JPS596836B2 - Manufacturing method of ceramic powder material - Google Patents

Manufacturing method of ceramic powder material

Info

Publication number
JPS596836B2
JPS596836B2 JP52113235A JP11323577A JPS596836B2 JP S596836 B2 JPS596836 B2 JP S596836B2 JP 52113235 A JP52113235 A JP 52113235A JP 11323577 A JP11323577 A JP 11323577A JP S596836 B2 JPS596836 B2 JP S596836B2
Authority
JP
Japan
Prior art keywords
weight
powder
ceramic powder
silicon nitride
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52113235A
Other languages
Japanese (ja)
Other versions
JPS5447709A (en
Inventor
通泰 小松
勝利 西田
正 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52113235A priority Critical patent/JPS596836B2/en
Priority to SE7800350A priority patent/SE427650B/en
Priority to GB1497/78A priority patent/GB1602821A/en
Priority to DE2801474A priority patent/DE2801474C2/en
Priority to GB3080780A priority patent/GB1602822A/en
Publication of JPS5447709A publication Critical patent/JPS5447709A/en
Priority to US06/078,584 priority patent/US4284432A/en
Priority to US06/221,813 priority patent/US4341874A/en
Priority to SE8207111A priority patent/SE8207111L/en
Publication of JPS596836B2 publication Critical patent/JPS596836B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は高強度のセラミック粉末材料を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high strength ceramic powder materials.

たとえば窒化珪素質焼結体は高温強度に優れた焼結体と
して注目されているが、それに用いる原料セラミック粉
末についての解明は十分になされていない。
For example, silicon nitride sintered bodies have attracted attention as sintered bodies with excellent high-temperature strength, but the raw material ceramic powder used therein has not been fully elucidated.

本発明者らはこの点について、特願昭52−1949号
に開示し、焼結体中のガラス質部分の減少のために、脱
酸されたセラミック粉末材料を用いることが好結果を生
むことを明らかにした。
The present inventors disclosed in Japanese Patent Application No. 52-1949 that the use of deoxidized ceramic powder material produces good results in order to reduce the glassy portion in the sintered body. revealed.

本発明は上記のセラミック粉末脱酸をより効果的、能率
的に行なう方法を開示するものである。
The present invention discloses a method for more effectively and efficiently deoxidizing the ceramic powder described above.

即ち、本発明の目的の1つは、焼結体中のガラス質の減
少を可能にするセラミック粉末材科の製造方法を得るこ
とにある。
That is, one of the objects of the present invention is to obtain a method for producing a ceramic powder family that makes it possible to reduce the glassiness in the sintered body.

本発明の他の目的の1つは、焼結体の高温強度をより向
上させつるセラミック粉末材料の製造方法を得るにある
Another object of the present invention is to provide a method for producing a vine ceramic powder material that further improves the high-temperature strength of a sintered body.

本発明のさらに他の目的の1つは、脱酸されたセラミッ
ク粉末材料を能率的に製造する方法を得ることである。
Yet another object of the present invention is to provide a method for efficiently producing deoxidized ceramic powder materials.

本発明のそのほかの目的は以下の記述から理解されるで
あろう。
Other objects of the invention will be understood from the following description.

本発明の製造方法は、セラミック粉末原料を脱酸するた
め、セラミック生成形体又は(および)気孔率10%以
上のセラミック成形体を、処理対象のセラミック粉末と
ともに加熱することにある。
The manufacturing method of the present invention consists in heating a ceramic formed body or/and a ceramic formed body having a porosity of 10% or more together with the ceramic powder to be treated, in order to deoxidize the ceramic powder raw material.

たとえば、窒化珪素粉末原科とともに窒化アルミニウム
、窒化ほう素、窒化チタン、窒化珪素、酸化アルミニウ
ムなどの生成形体又は(および)気孔率10%以上の焼
結体を混在させて加熱処理することにより、窒化珪素粉
末原料の脱酸が効果的に行なわれる。
For example, by heat-treating the raw material of silicon nitride powder together with a formed body of aluminum nitride, boron nitride, titanium nitride, silicon nitride, aluminum oxide, etc. or (and) a sintered body with a porosity of 10% or more, The silicon nitride powder raw material is effectively deoxidized.

上記生成形体や焼結体としては窒化アルミニウムが最も
効果的である。
Aluminum nitride is most effective as the above-mentioned formed body or sintered body.

