JPS596833B2 - Ferroelectric transparent porcelain composition - Google Patents

Ferroelectric transparent porcelain composition

Info

Publication number
JPS596833B2
JPS596833B2 JP56044717A JP4471781A JPS596833B2 JP S596833 B2 JPS596833 B2 JP S596833B2 JP 56044717 A JP56044717 A JP 56044717A JP 4471781 A JP4471781 A JP 4471781A JP S596833 B2 JPS596833 B2 JP S596833B2
Authority
JP
Japan
Prior art keywords
optical
electro
ferroelectric
transparent porcelain
light transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56044717A
Other languages
Japanese (ja)
Other versions
JPS57160965A (en
Inventor
「あ」介 三浦
勝 横須賀
勉 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobayashi Institute of Physical Research
Original Assignee
Kobayashi Institute of Physical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobayashi Institute of Physical Research filed Critical Kobayashi Institute of Physical Research
Priority to JP56044717A priority Critical patent/JPS596833B2/en
Publication of JPS57160965A publication Critical patent/JPS57160965A/en
Publication of JPS596833B2 publication Critical patent/JPS596833B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明はA(BνBゝ)03−PbZr03−PbTi
03(ただしA■ Ba、Sr、CaB′=Li、Na
、に、B”=Nb、Ta)で構成される三成分固溶体で
透光性に優れ大きな電気光学効果を有する新規にして有
用な強誘電性透明磁器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides A(BνBゝ)03-PbZr03-PbTi
03 (However, A■ Ba, Sr, CaB'=Li, Na
The present invention relates to a new and useful ferroelectric transparent porcelain which is a three-component solid solution composed of B''=Nb, Ta) and has excellent translucency and a large electro-optical effect.

従来電気光学素子材料として水溶性結晶のADPやKD
P、酸素八面体を持つ酸化物単結晶LiNb03、BN
N、SBN等が知られているが、前者の水溶性結晶は耐
水性、耐熱性に乏しく、工業的利用性に欠け、後者の酸
化物単結晶は良質で大きな単結晶育成が困難であり、量
産性に乏しいという欠点がある。
Conventional electro-optical element materials such as water-soluble crystals ADP and KD
P, oxide single crystal LiNb03 with oxygen octahedron, BN
N, SBN, etc. are known, but the former water-soluble crystals have poor water resistance and heat resistance and lack industrial applicability, while the latter oxide single crystals are of high quality and difficult to grow as large single crystals. The disadvantage is that it is not suitable for mass production.

