JPS5968654A - Glass bead preparing vessel - Google Patents

Glass bead preparing vessel

Info

Publication number
JPS5968654A
JPS5968654A JP57178472A JP17847282A JPS5968654A JP S5968654 A JPS5968654 A JP S5968654A JP 57178472 A JP57178472 A JP 57178472A JP 17847282 A JP17847282 A JP 17847282A JP S5968654 A JPS5968654 A JP S5968654A
Authority
JP
Japan
Prior art keywords
container
glass bead
sintering
sample
preparing vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57178472A
Other languages
Japanese (ja)
Other versions
JPH057347B2 (en
Inventor
Rikihisa Furuta
古田 力久
Yasuhisa Mihara
康央 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP57178472A priority Critical patent/JPS5968654A/en
Publication of JPS5968654A publication Critical patent/JPS5968654A/en
Publication of JPH057347B2 publication Critical patent/JPH057347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • C03B5/08Glass-melting pots

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the durability and prevent the peelability or the like even in caes of the repeated use, by forming a preparing vessel with a sintered material consisting essentially of silicon carbide, silicon nitride, or sialon. CONSTITUTION:When the preparing vessel consists essentially of silicon carbide, it is sintered by the pressure sintering method, or an easy sintering powder is produced by the raw material powder method and a sintering auxiliary is added to sinter it by the normal-pressure sintering method. When the preparing vessel consists essentially of silicon nitride, MgO, Mg3Nz, or the like is added as an auxiliary improving sintering efficiency. When the preparing vessel consists essentially of sialon, one or more of Mg, Ca, Y, Nd, and Er and combined as M of Mx (M is a metal having an electronegativity of 1.0-1.2 and x<=2) and are sintered by heating.

Description

【発明の詳細な説明】 1    本発明はけい光X線分析に使用されるガラス
r  ビード調製容器に関し、その剥離性、耐久性を改
善したものである。
DETAILED DESCRIPTION OF THE INVENTION 1 The present invention relates to a glass bead preparation container used for fluorescence X-ray analysis, and has improved peelability and durability.

■    一般に、けい光X線分析における試料の調製
v   は、その物質の状態、目的元素の含有量、存在
の形態などによって、固体をそのまま試料とす1   
る方法、粉末成形法、融解法、溶液法、沈澱法、イ  
 灰化法などの方法によって行なわれている。
■ In general, sample preparation for fluorescence X-ray analysis depends on the state of the substance, the content of the target element, the form of its existence, etc.
method, powder molding method, melting method, solution method, precipitation method,
This is done using methods such as ashing.

窯業の分野における各種原料及び製品の分析試料は、微
粉砕したものを加圧成形する方法で調製する場合が多い
。この粉末法では均一な試料が11!難く、一定の形状
が成形芒れにくいため、けい光X線強度が同じ原試料内
でも大きくばらつき分析精度が低いという難点がある。
Analytical samples of various raw materials and products in the field of ceramics are often prepared by press-molding finely pulverized materials. This powder method produces 11 uniform samples! Since it is difficult to mold a certain shape, there is a problem that the fluorescent X-ray intensity varies widely even within the same original sample, resulting in low analytical accuracy.

融解法(ガラスビード)法は、微粉砕した原試料を容器
の中でガラス化融剤と共に融解し、ガラス状態の測定用
試料を比較的成形性良く調製するものである。このガラ
スビード法は、試料の均一性が高められると共に粉末法
の大きな欠点である組成鉱物による誤差を小はく出来る
利点があるので、分析精度、再現性の高い試料調製法と
して試料の量が比較的多い場合によく用いられている。
The melting method (glass bead) method involves melting a finely ground original sample together with a vitrification flux in a container to prepare a measurement sample in a glass state with relatively good moldability. This glass bead method has the advantage of increasing the uniformity of the sample and reducing errors due to mineral composition, which is a major drawback of the powder method, so it is a sample preparation method with high analytical accuracy and reproducibility. It is often used in relatively large numbers.