上記生成形体や焼結体を用いると加熱処理中にセラミッ
ク粉末より放出された酸素を含む気体状物質がこれら生
成形体や焼結体中に吸収固定さ札あるいは生成形体や焼
結体を経由して系外へ排出?れることによりセラミック
粉末系内の酸素含有気体の分圧を下げセラミックから酸
素含有気体の放出を助けるとの理由で脱酸作用が効果的
になされると考えられる。
When the above-mentioned green bodies and sintered bodies are used, gaseous substances containing oxygen released from the ceramic powder during heat treatment are absorbed and fixed in these green bodies and sintered bodies, or via the green bodies and sintered bodies. Is it discharged outside the system? It is believed that the deoxidizing effect is effectively achieved because this reduces the partial pressure of the oxygen-containing gas within the ceramic powder system and helps release the oxygen-containing gas from the ceramic.

即ち、たとえば窒化珪素粉末を窒化アルミニウム成形体
とともに加熱処理を施すと、窒化珪素粉末中のSiOが
AlNと反応してAASi一〇−N系の化合物を形成し
その結果S i02がAlNに吸収固定される。
That is, for example, when silicon nitride powder is heat-treated together with an aluminum nitride compact, SiO in the silicon nitride powder reacts with AlN to form an AASi10-N compound, and as a result, Si02 is absorbed and fixed in AlN. be done.

また、窒化珪素粉末を窒化珪素焼結体とともに加熱処理
するとSi02は粉末と焼結体との間のわずかの空間を
伝わって系外へ飛散する。
Furthermore, when the silicon nitride powder is heat-treated together with the silicon nitride sintered body, Si02 travels through a small space between the powder and the sintered body and scatters out of the system.

生成形体を用いた場合は生成形体を構成している粉末粒
子の活性が高く、そのためにセラミック粉末から発生し
た酸素含有気体の吸収固定の作用が大きい点で有利であ
る。
When a green body is used, the activity of the powder particles constituting the green body is high, which is advantageous in that the effect of absorbing and fixing the oxygen-containing gas generated from the ceramic powder is large.

気孔率IO%以上の焼結体を用いた場合は焼結体を構成
している粒子の活性がある程度低下しているため一緒に
加熱処理しているセラミック粉末との接触面での反応を
最少限におさえながら、セラミック粉末から放出される
酸素含有気体の吸収を行う点で有利である。
When using a sintered body with a porosity of IO% or more, the activity of the particles that make up the sintered body is reduced to a certain extent, so the reaction at the contact surface with the ceramic powder that is also heat-treated is minimized. This is advantageous in that the oxygen-containing gas released from the ceramic powder is absorbed while being kept to a minimum.

焼結体の気孔率を10%以上とするのはこれ未満では焼
結体粒子の気孔が少なくなりセラミックより放出された
酸素含有気体の焼結体内への侵入が困難になり効果が減
少するからである。
The reason why the porosity of the sintered body is set to 10% or more is because if it is less than this, the sintered body particles will have fewer pores, making it difficult for the oxygen-containing gas released from the ceramic to penetrate into the sintered body, reducing the effectiveness. It is.

同様の理由で生成形体の気孔率は10%以上がよい。For the same reason, the porosity of the formed body is preferably 10% or more.

加熱処理される窒化珪素原料には通常含まれるたとえば
鉄、カルシウムなどの不純物あるいは焼結促進のために
添加されるたとえば酸化マグネシウム、酸化イットリウ
ム、酸化アルミニウムなどが混合されているであろう。
The silicon nitride raw material to be heat-treated may contain impurities such as iron and calcium which are normally contained therein, or magnesium oxide, yttrium oxide, aluminum oxide, etc. which are added to promote sintering.

加熱処理はたとえば窒化アルミニウム、窒化ほう素、炭
化けい素などの処理対象粉末と非反応性の容器中で行な
うとよい。
The heat treatment is preferably carried out in a container that is non-reactive with the powder to be treated, such as aluminum nitride, boron nitride, silicon carbide, or the like.

実験によれば窒化アルミニウムを用いるのが最も好まし
い。
Experiments have shown that aluminum nitride is most preferred.