近年高温で加圧しつつ焼結した強誘電性磁器は、多結晶
体であるにもかかわらず透光性に優れ、かつ電場印加し
て分極することにより光学的一軸性結晶と同様に作動す
る特性を有するため電気光学素子としての応用が期待さ
れている。これらの透明磁器材料とはPbZr03とP
bTiO3の固溶体にBi203、La203、Sn0
2などを数%加え、加圧焼結したペロブスカイト構造の
磁器組成物である。その中で特に光学材料として優れて
いると思われるのは米国のG、H、Haeにtling
、C、H、Land氏によつて発明されたPLZTと略
称される(Pbl−xLax(ZryTi1−y)1−
103)(特公昭48−42318号公報参照)である
。これは酸化ランタン(La203)をPZTすなわち
ジルコン・チタン酸鉛原子比で5〜25%加えたもので
あり、製造が容易で、透明度も高くかつ電気光学効果も
大きいため光シャッター、光メモリー、光変調器、光変
向器等への素子化の応用研究が数多く報告されている。
しかしランタン(La)を用いた場合その構造式Pbl
−xLax(ZryTi1−y)1−゛03が示すよう
に、ZrTi側に格子欠陥をもつている。実際には、焼
結したPLZTは上記の構造式と若干異なりPb側にも
格子欠陥を持つている。(G、S、Snow、Fabr
ica一tionofTransparentElec
troopticPLZTCeramicsbyAtm
osphereSin−tering、J、Amer、
Cer、Soc、Vo156A2、p91〜96)よつ
て、鉛(Pb)が蒸発しやすくなりホットプレスに使用
する高価なアルミナ製のモールド型が侵されやすく量産
性が低いという欠点をもつている。また加剰な鉛が完全
に蒸発せず残留すると著しく透明度を減少させる結果と
なる。Laを含む透明磁器は淡黄褐色に着色しているが
、このため可視部の短波長側で透光率が大幅に減少する
傾向がある点も欠点である。さらに従来の透明磁器は白
色光の下に長時間さらすと黒色を帯びて来る。
In recent years, ferroelectric ceramics sintered under pressure at high temperatures have excellent translucency despite being polycrystalline, and have the property of operating in the same way as optical uniaxial crystals when polarized by applying an electric field. Therefore, it is expected to be applied as an electro-optical element. These transparent porcelain materials are PbZr03 and P
Bi203, La203, Sn0 in the solid solution of bTiO3
It is a porcelain composition with a perovskite structure that is pressure-sintered with a few percent of 2, etc. added thereto. Among them, the ones that are considered to be particularly excellent as optical materials are G, H, and Hae from the United States.
, C.H. Land, abbreviated as PLZT (Pbl-xLax(ZryTi1-y)1-
103) (see Japanese Patent Publication No. 48-42318). This is made by adding lanthanum oxide (La203) to PZT, that is, zircon/lead titanate atomic ratio of 5 to 25%.It is easy to manufacture, has high transparency, and has a large electro-optic effect, so it is used in optical shutters, optical memories, and optical Numerous studies have been reported on the application of elements to modulators, optical deflectors, etc.
However, when lanthanum (La) is used, its structural formula is Pbl
As shown by -xLax(ZryTi1-y)1-'03, there is a lattice defect on the ZrTi side. Actually, sintered PLZT differs slightly from the above structural formula and has lattice defects on the Pb side as well. (G, S, Snow, Fabr
icationofTransparentElec
troopticPLZTCeramicsbyAtm
osphereSyntering, J.Amer,
Cer, Soc, Vo156A2, p91-96) Therefore, lead (Pb) tends to evaporate and the expensive alumina mold used for hot pressing is easily corroded, resulting in low mass productivity. Furthermore, if excess lead is not completely evaporated and remains, the transparency will be significantly reduced. Transparent porcelain containing La is colored pale yellowish brown, but this also has the disadvantage that its light transmittance tends to decrease significantly on the short wavelength side of the visible region. Additionally, traditional transparent porcelain takes on a black tinge when exposed to white light for long periods of time.

これは格子欠陥をもつ構造に由来する所のフ不トクロミ
ズム効果であり、光学研磨した試料において可視領域で
の透光率が大きく低下する。これに対し本発明は、ジル
コン酸鉛(PbZrO3)、チタン酸鉛(PbTiO3
)に第三成分としてリチウムニオブ酸ストロンチウム、
リチウムニオブ酸バリウム、リチウムタンタル酸ストロ
ンチウム、リチウムタンタル酸バリウムあるいはナトリ
ウムニオブ酸ストロンチウム、ナトリウムニオブ酸バリ
ウム、ナトリウムタンタル酸ストロンチウム、ナトリウ
ムタンタル酸バリウムを含む三成分系固溶体を作ること
により上記の問題点を解決し、焼結性、透光性、色調に
優れた電気光学材料を提供するものである。本発明は{
A(B57B′3A)03}、{Pb(K,Til−ρ
03}1−oとあられしたときx=0.05〜0.30
,y=0.1〜0.9の範囲にある三成分系固溶体であ
る。
This is a photochromism effect originating from a structure with lattice defects, and the light transmittance in the visible region of an optically polished sample is greatly reduced. In contrast, the present invention uses lead zirconate (PbZrO3) and lead titanate (PbTiO3).
) with lithium strontium niobate as the third component,
The above problems are solved by creating a ternary solid solution containing lithium barium niobate, lithium strontium tantalate, lithium barium tantalate or sodium strontium niobate, sodium barium niobate, sodium strontium tantalate, and sodium barium tantalate. The present invention provides an electro-optical material with excellent sinterability, translucency, and color tone. The present invention is {
A(B57B'3A)03}, {Pb(K, Til-ρ
03} When it hails 1-o, x=0.05~0.30
, y is a ternary solid solution in the range of 0.1 to 0.9.

