JPS5968651A - Instrument for spectrochemical analysis - Google Patents

Instrument for spectrochemical analysis

Info

Publication number
JPS5968651A
JPS5968651A JP17831482A JP17831482A JPS5968651A JP S5968651 A JPS5968651 A JP S5968651A JP 17831482 A JP17831482 A JP 17831482A JP 17831482 A JP17831482 A JP 17831482A JP S5968651 A JPS5968651 A JP S5968651A
Authority
JP
Japan
Prior art keywords
light
mirror
lamps
optical axis
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17831482A
Other languages
Japanese (ja)
Inventor
Hideaki Koizumi
英明 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17831482A priority Critical patent/JPS5968651A/en
Publication of JPS5968651A publication Critical patent/JPS5968651A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform a simultaneous analysis of multi-element without a movable part by providing plural lamps centering around an optical axis and concave, convex mirrors, and providing a hole through which the light from the convex mirror is passed at the concave mirror. CONSTITUTION:Plural lamps 21 are fixed surrounding an optical axis as a center. Luminous flux 24 from the lamps 21 is received and reflected by a parabolic mirror 22, then reflected again by the convex mirror 23 and is passed through a center hole 22A of the mirror 22 to advance on the optical axis. Here, since the lamps 21 for different kind elements are positioned where the optical axis is on the axis of revolution symmetry, the light advancing on the optical axis become the synthesized light 25 of all lamps 21. Since the light 25 is emitted to the outer part from the hole 22A at the center of the mirror 22, each light source can be regarded as one light source unit and is equivalent to the lamp radiating simultaneously atomic spectra of plural elements.

Description

【発明の詳細な説明】 〔発明の第1」用分野〕 本発明は、原子スペクトルを観測して分光分析を行う装
置、例えは原子吸光分光光度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [First Field of the Invention] The present invention relates to an apparatus for observing atomic spectra and performing spectroscopic analysis, such as an atomic absorption spectrophotometer.

〔従来技術〕[Prior art]

たとえは原子吸光分光光実計では、測定の対象元素毎に
専用の光源が必要であり、例えは、Pbを測尼する際に
は、Pbの陰極を持ち、Pb特有の原子スペクトルを発
するポローカソードランプが必要である。また、Atを
測犀する際にはA4の陰極を持つホローカソードランプ
が必要である。
For example, in an atomic absorption spectrometer, a dedicated light source is required for each element to be measured. A cathode lamp is required. Furthermore, when measuring At, a hollow cathode lamp with an A4 cathode is required.

従来、原子吸光分光光度計では約40種類の分相対象の
元素のランプをそのつどさしかえて測定を有ってきた。
Conventionally, in an atomic absorption spectrophotometer, measurements have been made by changing the lamps of about 40 types of elements to be phase-separated each time.

ランプをさしかえると安定するまでに15〜40分を狭
し、またランプ毎にランプの光軸合せを行わなければな
らなかった。そこで最近は、ターレット式のランプホル
ダが使用されるようになってきた。これは、第1図に示
すようにホローカソード6を内包する数本のう/プ1か
軸9を有するターレットlOの外周に取付けられ、1同
々のランプ1についてあらかじめランプの光軸合せを行
っておき、壕だ予備点灯を行っておくものである。これ
によればターレット10を回転させ、目的元素のランプ
1を光軸位置に設定することにより目的元素のスペクト
ル線が得られる。しかしこの方法にも以下の欠点が肩っ
だ。
When the lamp was replaced, it took 15 to 40 minutes to stabilize, and the optical axis of each lamp had to be aligned. Therefore, recently, turret type lamp holders have come into use. As shown in FIG. 1, this is attached to the outer periphery of a turret lO having several tubes 1 containing hollow cathodes 6 and a shaft 9, and the optical axes of each lamp 1 are aligned in advance. It is a good idea to go there and pre-light the trench. According to this, the spectral line of the target element can be obtained by rotating the turret 10 and setting the lamp 1 of the target element at the optical axis position. However, this method also has the following drawbacks.

1)、複数個の元素について、各々のスペクトル線を同
時に見ることができない。即し、多元素同時分析が不可
能である。
1) It is not possible to see each spectral line of multiple elements at the same time. Therefore, simultaneous analysis of multiple elements is not possible.