加熱処理雰囲気は、非酸化性雰囲気であればよく、たと
えば不活性ガス雰囲気、窒素雰囲気などが使用できる。
The heat treatment atmosphere may be any non-oxidizing atmosphere, such as an inert gas atmosphere or a nitrogen atmosphere.

加熱温度は1300〜1900℃であり、好ましくは1
400〜1850℃、さらに好ましくは1500〜18
00℃である。
The heating temperature is 1300 to 1900°C, preferably 1
400-1850℃, more preferably 1500-18
It is 00℃.

本発明製造方法によってたとえば次のようなセラミック
粉末材料を得ることができる。
For example, the following ceramic powder materials can be obtained by the manufacturing method of the present invention.

■ 放射化分析値で不可避不純物に対応する酸素量が2
.0重量%以下である窒化珪素を主体とするセラミック
粉末材料。
■ The activation analysis value shows that the amount of oxygen corresponding to unavoidable impurities is 2.
.. Ceramic powder material mainly composed of silicon nitride with a content of 0% by weight or less.

■ アルミニウムが0.05〜2.5重量%、イットリ
ウムが0.4〜8.0重量%の範囲にあり、放射化分析
値で全酸素量重量%(Wo)がアルミニウム量重量%(
WAl)とイットリウム量重量%(wy)との下記の関
係式で示される範囲にある窒化珪素を主体とするセラミ
ック粉末材料。
■ Aluminum is in the range of 0.05 to 2.5% by weight, yttrium is in the range of 0.4 to 8.0% by weight, and the activation analysis value shows that the total oxygen content (Wo) is in the aluminum content (wt%).
A ceramic powder material mainly composed of silicon nitride, which is in the range shown by the following relational expression between WAl) and the amount of yttrium in weight % (wy).

■ 粉末中のイットリウムの一部又は全部が窒化珪素と
酸化イットリウムとの化合物として存在する上記■のセ
ラミック粉末材料。
(2) The ceramic powder material described in (2) above, in which part or all of the yttrium in the powder exists as a compound of silicon nitride and yttrium oxide.

アルミナとイットリアを添加物として含む窒化珪素粉末
において良好なセラミック粉末材料となすためには、ア
ルミナを0.1〜5重量%とイットリアを0.5〜10
重量%とを添加した窒化珪素粉末を1400〜1900
℃に加熱処理すればよい。
In order to make a good ceramic powder material for silicon nitride powder containing alumina and yttria as additives, it is necessary to add 0.1 to 5% by weight of alumina and 0.5 to 10% by weight of yttria.
Silicon nitride powder added with 1400 to 1900 wt%
It may be heated to ℃.

この加熱温度は好ましくは1450〜1850℃であり
、さらに好ましくは1500〜1800℃である。
This heating temperature is preferably 1450 to 1850°C, more preferably 1500 to 1800°C.

アルミナやイットリアを添加した窒化珪素原料を用いる
場合、加熱処理して得られるセラミック粉末材料粉末は
イットリウムの一部又は全部が窒化珪素と酸化イットリ
ウムとの化合物として存在するとより好ましい。
When using a silicon nitride raw material to which alumina or yttria is added, it is more preferable that part or all of the yttrium in the ceramic powder material powder obtained by heat treatment exists as a compound of silicon nitride and yttrium oxide.

この化合物の存在はX線回析によって確認できる。The presence of this compound can be confirmed by X-ray diffraction.

この化合物を生成させるには、加熱処理温度を1600
℃以上にするとよい。
To generate this compound, the heat treatment temperature is 1600.
It is best to keep the temperature above ℃.

実施例 1 0は放射化分析で、Nはガス分析で、他は通常の湿式分
析で調査した結果Si58.6重量%、N36.1重量
%、04.3重量%、FeO.25重量%、CaO.2
1重量%である窒化珪素粉末を1700℃で30分間窒
化アルミニウム容器中で窒化アルミニウム生成形体を混
在させて加熱したところSi59.2重量%、N36.
9重量%、01.8重量%、Fe0.28重量%、Ca
0.25重量%の粉末が得られた。
Example 1 0 was investigated by activation analysis, N by gas analysis, and the others by normal wet analysis.The results were as follows: Si 58.6% by weight, N 36.1% by weight, 04.3% by weight, FeO. 25% by weight, CaO. 2
When 1% by weight of silicon nitride powder was heated at 1,700°C for 30 minutes in an aluminum nitride container with aluminum nitride formed bodies mixed therein, Si was 59.2% by weight and N was 36% by weight.
9% by weight, 01.8% by weight, Fe0.28% by weight, Ca
A powder of 0.25% by weight was obtained.