ここでAはBa,Sr,CaからなるA群原素のうち一
者、B′はLi,Na,KからなるB7群原素うち一者
、B//はNb,Taからなるビ群原素のうぢ一者から
なる。これは従来のランタン(La)を含む透明磁器と
は異つた構造である。すなわち本発明はランタン(La
)を含まず、各構造原素は化学量論的な割合を持つ組成
比に保たれている。そのため、焼結時の鉛の蒸発は少な
くアルミナ製ホツトプレスモールド型は侵されることも
少く量産性も向上する。また上記の第三成分を用いるこ
とにより従来の透明磁器に特有の淡黄褐色は大幅に減少
され、可視部の短波長領域における透光性は大きく向上
している。
Here, A is one of the A group elements consisting of Ba, Sr, and Ca, B' is one of the B7 group elements consisting of Li, Na, and K, and B // is the B group element consisting of Nb and Ta. It is made up of only one person. This has a different structure from conventional transparent porcelain containing lanthanum (La). That is, the present invention uses lanthanum (La
), and each structural element is maintained at a stoichiometric composition. Therefore, lead evaporates during sintering and the alumina hot press mold is less likely to be corroded, improving mass productivity. Furthermore, by using the above-mentioned third component, the pale yellow-brown color characteristic of conventional transparent porcelain is significantly reduced, and the light transmittance in the short wavelength region of the visible region is greatly improved.

さらに、従来のLaを含む透明磁器の欠点であるフオト
クロミズム効果による黒化は、本発明ではまつたく示さ
れず白色光の下に長時間放置しても色調の変化や透光率
の減少はない。
Furthermore, the present invention does not exhibit the blackening caused by the photochromism effect, which is a drawback of conventional transparent porcelain containing La, and there is no change in color tone or decrease in light transmittance even if left under white light for a long time. .

また、強誘電性透明磁器は一般に常誘電相あるいは反強
誘電相においては透光率は大であるが、結晶構造上光学
異方性のある強誘電相においては散乱によつて透光性は
低下し、この相で光学素子として用いる場合問題となる
In addition, ferroelectric transparent porcelain generally has high light transmittance in the paraelectric phase or antiferroelectric phase, but in the ferroelectric phase, which has optical anisotropy due to its crystal structure, the light transmittance decreases due to scattering. This causes a problem when used as an optical element in this phase.

しかし本発明の三成分系固溶体磁器は強誘電相に属する
組成においても透光率は優れているため一次電気光学素
子として用いるときや圧電的に活性化した状態で用いる
ときにも有効な材料である。以下実施例に基づいて本発
明を詳細に説明する。
However, the three-component solid solution ceramic of the present invention has excellent light transmittance even in a composition that belongs to the ferroelectric phase, so it is an effective material when used as a primary electro-optical element or when used in a piezoelectrically activated state. be. The present invention will be described in detail below based on Examples.