2)、シーク/シャル方式で、複数個の元素をら〈次分
析する場合、元素毎にターレットを回転させランプを選
択せねばならない。
2) When multiple elements are subjected to secondary analysis using the seek/shall method, the turret must be rotated to select a lamp for each element.

3)、ターレット回転時にランプに衝激が加わる。3) Impact is applied to the lamp when the turret rotates.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来技術の欠点を解決し、可動部
なしに襟数個のラングからの光を同時に分光器に導き、
もって多元素同時分析をも可能にした分光分析装置を提
供するものである。
The present invention solves the drawbacks of the prior art, and simultaneously guides light from several rungs to a spectrometer without moving parts.
The present invention provides a spectroscopic analyzer that enables simultaneous analysis of multiple elements.

〔発明の概要〕[Summary of the invention]

このよう左目的を達成するために本発明は、光軸を中心
として配置した複数のランプと、このランプからの光を
反射させる凹面鏡と、この凹面鏡からの光を反射させる
凸面鏡とを具備し、前記凹面鏡はその中心に前記凸面鏡
からの光を通過させる孔を設けるようにしたものである
In order to achieve the above object, the present invention includes a plurality of lamps arranged around the optical axis, a concave mirror that reflects the light from the lamps, and a convex mirror that reflects the light from the concave mirror. The concave mirror is provided with a hole at its center through which light from the convex mirror passes.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明による分光分析装置の一実施例を示す図
である。複数のランプ21は、光軸を中ruとして、そ
のまわりに固定されている。各ランプ21からの光束2
4は、放物面鏡22により収光反射されたのち、凸面鏡
23で再び反射され放物面鏡の中心の穴22Aをぬけ光
軸上を進む。異種元素用の複数個のランプは、光軸が回
転対称軸となる位置に配置されているので、光軸上を進
む光は全ランプの合成光となる。合成光は放物面鏡の中
心にあけられた穴22Aから外部へ出射する。
FIG. 2 is a diagram showing an embodiment of the spectroscopic analyzer according to the present invention. The plurality of lamps 21 are fixed around the optical axis as the middle ru. Luminous flux 2 from each lamp 21
4 is condensed and reflected by the parabolic mirror 22, reflected again by the convex mirror 23, passes through the hole 22A at the center of the parabolic mirror, and travels on the optical axis. Since the plurality of lamps for different elements are arranged at positions where the optical axis is a rotationally symmetrical axis, the light traveling on the optical axis becomes the combined light of all the lamps. The combined light is emitted to the outside from a hole 22A made in the center of the parabolic mirror.

即し、同図に示す各光源は一個の光源ユニットとみなす
ことができ、複数の元素の原子スペクトルを同時に放射
するランプと等価となる。
That is, each light source shown in the figure can be considered as one light source unit, and is equivalent to a lamp that simultaneously emits the atomic spectra of a plurality of elements.

第3図にさらに詳しく光線を追跡したものを示す。光源
31、光源32は発光点(ホローカソードの中心)に対
応している。各党#、31.32からの光束33および
光束34は放物面鏡37で反射されたあと、共通の結像
点(虎魚35)に向って進む1、しかし、途中に凸面鏡
36が挿入されておシ、この凸面鏡36で反射された元
は放物面鏡の中心に設けられた穴38の中心に結像する
。このあと、凸レンズ39により貴び結像点30に結、
像させることができる。第3図で異った光源31゜32
から出た光束は、合成されたあとも光軸にそつてわずか
に異ったプ“C路を進むか、各結像点に於いては各々の
光束が完全に一致することがわかる。
Figure 3 shows a more detailed trace of the rays. The light source 31 and the light source 32 correspond to a light emitting point (the center of the hollow cathode). The light beams 33 and 34 from each party #31 and 32 are reflected by a parabolic mirror 37 and then proceed toward a common imaging point (tiger fish 35). However, a convex mirror 36 is inserted in the middle The image reflected by this convex mirror 36 forms an image at the center of a hole 38 provided at the center of the parabolic mirror. After that, the convex lens 39 focuses the image on the focal point 30,
can be imaged. Different light sources in Figure 3 31°32
It can be seen that even after being combined, the light beams emitted from the light beams either proceed along slightly different paths along the optical axis, or the light beams completely coincide with each other at each imaging point.

icとで第3図では、光源31.32についての光束を
示しプこが合成光束の軸のまわりにさらに多数の光源を
配屑、シた場合も同様に結像点に於いて完全に一致する
合成光束を得ることが出きる。実際の装置では合成光を
、原子化部、入射スリット。
ic and Figure 3 shows the luminous flux for light sources 31 and 32.If a larger number of light sources were arranged around the axis of the combined luminous flux, the image forming point would also be perfectly coincident. It is possible to obtain a composite luminous flux. In the actual device, the combined light is sent to the atomization section and the entrance slit.