窒化アルミニウム生成形体を混在しないで上記と同様の
分析値を得るには加熱時間を1時間要した。
It took one hour of heating time to obtain the same analytical values as above without mixing aluminum nitride formed bodies.

加熱処理を施さない粉末と加熱処理を施して酸素量を減
少した粉末とに対し、それぞれアルミナ2重量%及ひイ
ットリア5%重量%を添加し成形後1800℃にて2時
間5 0 0kg/crAの加圧を施しつつ焼結した。
2% by weight of alumina and 5% by weight of yttria were added to powders without heat treatment and powders subjected to heat treatment to reduce the amount of oxygen, and after molding, they were heated at 1800°C for 2 hours at 500kg/crA. It was sintered while applying pressure.

この結果加熱処理を施さない窒化珪素粉末を使用したも
のの1200℃における抗析強度は53kg/mAであ
った。
As a result, the anti-destructive strength at 1200°C was 53 kg/mA using silicon nitride powder that was not subjected to heat treatment.

一方加熱処理を施して酸素量を減少した窒化珪素を用い
たものの1200℃における抗析強度は75kg/ma
であった。
On the other hand, the anti-destructive strength at 1200℃ of silicon nitride that has been heat treated to reduce the amount of oxygen is 75kg/ma.
Met.

抗析試験に供した試料サイズは3X 3X 3 5(T
t7It)であり、試,験条件はクロスヘットスピード
0.5龍/秒、スパン20m/mである。
The sample size used for the anti-deposition test was 3X 3X 3 5 (T
t7It), and the test conditions were a crosshead speed of 0.5 y/sec and a span of 20 m/m.

この結果から生成形体を使用した場合の方がより効果的
に脱酸されていることが分る。
This result shows that deoxidation is more effective when the produced form is used.

気孔率IO%以上の焼結体を用いても同様であった。The same result was obtained even when a sintered body having a porosity of IO% or more was used.

実施例 2 アルミナ25重量%、イットリア4.8重量%を混合し
た窒化珪素原料粉末を用意し、1750℃にて2時間窒
化アルミニウム容器中で加熱処理した。
Example 2 A silicon nitride raw material powder containing 25% by weight of alumina and 4.8% by weight of yttria was prepared and heat-treated at 1750° C. for 2 hours in an aluminum nitride container.

得られた粉末を実施例1と同様に分析したところSi5
5.7重量%、All.3重量%、Y3.8重量%、F
eO.31重量%、CaO.26重量%、N32.6重
量%、02.6重量%であった。
When the obtained powder was analyzed in the same manner as in Example 1, Si5
5.7% by weight, All. 3% by weight, Y3.8% by weight, F
eO. 31% by weight, CaO. 26% by weight, N32.6% by weight, and 02.6% by weight.

また、X線回析したところ窒化珪素とイツl− IJア
のモル比1:1の化合物( S 1 3 N4・Y20
3)が生成されており、粉末全体のイットリウム量のう
ち90%がこの酸窒化物化合物として存在していること
が分った。
Further, X-ray diffraction revealed that the compound (S13N4・Y20
3) was produced, and it was found that 90% of the amount of yttrium in the entire powder was present as this oxynitride compound.

この粉末材科と同様の粉末材料を得るため窒化アルミニ
ウムの生成形体を混在させて加熱処理した場合は、70
分間で同様のものが得られた。
In order to obtain a powder material similar to this powder material, when a formed form of aluminum nitride is mixed and heat treated, 70%
Similar results were obtained within minutes.

気孔率lO%以上の焼結体を用いた場合も同様であった
The same result was obtained when a sintered body having a porosity of 10% or more was used.

この粉末を成形後1800℃にて2時間、500k9
/crAの加圧を施しつつ焼結した。
After molding this powder, it was heated to 1,800℃ for 2 hours, and then
Sintering was performed while applying pressure of /crA.

得られた焼結体を実施例1と同様の条件で抗折試験を施
したところ1200℃で92kg/Wl7jの強度が得
られた。
When the obtained sintered body was subjected to a bending test under the same conditions as in Example 1, a strength of 92 kg/Wl7j was obtained at 1200°C.