ガラスビードを調製する容器には一般に、試料の融点付
近以上の耐熱性、耐熱衝撃性、試料(の非反応性、ガラ
スが容器から容易に形離れする剥離性、繰り返し使用に
対する耐久性等が要求嘔れる。
Containers for preparing glass beads are generally required to have heat resistance near or above the melting point of the sample, thermal shock resistance, non-reactivity of the sample, peelability so that the glass can be easily separated from the container, and durability against repeated use. I can vomit.

現在、ガラスビード調製容器としては白金又は白金合金
製のものが多く用いら九、セメント産業の分野において
は、溶融したセメント原料の剥離性の点から5チ程度の
金を含有する金−白金合金製のものが使われている。し
かし、こね、ら従前の白金系の容器は耐久性が低く、繰
り返し使用すると、急熱急冷により剥離性、成形性が低
下する欠点があった。例えば、金−白金合金製の容器を
用い、セメント原料を四ホウ酸リチウムを融剤として1
200℃で融解し、ガラスビード試料を調製する操作を
繰り返し行うと、次第に容器の表面がざらつき、試料の
剥離が困ケ1tになり、試料が割れることすらある。更
に試料調製を200〜300回繰り返すと、容器の研摩
ff:要する程度に、そして600〜800回繰り返す
と改鋳を要する程度に劣化する。
Currently, many glass bead preparation containers are made of platinum or platinum alloys. manufactured products are used. However, conventional platinum-based containers such as kone have low durability, and when used repeatedly, they have the disadvantage that peelability and moldability deteriorate due to rapid heating and cooling. For example, using a container made of gold-platinum alloy, cement raw materials are mixed with lithium tetraborate as a flux.
If the operation of melting at 200° C. and preparing a glass bead sample is repeated, the surface of the container will gradually become rough, making it difficult to peel off the sample, and the sample may even break. If the sample preparation is further repeated 200 to 300 times, the container deteriorates to the extent that polishing ff is required, and if the sample preparation is repeated 600 to 800 times, it deteriorates to the extent that recasting is required.

ここで、剥離性を改善する方法として、ハロゲンを含む
似分子ガスを容器に吹き付けて溶融試料の表面張力を変
化嘔せる方法があるが、この方法では試料中央部が盛り
上るなどビードの成形性が悪化する欠点があり、又各種
剥離剤を用いる方法では希釈率が大きくなり、共存元素
による干渉等の間旬が生ずる難点があり、剥離性の改善
は十分に達成きれていなかった。
One way to improve the peelability is to change the surface tension of the molten sample by spraying a similar molecular gas containing halogen into the container, but with this method, the center of the sample bulges, making it difficult to form the bead. Furthermore, methods using various stripping agents have the disadvantage that the dilution ratio becomes large and interference with coexisting elements occurs, and improvement in stripping properties has not been sufficiently achieved.

このように、従前のガラスビード調製容器はセメントの
分析に用いる場合、耐久性が低く僅、り返して使用する
と剥離性等が低下するため、けい光X線分析を連続して
、自動的に行う場合、ガラスビード法は採用てれず粉末
法により行なわれていた。そのため、連続自動はい光X
線分析では分析′M度が低く安定した分析結果が召(ら
れなかった。
In this way, when conventional glass bead preparation containers are used for cement analysis, their durability is low, and removability deteriorates when used repeatedly. When this was done, the glass bead method was not used and the powder method was used. Therefore, continuous automatic light
In the line analysis, the analysis'M degree was low and stable analysis results could not be obtained.