本発明の磁器製造には出発原料として純度99.5%の
一酸化鉛(PbO)炭酸ストロンチウム(SrCO3)
炭酸バリウム(BaCO3)酸化ジルコニウム(ZrO
2)酸化チタニウム(TiO2)と、炭酸リチウム(L
i2CO3)または炭酸ナトリウム(Na2CO3)あ
るいは炭酸カリウム(K2CO3)および純度99.9
%の五酸化ニオブ(Nb2O5)または五酸化タンタル
(Ta2O5)を用いた。その製造過程は次のとおりで
ある。まず、これらの原料を目的の組成になるように秤
量し、蒸留水を加えてボールミルにより約2時間湿式混
合する。次いで820℃で2時間一次焼成し、反応物を
作る。さらに2時間乳鉢により乾式混合し粒径をそろえ
る。この粉体にごく少量の水分を加え油圧プレスにより
、金型を用いて150kg/Cdの圧力で、たとえば直
径25wm厚さ10wmの円柱に成形し数日放置し水分
を蒸発させる。この試料を内径40wmの円筒型のアル
ミナ製モールド型に入れホツトプレス炉内にセツトする
。ホツトプレスによる焼成条件は900℃まで1×10
−2T0rrの真空中で昇温し、900℃で酸素を導入
し酸素雰囲気とする。900℃で60kg/Cdの圧力
を加え1220℃で最終圧力120kg/Cdとし1〜
8時間保持し焼結する。
Lead monoxide (PbO) and strontium carbonate (SrCO3) with a purity of 99.5% are used as starting materials for manufacturing the porcelain of the present invention.
Barium carbonate (BaCO3) Zirconium oxide (ZrO
2) Titanium oxide (TiO2) and lithium carbonate (L
i2CO3) or sodium carbonate (Na2CO3) or potassium carbonate (K2CO3) and purity 99.9
% of niobium pentoxide (Nb2O5) or tantalum pentoxide (Ta2O5) was used. The manufacturing process is as follows. First, these raw materials are weighed so as to have the desired composition, distilled water is added, and wet mixing is performed using a ball mill for about 2 hours. Next, primary calcination is performed at 820° C. for 2 hours to prepare a reaction product. Further, the mixture was dry mixed in a mortar for 2 hours to make the particle size uniform. A very small amount of water is added to this powder, and it is molded into a cylinder with a diameter of 25 wm and a thickness of 10 wm using a hydraulic press using a mold at a pressure of 150 kg/Cd, and left for several days to evaporate the water. This sample was placed in a cylindrical alumina mold with an inner diameter of 40 wm and set in a hot press furnace. The firing conditions by hot press are 1 x 10 up to 900℃.
The temperature is raised in a vacuum of -2T0rr, and oxygen is introduced at 900°C to create an oxygen atmosphere. Apply a pressure of 60 kg/Cd at 900°C and set the final pressure to 120kg/Cd at 1220°C.
Hold for 8 hours and sinter.

昇温速度は900℃以下では300℃/H9OO℃〜1
220℃では200℃/hである。このようにして得ら
れた磁器を厚さ0.2〜0.5mに折断し光学研磨して
仕上げる。第1表及び第2表には本発明磁器材料{Sr
M?Mζ03}ゅ{Pb(ZryTil−y)03}1
−o (ただしM/=Li,Na,KM″=Nb,Ta
)I6よびこれらの組成のPb(あるいはSr)の一部
をSr(あるいはPb)に置換した材料のうち、いくつ
かの物理定数の測定結果を示す。この表中の記号の意味
は次のとおりである。ε33T/ε0 tanδ Kr 誘電率(分極後1kH2,室温で測 定) 誘電損失(分極後1kHz,室温で 測定) 径方向結合係数 Tc t キユ一り一温度(℃) 光学研磨した試料の厚み(Tvn) Tr 透光率(%、波長400nmおよび 600nmでの値) この表から明らかなように本発明の組成物は強誘電相に
属する組成(試料番号1〜12、及び15,16等)に
おいても透光率が短波長側で比較的高い。
The temperature increase rate is 300℃/H9OO℃~1 below 900℃
At 220°C, the rate is 200°C/h. The porcelain thus obtained is cut to a thickness of 0.2 to 0.5 m and finished by optical polishing. Tables 1 and 2 show the porcelain material of the present invention {Sr
M? Mζ03}{Pb(ZryTil-y)03}1
-o (However, M/=Li, Na, KM″=Nb, Ta
) I6 and materials in which part of Pb (or Sr) in these compositions is replaced with Sr (or Pb) are shown below. The meanings of the symbols in this table are as follows. ε33T/ε0 tanδ Kr Dielectric constant (measured at 1kHz after polarization at room temperature) Dielectric loss (measured at 1kHz after polarization at room temperature) Radial coupling coefficient Tc t Temperature per unit (°C) Thickness of optically polished sample (Tvn) Tr Light transmittance (%, value at wavelengths of 400 nm and 600 nm) As is clear from this table, the composition of the present invention has high transmittance even in compositions belonging to the ferroelectric phase (sample numbers 1 to 12, 15, 16, etc.). Light efficiency is relatively high on the short wavelength side.