出射スリット上で結像させる。An image is formed on the exit slit.

次に第4し]に多元素同時分析ができる原子吸光分光光
度計の概略構成図を示す。
Next, in the fourth section, a schematic configuration diagram of an atomic absorption spectrophotometer capable of simultaneous multi-element analysis is shown.

光源部は、第2図に示したものを用いている。The light source shown in FIG. 2 is used.

合成う゛C束25はフレーム41の中心に結像する。The composite image C bundle 25 is imaged at the center of the frame 41.

フレーム41は通常アセチレンを仝気で燃焼させるバー
ナ42Vcより生成され、不ビュライザにより霧状にし
た試料43が導入される。フレーム41を通った合生ブ
しは、再び入射スリット44の」二に結像する。次に凹
面回折格子45により回折され出射スリット46に結像
したのら検知器47に入射する5、複数の出射スリット
46は、各元素の波長に対応する回折光の位置に置かれ
ている。
The flame 41 is usually generated by a burner 42Vc that burns acetylene with air, and a sample 43 atomized by an obbulizer is introduced. The composite beam that has passed through the frame 41 is again imaged on the second side of the entrance slit 44. Next, the light is diffracted by the concave diffraction grating 45 and focused on the output slit 46, and then enters the detector 47.The plurality of output slits 46 are placed at the positions of the diffracted light corresponding to the wavelength of each element.

JFIIらポリクロメータを形成している1、各検知器
は各元素についての原子吸収信号をイ4することかでき
、各元素についての定量分析を行うことができる。
Each detector forming the JFII polychromator can detect atomic absorption signals for each element and perform quantitative analysis for each element.

第4図では、ポリクロメータ音用いた多元素同時分析装
置を示したが、従来のモノクロメータを用いた原子吸光
装置に上記の合成う゛CC光音用いると、元素毎のラン
プ交換を行わずに目動シークンシャル分析が可能である
Figure 4 shows a multi-element simultaneous analysis device using a polychromator sound, but if the above synthetic CC light sound is used in an atomic absorption spectrometer using a conventional monochromator, there is no need to replace the lamp for each element. Sequential analysis of eye movements is possible.

本実施例では、上記のように原子吸光分ブCプロ変針に
応用したものであるが、原子けい光などの他の原子スペ
クトル分析法にも適用できることはいうまでもない。
In this embodiment, the present invention is applied to the atomic absorption spectroscopy C-pro change as described above, but it goes without saying that it can also be applied to other atomic spectrum analysis methods such as atomic fluorescence.

〔発明の効果〕〔Effect of the invention〕

以上述べたことから明らかなように、本発明による分光
分析装置によれは、可動部なしに複数11句のランプか
らの元を同時に分光器に尋き、もって多元素同時分析を
可能とすることができる。
As is clear from the above description, the spectrometer according to the present invention allows simultaneous analysis of multiple elements by simultaneously asking the spectrometer for the elements from a plurality of 11 lamps without any moving parts. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分光分析装置の光源部の一例を示す図、
第2図は本発明による分光分析装はの光淵部の一実施例
を示す図 第3図は本発明の目的が達成できる理由を示
す図、第4図は本発明を適用した多元素同u4分析原子
吸光光変針の一実施例を示す図である。 21・・・ホローカッ−ドラフグ、22・・・放物面鏡
、23・・・凸面鏡、24・・・光束、25・・・合成
光。 兎1図1 佑7父
FIG. 1 is a diagram showing an example of the light source section of a conventional spectroscopic analyzer.
Fig. 2 shows an example of the optical depth section of the spectroscopic analyzer according to the present invention. Fig. 3 shows the reason why the object of the present invention can be achieved. Fig. 4 shows a multi-element analyzer to which the present invention is applied. It is a figure which shows an example of u4 analysis atomic absorption light change needle. 21... Hollow cupdra pufferfish, 22... Parabolic mirror, 23... Convex mirror, 24... Luminous flux, 25... Combined light. Rabbit 1 Figure 1 Yu7 Father