本発明はこれらの問題点を解決し、耐久性が高く、繰り
返し使用されても剥ス(を性等が低下しないガラスビー
ド調製容器を提供し、セメント原料の分析においてガラ
スビード法 分析を連続して行うことを可能にすることを目的とする
ものであって、その構成は炭化ケイ素、窒化ケイ素又は
サイアロンを主材とする焼結体からなることを特徴とす
る。
The present invention solves these problems and provides a glass bead preparation container that is highly durable and does not lose its peelability even after repeated use, and allows continuous glass bead method analysis in the analysis of cement raw materials. The object of the present invention is to make it possible to carry out this process, and its structure is characterized by being made of a sintered body whose main material is silicon carbide, silicon nitride, or sialon.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係るガラスビード調製容器は炭化ケイ素、窒化
ケイ素又はサイアロンの焼結体からなり、又焼結工程の
都合上微量の焼結助剤笠が添加されたものである。
The glass bead preparation container according to the present invention is made of a sintered body of silicon carbide, silicon nitride, or sialon, and a small amount of a sintering aid shade is added for convenience of the sintering process.

ここで、上記各組成の場合について説明する。Here, the cases of each of the above compositions will be explained.

■ 炭化ケイ素を主材とする場合、炭化ケイ素Vi焼結
しにくいため加用焼結法によって焼結しても良いし、ま
た原料粉末の製造法や処理法により易焼結性の粉末全つ
くり、焼結助剤を添加して常圧焼結法によって焼結する
と高密度のものが得られる。このようにして製造された
炭化ケイ素を主材とする調製容器は剥離性及び耐久性に
すぐれる。
■ When using silicon carbide as the main material, it is difficult to sinter silicon carbide Vi, so it may be sintered by the additive sintering method, or it may be possible to create a powder that is easy to sinter by changing the manufacturing method and processing method of the raw material powder. A high-density product can be obtained by adding a sintering aid and sintering by pressureless sintering. The preparation container mainly made of silicon carbide produced in this way has excellent removability and durability.

■ 窒化ケイ素を主材とする場合、焼結性を高める助剤
としてMfO、M23Nz 、 Y2O3、YN等を添
加して焼結すると良い。又最近では焼結助剤を使用しな
い方法も提案されており、このような方法により製造す
ることも可能である。
(2) When using silicon nitride as the main material, it is recommended to add MfO, M23Nz, Y2O3, YN, etc. as an auxiliary agent to improve sinterability. Recently, a method that does not use a sintering aid has also been proposed, and it is also possible to manufacture by such a method.

このようにして製造される窒化ケイ素を主材とする調製
容器は、特に熱安定性が良く、表面が平滑なため縁り返
し使用してもビードの割れがみら〕1ず剥離性、耐久性
が良好である。
The silicon nitride-based preparation container manufactured in this way has particularly good thermal stability and has a smooth surface, so no bead cracking occurs even when used with the edges turned over.1) Peelability and durability Good properties.

に\ 4トJ−rPl+lL十−kfトナス娼を 廿イ
アロンはSi−AM−0−N系化合物の総称であり、一
般式S 1H−2Affiz oZN、、−7(z=0
〜4.2)で売場れるβ−8i * N4固溶体(β−
サイアロン)及び各種のAtN擬ポリタイプ固溶体及び
X相などがあり、この他にも、α−8i 3 N4型構
造をもち、組成がMx (St IAI)1! (Os
 N )ts (Mは電気陰性度が1.0〜1.2の金
属、X≦2)で表訟れるα−サイアロンがある。α−サ
イアロンの場合にはMとしてMy 、 Ca 、Y、N
d 、 Erのうちの1つ又は2つ以上の金属を組み合
わせ、加熱焼結して製造される。
Ni\4ToJ-rPl+lL-kftonasu 廿Iaron is a general term for Si-AM-0-N-based compounds, and has the general formula S1H-2Affiz oZN, -7 (z=0
~4.2) β-8i*N4 solid solution (β-
sialon), various AtN pseudopolytype solid solutions, and (Os
There is an α-sialon expressed as N)ts (M is a metal with an electronegativity of 1.0 to 1.2, X≦2). In the case of α-sialon, M is My, Ca, Y, N
It is manufactured by combining one or more of the metals d and Er and heating and sintering the combination.

