig. 4 (C)) Forward characteristic and1 is measured using the IV characteristic measuring device 15 equipped with a bias power supply.
The above (a) was obtained by measuring the 0r reverse direction characteristic.

(ロ)モードに加えて更により多くの情報を得ることが
できる。ただし実施例1のに)I−Vモードと同Q続的
な監視には使えない。また(イ)〜(ハ)の実施にあた
って適切なモードが選択される。
(b) In addition to the mode, it is possible to obtain even more information. However, it cannot be used for the same Q-continuous monitoring as in the IV mode (in Embodiment 1). Further, an appropriate mode is selected for implementing (a) to (c).

以上本発明によれば、太陽電池装置が特性・評価試験に
供されている間にも太陽電池パネルからの出力ヲモニタ
ーしているため、試験中に生じた不連続な瞬時的異常変
化も記録観察することができ、また発生した異常とそれ
らの回復時間等試験の経過を連続的に評価観察すること
ができ、試験環境条件のデータと併せて太陽電池装置の
信頼性を高めるだめの多くのデータを得ることができる
0特に熱真空や温度ザイクル試験のように太陽電池に温
度変化を与えて行なう熱的な試験に対して、異常とそれ
が回復した試験条件等との関係を対応させることができ
、非常に有用な試験方法である。
As described above, according to the present invention, since the output from the solar cell panel is monitored even while the solar cell device is being subjected to characteristic/evaluation tests, discontinuous instantaneous abnormal changes that occur during the test can also be recorded and observed. It is also possible to continuously evaluate and observe the progress of the test, such as abnormalities that occur and their recovery time, and together with data on the test environment conditions, it can generate a lot of data that can improve the reliability of the solar cell device. In particular, for thermal tests such as thermal vacuum and temperature cycle tests in which solar cells are subjected to temperature changes, it is possible to correlate the relationship between an abnormality and the test conditions under which it has recovered. This is a very useful test method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の試験装置の要部構成図
、第2図(a)〜(d)は同実施例の測定装置の電気ブ
ロック図、第3図は本発明による他の実施例の試験装置
の要部構成図、第4図(a)〜(C)は同実施の測定装
置の電気ブロック図である。 1:、気密チェンバー、2:太陽電池素子、3:太陽電
池パネル、5:電気出力特性測定装置、6:レコーダ、
7:赤外線ランプ、12:試験装置、13.14.15
 :バイアス回路
FIG. 1 is a block diagram of the main parts of a test device according to an embodiment of the present invention, FIGS. 2(a) to (d) are electrical block diagrams of a measuring device according to the same embodiment, and FIG. 3 is a diagram of another test device according to the present invention. FIGS. 4(a) to 4(C) are electrical block diagrams of the measuring device of the same embodiment. 1: Airtight chamber, 2: Solar cell element, 3: Solar cell panel, 5: Electrical output characteristic measuring device, 6: Recorder,
7: Infrared lamp, 12: Test equipment, 13.14.15
: Bias circuit

Claims (1)

【特許請求の範囲】 l)複数個の太陽電池素子が互いに電気的接続されてな
る太陽電池の検査方法において、相互に電気的接続され
ている太陽電池素子を特性試験のための雰囲気に晒すと
共に、太陽電池素子に光を照射するか又は電流を供給し
た動作状態に設定し、太陽電池素子から出力される信号
をモニターして検査試験中の結果を得ることを特徴とす
る太陽電池の検査方法。 2)前記特性試験のだめの雰囲気は、太陽電池素子を熱
真空中に晒した状態であることを特徴とする請求の範囲
第1項記載の太陽電池の検査方法。 3)前記特性試験のだめの雰囲気は、太陽電池素子に機
械的負荷を与えた状態であることを特徴とする請求の範
囲第1項記載の太陽電池の検査方法。
[Claims] l) A method for testing a solar cell in which a plurality of solar cell elements are electrically connected to each other, including exposing the mutually electrically connected solar cell elements to an atmosphere for a characteristic test; , a solar cell inspection method characterized by setting the solar cell element in an operating state in which light is irradiated or current is supplied, and monitoring a signal output from the solar cell element to obtain a result during an inspection test. . 2) The solar cell testing method according to claim 1, wherein the atmosphere for the characteristic test is a state in which the solar cell element is exposed to a thermal vacuum. 3) The solar cell testing method according to claim 1, wherein the atmosphere in the characteristic test chamber is a state in which a mechanical load is applied to the solar cell element.
JP57179450A 1982-10-13 1982-10-13 Method for inspecting solar battery Pending JPS5968978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179450A JPS5968978A (en) 1982-10-13 1982-10-13 Method for inspecting solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179450A JPS5968978A (en) 1982-10-13 1982-10-13 Method for inspecting solar battery