Claims (1)

【特許請求の範囲】[Claims] 1、光軸を中心として配置した複数のランプと、このラ
ンプからの元を反射させる凹面鏡と、この凹面鏡からの
元を反射させる凸面鏡とを具備し、前記凹面鏡はその中
心に前記凸面鏡からの元を通過させる孔が設けられてい
ることを特徴とする分光分析装置。
1. It is equipped with a plurality of lamps arranged around the optical axis, a concave mirror that reflects the source from the lamps, and a convex mirror that reflects the source from the concave mirror, and the concave mirror has the source from the convex mirror at its center. A spectroscopic analysis device characterized by being provided with a hole through which a.
JP17831482A 1982-10-13 1982-10-13 Instrument for spectrochemical analysis Pending JPS5968651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17831482A JPS5968651A (en) 1982-10-13 1982-10-13 Instrument for spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17831482A JPS5968651A (en) 1982-10-13 1982-10-13 Instrument for spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPS5968651A true JPS5968651A (en) 1984-04-18

Family

ID=16046307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17831482A Pending JPS5968651A (en) 1982-10-13 1982-10-13 Instrument for spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS5968651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295135A (en) * 1988-05-23 1989-11-28 Shimadzu Corp Atomic absorption spectrophotometer
JPH067051U (en) * 1990-12-29 1994-01-28 日本分光株式会社 Long-path optical device
JP2000509832A (en) * 1997-03-07 2000-08-02 バリアン・オーストラリア・ピーテイワイ・リミテツド Spectroscopy
FR3009085A1 (en) * 2013-07-24 2015-01-30 Duncan Prospective LIGHT SOURCE FOR SPECTRAL HYPERFLUORESCENCE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295135A (en) * 1988-05-23 1989-11-28 Shimadzu Corp Atomic absorption spectrophotometer
JPH067051U (en) * 1990-12-29 1994-01-28 日本分光株式会社 Long-path optical device
JP2000509832A (en) * 1997-03-07 2000-08-02 バリアン・オーストラリア・ピーテイワイ・リミテツド Spectroscopy
FR3009085A1 (en) * 2013-07-24 2015-01-30 Duncan Prospective LIGHT SOURCE FOR SPECTRAL HYPERFLUORESCENCE

Similar Documents

Publication Publication Date Title
JP3725218B2 (en) Spectrometer with selectable radiation from an inductive plasma light source
US6532068B2 (en) Method and apparatus for depth profile analysis by laser induced plasma spectros copy
JPS5849806B2 (en) spectrum analyzer
US8130376B2 (en) Optical devices, spectroscopic systems and methods for detecting scattered light
JPS628729B2 (en)
CN102680098B (en) A kind of spectral measurement device
Warner et al. Design considerations for a two-dimensional rapid scanning fluorimeter
US3886363A (en) Spectro fluorescence and absorption measuring instrument
US5066124A (en) Atomic absorption spectrophotometer for simultaneous multi-element analysis
US4630925A (en) Compact temporal spectral photometer
US4461573A (en) Spectrafluorometer arrangement
JP2018521304A (en) Synchrotron radiation measuring instrument and synchrotron radiation measurement method
US2757568A (en) Monochromator system for spectrochemical analysis
JPS5968651A (en) Instrument for spectrochemical analysis
JP2004502160A (en) Apparatus and method for measuring emissions substantially simultaneously
US5301007A (en) Microscopic spectrometer
Altieri et al. The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. II. Spectral calibrations
CN208350645U (en) Raman spectrometer probe
US3247759A (en) Spectrometer with multiple entrance slits
JP2000352556A (en) Spectroscopic analysis apparatus
RU2303255C1 (en) Laser atomic emissive spectrometer "laes"
JPS5827029A (en) Plural channels spectrophotometric measuring device
US6414753B1 (en) Low stray light czerny-turner monochromator
US2211628A (en) Sector photometer
CN108458784A (en) A kind of monochromator