このようにして製造されるサイアロンを主材とする調製
容器は熱膨張係数が小さく寸法安定性にすぐれ、表面が
平滑なので剥離性が良く、繰り返し使用しても変化なく
耐久性に非常に優れる。
The preparation container manufactured in this way, which is mainly made of Sialon, has a small coefficient of thermal expansion and excellent dimensional stability, has a smooth surface, has good peelability, and has excellent durability without change even after repeated use.

このように本発明にかかるガラスビード調製容器は耐熱
性、耐熱衝撃件が良く、試料の剥1性にすぐれ、しかも
従来の白金、金−白金合金を主材とする容器の数倍の耐
久性を有し、N:す返し使用されてもこれらの性質が劣
化することがない。
As described above, the glass bead preparation container according to the present invention has good heat resistance and thermal shock resistance, excellent sample peelability, and is several times more durable than conventional containers mainly made of platinum or gold-platinum alloy. N: These properties do not deteriorate even after repeated use.

例えば、セメント原料を分析する場合、従来の金−白金
合金を主材とするものVi200〜300回の繰り返し
使用で剥離性が低下し、ビードに割れが出来たりするた
め、研摩を要するのに対して、本発明の調製容器では1
500回以上繰り返し使用しても、剥離性は低下せず、
容器自体に伺んらの変化も認められない。
For example, when analyzing cement raw materials, compared to conventional materials made of gold-platinum alloys, which require polishing because their releasability decreases after repeated use of 200 to 300 times and cracks form in the beads. Therefore, in the preparation container of the present invention, 1
Even after repeated use over 500 times, the removability remains unchanged.
No changes were observed in the container itself.

また、本発明に係る調製容器は固体圧縮による高圧焼結
法、熱間静水圧焼結法等により焼結体を作り、該焼結体
を所望の形状に切シ出し成形して製作でれる。
Further, the preparation container according to the present invention can be manufactured by producing a sintered body by a high-pressure sintering method using solid compression, a hot isostatic pressure sintering method, etc., and cutting and molding the sintered body into a desired shape. .

(坑 このように製造舗る本発明の調製容器を使用して
、分析試料を調製する場合、加熱方式としては高周波加
熱、ガスバーナ加熱、抵抗炉加熱等従来の加熱刃一式が
採用できる。
When preparing an analytical sample using the preparation container of the present invention manufactured as described above, a conventional set of heating blades such as high frequency heating, gas burner heating, resistance furnace heating, etc. can be used as the heating method.

次に実施例を示す。Next, examples will be shown.

1    実施例1)β−8iC粉末(平均粒径07μ
)100 M 置部に焼結助剤としてI14 C1重量
部を添加したものを300Kg/cIlの一軸加圧条件
で黒鉛中で高周波誘導によって2000℃に加熱した。
1 Example 1) β-8iC powder (average particle size 07μ
) A 100 M solution containing 1 part by weight of I14 C as a sintering aid was heated to 2000° C. by high-frequency induction in graphite under uniaxial pressure of 300 kg/cIl.

得られた焼結体の比重i112.6であった。The specific gravity of the obtained sintered body was 112.6.

この焼結体を外径50+m、内径40mm、高さ40簡
、肉厚5m+の円柱容器に切り出し成形し、ガラスビー
ド調製容器を製作した。
This sintered body was cut and molded into a cylindrical container with an outer diameter of 50+ m, an inner diameter of 40 mm, a height of 40 mm, and a wall thickness of 5 m+ to produce a glass bead preparation container.

この容器を使用して、セメント原料に融剤としてNaJ
40y を添加し、1200℃で5分間電気炉加熱し、
ガラス状態の試料モ調製した。同じ使用条件で1500
回余シ繰り返しガラスビードを調製したが、成形性剥離
性に変りなく、容器自体にも伺んらの変化も認められな
かった。
This container can be used to add NaJ as a flux to cement raw materials.
40y was added and heated in an electric furnace at 1200°C for 5 minutes.
A sample in a glass state was prepared. 1500 under the same usage conditions
Although glass beads were prepared repeatedly, there was no change in moldability and releasability, and no changes were observed in the container itself.