これは従来の強誘電性透明磁器に特有の黄褐色の着色及
びフオトクロミズムによる黒色化が、本発明においては
激減しているためと思われる。第1図はSr(LiイN
b3A)03−PbZrO3PbTiO3三成分固・溶
体の相図である。この図は{Sr(LiイNb%)03
}x{Pb(ZryTil−y)03}1−xとあられ
したとき縦軸は全体に対するSr(Li)(Nbイ)0
3の比率、すなわちxをあられし、横軸はPbzrO3
とPbTiO3の比率すなわちyをあられしている。こ
の相図のIの領域は菱面体晶(強誘電性)、は正方晶(
強誘電性)、は立方晶(常誘電性)の構造をもちの斜線
で示した部分は反強誘電相であり組成比により菱面体晶
、正方晶あるいはそれらと立方晶との混晶から成り立つ
ている。第2図は分光光度計により300〜1000n
mの波長範囲で測定した透光率の1例である。
This is believed to be because the yellow-brown coloring and blackening due to photochromism, which are characteristic of conventional ferroelectric transparent porcelain, are drastically reduced in the present invention. Figure 1 shows Sr(Li-N)
b3A) Phase diagram of 03-PbZrO3PbTiO3 ternary solid-solution. This figure shows {Sr(Li-Nb%)03
}x{Pb(ZryTil-y)03}1-x, the vertical axis is Sr(Li)(Nb-i)0 for the whole
3, that is, x, and the horizontal axis is PbzrO3
and PbTiO3, that is, y. The region I in this phase diagram is rhombohedral (ferroelectric), and the region I is tetragonal (
Ferroelectric (ferroelectric) has a cubic (paraelectric) structure; the shaded area is the antiferroelectric phase, and depending on the composition ratio, it consists of rhombohedral, tetragonal, or a mixed crystal of these and cubic crystals. ing. Figure 2 is 300-1000n measured by spectrophotometer.
This is an example of light transmittance measured in a wavelength range of m.

この試料はx=0.130、y=0.700(第1表の
試料番号7)であり厚さ0.25mに両面光学研磨した
ものを用いた。薄板の前後2つの面での反射損失を除く
と透光率はほぼ100%に近い。又黄褐色の着色が少い
ため400nm付近で透光率は急激な立上りを示してい
る。第3図にはA=SrB′=Li,B′=Nb,x=
0.150y=0.550(第2表の試料番号4)の組
成を有る試料の複屈折率の電場依存性を示す。
This sample had x=0.130, y=0.700 (sample number 7 in Table 1), and was optically polished on both sides to a thickness of 0.25 m. The light transmittance is close to 100%, excluding reflection loss at the front and rear two surfaces of the thin plate. Furthermore, since there is little yellowish-brown coloration, the light transmittance shows a sharp rise in the vicinity of 400 nm. In Figure 3, A=SrB'=Li, B'=Nb, x=
The electric field dependence of the birefringence of a sample having a composition of 0.150y=0.550 (sample number 4 in Table 2) is shown.

測定は633nmにおいて、バビネソレイユ補正器を用
い、電極としては光学研磨した試料の両面に1T!r!
nの間隔をもうけて金を蒸着した。実効複屈折率△nが
印加電圧に対し直線的に変化するのが一次逝気光学効果
(ポツケルス効果)とよばれる。一次電気光学効果によ
る実効複屈折率Σふは△n=−(IA)NtrcE3で
表わされる。
The measurement was performed at 633 nm using a Babinet Soleil corrector, and the electrodes were 1T! on both sides of the optically polished sample. r!
Gold was deposited at intervals of n. The linear change of the effective birefringence Δn with respect to the applied voltage is called the first-order aperture optical effect (Pockels effect). The effective birefringence Σ due to the first-order electro-optic effect is expressed as Δn=-(IA)NtrcE3.