実施例 3 アドバンス・マテリアル・エンジニアリング社(英国)
製の窒化珪素粉末(グレードCP−85)を用意した。
Example 3 Advanced Materials Engineering (UK)
Silicon nitride powder (grade CP-85) manufactured by Co., Ltd. was prepared.

この粉末はα型窒化珪素を87%含み、粒度は1.8μ
であった。
This powder contains 87% α-type silicon nitride and has a particle size of 1.8μ.
Met.

この出発原料は、Si57.8重量%、N35.5重量
%、AlO.23重量%、FeO.35重量%、CaO
.1.1重量%、03.5]重量%であった。
This starting material contained 57.8% by weight of Si, 35.5% by weight of N, and AlO. 23% by weight, FeO. 35% by weight, CaO
.. 1.1% by weight, 03.5% by weight.

この原料にイツl− IJアを5重量%加えアルミナポ
ットでアルミナボールを用いて粉砕混合した。
5% by weight of IJA was added to this raw material and mixed by pulverization in an alumina pot using an alumina ball.

得られた粉末は粒度1.1μでSi56.5重量%、N
34.7重量%、A.l。
The obtained powder had a particle size of 1.1μ and contained 56.5% by weight of Si and N.
34.7% by weight, A. l.

31重量%、Fe0.32重量%、CaO.].O重量
%、Y3.69重量%、05.31重量%であった。
31% by weight, Fe0.32% by weight, CaO. ]. They were O weight %, Y 3.69 weight %, and 05.31 weight %.

この粉末を窒化アルミニウム容器中で気孔率が8%、1
0%、30%、50%、70%の窒化アルミニウムの生
成形体及び焼結体とともに1650℃で2時間加熱処理
した。
This powder was placed in an aluminum nitride container with a porosity of 8% and 1
Heat treatment was performed at 1650° C. for 2 hours together with the formed bodies and sintered bodies of 0%, 30%, 50%, and 70% aluminum nitride.

得られた粉末の酸素量及びこの粉末を焼結(1800℃
、4 0 0kg/cyn., 2時間)して得た焼
結体の抗折強度を次表に示す。
Oxygen content of the obtained powder and sintering of this powder (1800℃
, 400kg/cyn. The flexural strength of the sintered body obtained after 2 hours) is shown in the table below.

窒化アルミニウムの気孔率が70%を越えると取扱いが
難かしくなる。
When the porosity of aluminum nitride exceeds 70%, handling becomes difficult.

気孔率が10%より少ないと効果が少ない。If the porosity is less than 10%, the effect will be small.

30分の加熱では気孔率8%の窒化アルミニウムを用い
たものでは酸素量4.4%に対し、気孔率lO%のもの
では4.0%であった。
When heated for 30 minutes, the amount of oxygen was 4.4% in the case using aluminum nitride with a porosity of 8%, while it was 4.0% in the case of the case with a porosity of 10%.

処理粉体とともに混在させる生成形体又は焼結体は、窒
化アルミニウムとともに、窒化ほう素、窒化チタン、窒
化珪素、酸化アルミニウムを用いてもよい。
In addition to aluminum nitride, boron nitride, titanium nitride, silicon nitride, or aluminum oxide may be used as the formed body or sintered body to be mixed with the treated powder.

なお、処理粉末とともに混在させる生成形体又は焼結体
は単味のものに限られない。
Note that the formed body or sintered body to be mixed with the treated powder is not limited to a single body.

たとえばイットリア、アルミナ、シリカなどを添加した
ものも使用できる。
For example, materials to which yttria, alumina, silica, etc. are added can also be used.

しかしこれら添加物量は20%以下とする方法が好まし
い。
However, it is preferable to limit the amount of these additives to 20% or less.

これはこれ以上の添加物を加えるとセラミック粉末が加
熱処理中に焼結収縮を生じ酸素を含む気体の拡散を防害
し、脱酸効果が減少するとG)う理由による。
This is because if more additives are added, the ceramic powder will undergo sintering shrinkage during heat treatment, which will prevent the diffusion of oxygen-containing gases and reduce the deoxidizing effect.