Publications (1)

Publication Number Publication Date
JPS5968978A true JPS5968978A (en) 1984-04-19

Family

ID=16066064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179450A Pending JPS5968978A (en) 1982-10-13 1982-10-13 Method for inspecting solar battery

Country Status (1)

Country Link
JP (1) JPS5968978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235442A (en) * 1984-05-08 1985-11-22 Sanyo Electric Co Ltd Photovoltaic unit
KR101402587B1 (en) * 2013-02-19 2014-06-02 한서대학교 산학협력단 Apparatus for diagnosing failure of photovoltaic string using diagnostic load
KR101402586B1 (en) * 2013-02-19 2014-06-03 한서대학교 산학협력단 Method for monitoring and diagnosing failure of photovoltaic string
CN110492844A (en) * 2019-09-17 2019-11-22 通威太阳能(安徽)有限公司 A kind of photovoltaic module reliability checking method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784368A (en) * 1980-11-14 1982-05-26 Toshiba Corp Evaluating method for solar cell module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784368A (en) * 1980-11-14 1982-05-26 Toshiba Corp Evaluating method for solar cell module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235442A (en) * 1984-05-08 1985-11-22 Sanyo Electric Co Ltd Photovoltaic unit
JPH0570951B2 (en) * 1984-05-08 1993-10-06 Sanyo Electric Co
KR101402587B1 (en) * 2013-02-19 2014-06-02 한서대학교 산학협력단 Apparatus for diagnosing failure of photovoltaic string using diagnostic load
KR101402586B1 (en) * 2013-02-19 2014-06-03 한서대학교 산학협력단 Method for monitoring and diagnosing failure of photovoltaic string
CN110492844A (en) * 2019-09-17 2019-11-22 通威太阳能(安徽)有限公司 A kind of photovoltaic module reliability checking method
CN110492844B (en) * 2019-09-17 2021-08-20 通威太阳能(安徽)有限公司 Photovoltaic module reliability detection method

Similar Documents

Publication Publication Date Title
King et al. Dark current-voltage measurements on photovoltaic modules as a diagnostic or manufacturing tool
EP3170012B1 (en) Method and system of fault detection and localisation in dc-systems
CN106656037B (en) Welding photovoltaic component apparatus for measuring quality and the method that quality testing is carried out using the device
CN104052399A (en) Device and method for estimating reliability of photovoltaic bypass diode
JP5619410B2 (en) Inspection method and inspection apparatus
JP4566502B2 (en) Solar cell module inspection method
CN109188142A (en) UPFC power module aging comprehensive test platform
CN107861064A (en) A kind of more serial power battery pack electrical property detection methods
CN106057702A (en) Detection method for solar battery piece with qualified hot spot temperature range
US20030020478A1 (en) Electro-chemical deterioration test method and apparatus
Du et al. Modeling, imaging and resistance analysis for crystalline silicon photovoltaic modules failure on thermal cycle test
JPH1131829A (en) Method for deciding go/no-go of solar battery
JPS5968978A (en) Method for inspecting solar battery
JP2004363196A (en) Inspection method of solar cell module
TamizhMani et al. Simultaneous non-contact IV (NCIV) measurements of photovoltaic substrings and modules in a string
KR20220027427A (en) BIPV Modular Composite Evaluation System
CN2304130Y (en) D. C. resistance detecting instrument
CN104079241A (en) Experimental board and test method for battery module PID
JPS5817377A (en) Continuity testing device for flat cable
CN206818759U (en) A kind of high-precision power amplifier of test device for relay protection
Nuñez et al. Innovative Temperature Accelerated Life Test for the determination of the activation energy of space solar cells
JPS5839021A (en) Inspection of semiconductor device
CN113568028B (en) Aging screening method of satellite radiation dose sensor
CN113759300B (en) Performance test method and device of battery management unit
JP2003194755A (en) Method of testing semiconductor package