尚、比較例として、金を5%含有する金−白金合金製容
器を使用して、実施例1と同じ融剤を添加し同じ条件で
高周波加熱しガラスビードを繰り返し調製したところ、
次第に容器の面が荒れてきて剥離性が悪くなりビードが
割れるようになり、230回位になると容器を研摩しな
ければならない程度の状態まで劣化した。
As a comparative example, glass beads were repeatedly prepared by adding the same flux as in Example 1 and high-frequency heating under the same conditions using a gold-platinum alloy container containing 5% gold.
Gradually, the surface of the container became rough, the removability deteriorated, and the beads began to crack, and after about 230 times, the container deteriorated to the point where it had to be polished.

実施例2)α−8i 3 N4を加圧成形したものを真
空中1420℃で仮焼した徒、BN製のカプセルに入れ
、これを石英ガラス中に真空封入した。
Example 2) A pressure-molded material of α-8i 3 N4 was calcined at 1420° C. in a vacuum, placed in a BN capsule, and vacuum-sealed in quartz glass.

この封入試料を更にパイレックスガラス中に真空封入し
て二重封入試料とした。この試料をHIP装置の高圧炉
に入れ、圧力伝達媒体にアルゴンガスを用いて100M
Paの加圧下で1500℃でへ、   処理して焼結体
を製造した。
This sealed sample was further vacuum sealed in Pyrex glass to obtain a double sealed sample. This sample was placed in a high-pressure furnace of a HIP device, and argon gas was used as the pressure transmission medium.
A sintered body was produced by processing at 1500° C. under a pressure of Pa.

この焼結体を外径50m、内径40期、深さ20m、肉
厚5■の円柱状容器に切り出し成形「   しガラスビ
ード調製容器を製作した。
This sintered body was cut and molded into a cylindrical container with an outer diameter of 50 m, an inner diameter of 40 m, a depth of 20 m, and a wall thickness of 5 cm to produce a glass bead preparation container.

1  °°8″″″1“(+ 71 :/ ) W″″
l’Mlfl:LiL2L i z B407 を添加
し1200℃で5分間加熱し、ガラスビードを調製した
。同じ条件で1500回余り繰り返したが表面が平滑で
剥離性が良く、劣化が認められなかった。
1 °°8″″″1″ (+71:/ ) W″″
l'Mlfl:LiL2L i z B407 was added and heated at 1200° C. for 5 minutes to prepare glass beads. It was repeated over 1,500 times under the same conditions, but the surface was smooth and peelable, and no deterioration was observed.

¥施例3)焼結体の組成がMfo−* (Sie、sM
x−t ) (Oo−sf    N15−+ )とな
るようS’ s N4+ AX N + M y Oを
原料とし1  □11.□に、 )−7−/L−7#:
1−Af7111え、炉結アルミナ製のボットミルで粉
砕混合し民。この粉末を内径50■の黒鉛ダイス中で2
0 MPaに加圧し、N2雰囲気下1800℃の条件で
燈結した。
¥Example 3) The composition of the sintered body is Mfo-* (Sie, sM
x-t) (Oo-sf N15-+) using S' s N4+ AX N + M y O as a raw material 1 □11. □, )-7-/L-7#:
1-Af7111, crushed and mixed in a bot mill made of furnace alumina. This powder was placed in a graphite die with an inner diameter of 50 mm for 2
It was pressurized to 0 MPa and ignited at 1800°C under N2 atmosphere.

焼結体は粉末XIR回折により、α−3S sN4型構
造をもつα−サイアロンであることを確認した。
The sintered body was confirmed to be α-sialon having an α-3S sN4 type structure by powder XIR diffraction.

この焼結体を外径50■、内径40鵡、深さ20m+、
肉厚5簡の円柱容器に切り出し成形しガラスビード調整
容器を製作した。
This sintered body has an outer diameter of 50 mm, an inner diameter of 40 mm, a depth of 20 m+,
A glass bead adjustment container was manufactured by cutting and molding a cylindrical container with a wall thickness of 5 strips.