Claims (1)

【特許請求の範囲】 1 窒化珪素を主体とするセラミック粉末を窒化アルミ
ニウムを主体とするセラミック生成形体又は(および)
気孔率10%以上のセラミック焼結体とともに加熱処理
することを特徴とするセラミック粉末材料の製造方法。 2 窒化珪素を主体とするセラミック粉末はアルミナを
0.1〜5重量%とイットリアを0.5〜10重量%含
む特許精求の範囲第1項に記載のセラミック粉末材料の
製造方法。 3 加熱処理は、1400〜1900℃で行なう特許請
求の範囲第1項または第2項に記載のセラミック粉末材
科の製造方法。
[Scope of Claims] 1. Ceramic powder containing silicon nitride as a main component, or a ceramic product containing aluminum nitride as a main component or (and)
A method for producing a ceramic powder material, which comprises heat-treating the material together with a ceramic sintered body having a porosity of 10% or more. 2. The method for producing a ceramic powder material according to item 1, wherein the silicon nitride-based ceramic powder contains 0.1 to 5% by weight of alumina and 0.5 to 10% by weight of yttria. 3. The method for producing a ceramic powder material according to claim 1 or 2, wherein the heat treatment is performed at 1400 to 1900°C.
JP52113235A 1977-01-13 1977-09-22 Manufacturing method of ceramic powder material Expired JPS596836B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP52113235A JPS596836B2 (en) 1977-09-22 1977-09-22 Manufacturing method of ceramic powder material
SE7800350A SE427650B (en) 1977-01-13 1978-01-12 SILICON NITRID POWDER MATERIALS AND WAYS TO MAKE THE SAME
GB1497/78A GB1602821A (en) 1977-01-13 1978-01-13 Ceramic powder material and method for manufacturing the same
DE2801474A DE2801474C2 (en) 1977-01-13 1978-01-13 A method for producing a powdery ceramic material from Si? 3? N? 4 ?, Al? 2? O? 3? and Y? 2? O? 3?
GB3080780A GB1602822A (en) 1977-09-22 1978-02-13 Method for manufacturing ceramic powder materials
US06/078,584 US4284432A (en) 1977-01-13 1979-09-21 Ceramic powder material and method for manufacturing the same
US06/221,813 US4341874A (en) 1977-01-13 1980-12-31 Si3 N4 Ceramic powder material and method for manufacturing the same
SE8207111A SE8207111L (en) 1977-01-13 1982-12-13 SET FOR MANUFACTURE OF A CERAMIC POWDER MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52113235A JPS596836B2 (en) 1977-09-22 1977-09-22 Manufacturing method of ceramic powder material

Publications (2)

Publication Number Publication Date
JPS5447709A JPS5447709A (en) 1979-04-14
JPS596836B2 true JPS596836B2 (en) 1984-02-14

Family

ID=14606983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52113235A Expired JPS596836B2 (en) 1977-01-13 1977-09-22 Manufacturing method of ceramic powder material

Country Status (1)

Country Link
JP (1) JPS596836B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938910A (en) * 1972-08-18 1974-04-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938910A (en) * 1972-08-18 1974-04-11

Also Published As

Publication number Publication date
JPS5447709A (en) 1979-04-14

Similar Documents

Publication Publication Date Title
US4354990A (en) Process for sintering silicon nitride compacts
JPS6256107B2 (en)
CA1226303A (en) Silicon carbide refractories having modified silicon nitride bond
KR890002888B1 (en) Sliding materials
CA1272581A (en) Nitriding silicon powder articles using high temperature and pressure dwells
EP0540642A1 (en) Preparing alpha-phase silicon nitride, converting to beta-phase.
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
CA2199394A1 (en) Reaction-bonded silicon carbide refractory product
JPH0212893B2 (en)
JPS596836B2 (en) Manufacturing method of ceramic powder material
JPS6143311B2 (en)
JPH0146472B2 (en)
JPS646142B2 (en)
JPS6047228B2 (en) Silicon nitride sintered body
JPS5929546B2 (en) Manufacturing method of heat-resistant ceramics
Hirota et al. Densification of Si 3 N 4 by hot isostatic press in N 2 atmosphere
JPH0242792B2 (en)
JPH0250074B2 (en)
JPH01168329A (en) Process for synthesizing cubic boron nitride
JPS631273B2 (en)
JPH0461830B2 (en)
KR950014356B1 (en) Method of manufacturing composite materials of iron-siliconcarbide
JPS6236965B2 (en)
JPS6141869B2 (en)
JPH02221160A (en) Production of high-density silicon nitride sintered body