ここでE3は印加電場、n1はE3と直角方向の(実効
)屈折率、ROは横効果の一次(実効)電気光学係数で
ある。この図は一旦飽和状態に分極したのちの、電界に
対するバiの変化を示している。これから電気光学定数
はR。=5.05×10−1れm/Vと求まる。この定
数は他の光学結晶と比較し十分実用に供せられる程大き
な値である。第4図はA=SrB′=Na,B′2=N
bx=0.135,y=0.600(試料番号15)の
実効複屈折率の電場依存性を示す。
Here, E3 is the applied electric field, n1 is the (effective) refractive index in the direction perpendicular to E3, and RO is the first-order (effective) electro-optic coefficient of the transverse effect. This figure shows the change in bi with respect to the electric field after the polarization is once saturated. From this, the electro-optical constant is R. =5.05×10-1 m/V. This constant is large enough to be put to practical use compared to other optical crystals. Figure 4 shows A=SrB'=Na, B'2=N
The electric field dependence of the effective birefringence of bx=0.135, y=0.600 (sample number 15) is shown.

この場合ムは電場(E)の二乗に比例して変化する。す
なわちこれは二次電気光学効果(力ー効果)を示してい
る。二次電気光学効果による実効複屈折率Σふは彎=−
(X)n↑RE\ で与えられる。
In this case, μ changes in proportion to the square of the electric field (E). That is, this shows a second-order electro-optic effect (force-effect). Effective birefringence due to secondary electro-optic effect
It is given by (X)n↑RE\.

ここでRは二次(実効)電気光学係数である。この試料
の場合R=4.54×10−16d/V2と与えられる
。この値は従来の光学材料と比べて遜色ない値で、二次
電気光学材料として有望である。終りに本発明において
その組成比をx=0.05〜0.30y=0.1〜0.
9の範囲に選んだ理由は、この範囲外の組成では透光率
が低く、かつ電気光学効果が小さく実用に適さないため
である。
Here R is the second-order (effective) electro-optic coefficient. In the case of this sample, R=4.54×10 −16 d/V2 is given. This value is comparable to that of conventional optical materials, and is promising as a secondary electro-optic material. Finally, in the present invention, the composition ratio is set to x=0.05~0.30y=0.1~0.
The reason why the range of 9 was selected is that a composition outside this range would have a low light transmittance and a small electro-optical effect, making it unsuitable for practical use.

叙上のように本発明の強誘電性透明磁器は透光性、色調
に優れ電気光学効果が大きく広範囲の電気光学的装置に
応用でき、かつ鉛の蒸発が少なく、製造が容易であるな
どの工業上顕著な効果を奏するものである。
As mentioned above, the ferroelectric transparent porcelain of the present invention has excellent translucency and color tone, has a large electro-optic effect, can be applied to a wide range of electro-optical devices, and has other advantages such as low lead evaporation and easy manufacture. This has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例の物理的諸特性を示す線図で第1
図はリチウムニオブ酸ストロンチウム−ジルコン酸鉛−
チタン酸鉛三成分固溶体の相図、第2図は波長透光率特
性を示す線図、第3図および第4図は電界に対する実効
複屈折率変化を示す線図である。
The drawings are diagrams showing physical characteristics of embodiments of the present invention.
The diagram shows lithium strontium niobate-lead zirconate-
A phase diagram of a lead titanate ternary solid solution, FIG. 2 is a diagram showing wavelength transmittance characteristics, and FIGS. 3 and 4 are diagrams showing changes in effective birefringence with respect to electric field.