この容器を使用して高周波加熱方式によりガラスビード
を調製したところ繰り返し1700回使用後も、ビード
の剥離性及び容器自体に変化は認めらnなかった。
When glass beads were prepared using this container by a high-frequency heating method, no change was observed in the releasability of the beads or in the container itself even after repeated use 1700 times.

以上、実施例に基づいて具体的に説明したように本発明
にかかるガラスビード調製容器は良好な耐熱性、耐熱衝
撃性を有し、試料ガラスビードとの剥離性が良く、しか
も繰り返し使用に対する耐久性に特に優九でいる。従っ
て、本発明によればセメント原料の融解法による自動連
続けい光X#3!分析が可能となった。
As explained above in detail based on the examples, the glass bead preparation container according to the present invention has good heat resistance and thermal shock resistance, good peelability from sample glass beads, and durability against repeated use. I'm especially good at sex. Therefore, according to the present invention, automatic continuous bright light X#3 using the cement raw material melting method! Analysis is now possible.

Claims (1)

【特許請求の範囲】 ガラスビード調製容器 炭化ケイ素、窒化ケイ素又はサイアロンを主1” 相とする焼結体からなることを特徴とするガライ スピード調製容器。 メ[Claims] glass bead preparation container Mainly silicon carbide, silicon nitride or sialon Garai characterized by being composed of a sintered body as a phase. Speed preparation container. Mail
JP57178472A 1982-10-13 1982-10-13 Glass bead preparing vessel Granted JPS5968654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178472A JPS5968654A (en) 1982-10-13 1982-10-13 Glass bead preparing vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178472A JPS5968654A (en) 1982-10-13 1982-10-13 Glass bead preparing vessel

Publications (2)

Publication Number Publication Date
JPS5968654A true JPS5968654A (en) 1984-04-18
JPH057347B2 JPH057347B2 (en) 1993-01-28

Family

ID=16049096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178472A Granted JPS5968654A (en) 1982-10-13 1982-10-13 Glass bead preparing vessel

Country Status (1)

Country Link
JP (1) JPS5968654A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127740A (en) * 1980-01-25 1981-10-06 Johnson Matthey Co Ltd Particle stable alloy and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127740A (en) * 1980-01-25 1981-10-06 Johnson Matthey Co Ltd Particle stable alloy and method

Also Published As

Publication number Publication date
JPH057347B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
US2618565A (en) Manufacture of silicon nitride-bonded articles
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
CN101218188B (en) Sintered yttria, anticorrosion member and process for producing the same
KR100386835B1 (en) Process for preparing sintered body of aluminum titanate
CN107555800A (en) A kind of transparent Sr3Al2O6‑SrAl2O4Glass ceramics and preparation method thereof
JPH10500095A (en) Reaction bonded silicon carbide refractory products
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JP2003112963A (en) Alumina sintered compact, and production method therefor
Sardjono The characterization of ceramic alumina prepared by using additive glass beads
JPH07215780A (en) Highly heat resistant composite material
US7045091B1 (en) Transient liquid phase reactive sintering of aluminum oxynitride (AlON)
CN109231972B (en) Light electric melting corundum brick
JPS5968654A (en) Glass bead preparing vessel
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
JP2004269350A (en) Yttrium oxide (y2o3) sintered compact and method of manufacturing the same
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS63319263A (en) Silicon nitride-based ceramic
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
Foster et al. Sintering carbides by means of fugitive binders
JPS6374978A (en) Ceramic composite body
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
CN109467315B (en) InN-doped sodium-based glass and preparation method thereof
CN115010172B (en) Thermal shock resistant magnesium zirconium ceramic powder and preparation method thereof
CN117105638A (en) Alumina ceramic with high bending strength and preparation method thereof
JPH01246178A (en) Production of refractory for molten steel