Claims (1)

【特許請求の範囲】 1 A(B′_1_/_4B″_3_/_4)O_3−
PbZrO_3−PbTiO_3で構成される3成分系
固溶体にして、これを〔A(B′_1_/_4B″_3
_/_4)O_3〕_x〔Pb(Zr_yTi_1_−
_y)O_3〕_1_−_xと表わしたとき、x、yの
値がx=0.05〜0.30y=0.1〜0.9の範囲
内にある配合比を有することを特徴とする強誘電性透明
磁器組成物ただしAはBa、Sr、Caの群から選ばれ
た一者、B′はLi、Na、Kの群から選ばれた一者で
、B″はNb、Taの群から選ばれた一者である。
[Claims] 1 A(B'_1_/_4B″_3_/_4)O_3-
A three-component solid solution composed of PbZrO_3-PbTiO_3 is made into a solid solution of [A(B′_1_/_4B″_3
_/_4)O_3〕_x〔Pb(Zr_yTi_1_-
_y)O_3]_1_-_x, the strength is characterized by having a blending ratio in which the values of x and y are in the range of x = 0.05 to 0.30 and y = 0.1 to 0.9. Dielectric transparent porcelain composition, where A is selected from the group of Ba, Sr, and Ca, B' is selected from the group of Li, Na, and K, and B'' is selected from the group of Nb and Ta. He is the chosen one.
JP56044717A 1981-03-28 1981-03-28 Ferroelectric transparent porcelain composition Expired JPS596833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56044717A JPS596833B2 (en) 1981-03-28 1981-03-28 Ferroelectric transparent porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56044717A JPS596833B2 (en) 1981-03-28 1981-03-28 Ferroelectric transparent porcelain composition

Publications (2)

Publication Number Publication Date
JPS57160965A JPS57160965A (en) 1982-10-04
JPS596833B2 true JPS596833B2 (en) 1984-02-14

Family

ID=12699164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56044717A Expired JPS596833B2 (en) 1981-03-28 1981-03-28 Ferroelectric transparent porcelain composition

Country Status (1)

Country Link
JP (1) JPS596833B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1025061E (en) * 1997-09-05 2014-03-05 Ceramtec Gmbh High-performance piezoelectric ceramic
JP6209781B2 (en) * 2012-02-28 2017-10-11 国立大学法人山梨大学 Thermoelectric material and manufacturing method thereof

Also Published As

Publication number Publication date
JPS57160965A (en) 1982-10-04

Similar Documents

Publication Publication Date Title
Haertling Electro-optic ceramics and devices
US8734670B2 (en) Lead-free piezoelectric materials with enhanced fatigue resistance
US4019915A (en) Method of producing optically transparent ceramics
Wang et al. Strong luminescence and high piezoelectric properties in Pr-doped (Ba0. 99Ca0. 01)(Ti0. 98Zr0. 02) O3 multifunctional ceramics
CN106220169A (en) Modified lead nickle niobate lead titanate piezoelectric ceramics and preparation method thereof
Lin et al. Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity
JP2564676B2 (en) Electro-optical composition
JP5051130B2 (en) Translucent ceramic and electro-optic component
JPS596833B2 (en) Ferroelectric transparent porcelain composition
KR100296933B1 (en) Piezoelectric ceramic composition
JP5717349B2 (en) Light modulation material and method for producing the same
JP3594061B2 (en) Layered crystal structure oxide and method for producing the same
JPS596834B2 (en) electro-optic porcelain material
Eyraud et al. Influence of the initial lead content on the properties of doped PZT ceramics prepared by wet or dry methods
US3549536A (en) Lead zirconate-titanate containing manganese additive
US4057324A (en) Method of making a transparent ferroelectric ceramic element
JPS5846470B2 (en) Electro-optical porcelain composition
Yuan et al. Growth, structure, and characterization of new High-TC piezo-/ferroelectric Bi (Zn2/3Ta1/3) O3-PbTiO3 single crystals
JP2002202403A (en) Rod lens
JPH0333680B2 (en)
JPS596832B2 (en) Transparent porcelain composition for optical elements
JPS6358777B2 (en)
GB2023567A (en) Electrooptic ceramic material
JPS5811385B2 (en) Toukousei Ceramics Kusuno Seizouhouhou
US3532628A (en) Piezoelectric ceramic material