JPS5968307A - Cross-fractionation of ethylene/alpha-olefin copolymer - Google Patents

Cross-fractionation of ethylene/alpha-olefin copolymer

Info

Publication number
JPS5968307A
JPS5968307A JP17855182A JP17855182A JPS5968307A JP S5968307 A JPS5968307 A JP S5968307A JP 17855182 A JP17855182 A JP 17855182A JP 17855182 A JP17855182 A JP 17855182A JP S5968307 A JPS5968307 A JP S5968307A
Authority
JP
Japan
Prior art keywords
xylene
ethylene
fractionation
temperature
olefin copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17855182A
Other languages
Japanese (ja)
Other versions
JPH0261965B2 (en
Inventor
Masanori Motooka
本岡 正則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP17855182A priority Critical patent/JPS5968307A/en
Publication of JPS5968307A publication Critical patent/JPS5968307A/en
Publication of JPH0261965B2 publication Critical patent/JPH0261965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain fractions such having a sharp MW distribution and a sharp composition distribution and so suitably usable in quality control or the like, by cross-fractionating the titled copolymer with a p-xylene/butyl cellsolbe solvent in a specified manner. CONSTITUTION:An ethylene/alpha-olefin copolymer to be tested is used in a state in which it is supported on a carrier (e.g., diatomaceous earth). In step i, the above copolymer is placed in a column and then fractionally extracted with a xylene/ cellusolve solvent having the composition ratio varied continuously within the range of 0/100-100/0 (volume ratio), while the extraction temperature is maintained constant at a temperature of 110 deg.C-b.p. of xylene (fractionation on the basis of molecular weight). In step ii, the individual fractions are placed in separate columns and the fractionally extracted with a xylene/cellosolve solvent having a constant composition ratio within the range of 60/40-100/0, while the temperature is varied from room temperature to 130 deg.C (fractionation on the basis of chemical composition). The above procedures may be performed in reversed order (ii) (i).

Description

【発明の詳細な説明】 本発明はエチレン・σ−オレフィン共重合体のクロス分
別法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cross-fractionating ethylene/σ-olefin copolymers.

線状低密度ポリエチレン(L−Ll:1PIj)と呼ば
れているエチレンと炭素数3以上のσ−オレフィンとの
共重合体は、従来の高庄法低密度ポリエチレン(旧)−
L D+4B)に比へ、&R械的強度(引張強度、引裂
強度、H5gy強強度フン耐熱性、耐環境応力亀裂性(
r−:scp、)、光学特性等に優れているので、I(
P −L、 D PTi+に代わるものとして期待され
ており、特にフィルム用、射出成形品、鋼管、電線被覆
用材料として好適である。一方、高分子物質が、必ずし
も均一な分子種から成り立っているものではろく、とく
にエチレン・α−オレフィン共重合体のような共重合高
分子は、分子量と化学組成の2つの面について分布を有
している。そして共重合高分子の機械的強度や成形加工
性が分子量や化学組成だけてはなくその分布にも大きく
影響されることはよく知られた事実である。
A copolymer of ethylene and σ-olefin having 3 or more carbon atoms, called linear low-density polyethylene (L-Ll:1PIj), is a copolymer of ethylene and σ-olefin having 3 or more carbon atoms, which is a copolymer of conventional high-density low-density polyethylene (old)-
LD + 4B) to mechanical strength (tensile strength, tear strength, H5gy strength, heat resistance, environmental stress cracking resistance)
r-: scp, ), has excellent optical properties, etc., so I(
P-L, D It is expected to replace PTi+, and is particularly suitable as a material for coating films, injection molded products, steel pipes, and electric wires. On the other hand, polymeric substances do not necessarily consist of uniform molecular species; copolymerized polymers such as ethylene/α-olefin copolymers have a distribution in two aspects: molecular weight and chemical composition. are doing. It is a well-known fact that the mechanical strength and moldability of copolymer polymers are greatly influenced not only by their molecular weight and chemical composition, but also by their distribution.

エチレン°(l−オレフィン共重合体についても、分子
量や化学組成だけでなく、分布をも規定したものとして
、特開昭57−1[]55411号公報特開昭57−1
26809号公報に示されるエチレン・σ〜オレフィン
共重合体があるが、いずれにしても、その分布は分子量
に関するものだけである。しかしながら前述の如く共重
合体高分子の物性は分子量分布だけでなく化学組成分布
(以下単に組成分布と呼ぶ〕にも影響を受し」ることは
分っているものの、現在迄のところエチレン・α−オレ
フィン共重合体の化学組成による分別に関する報告は殆
んとなされておらず、ましてや分子量分布と組成分布と
の2つの因子について規定したものは知られていない。
Regarding ethylene ° (l-olefin copolymers, not only the molecular weight and chemical composition but also the distribution is specified),
There is an ethylene/σ-olefin copolymer shown in Japanese Patent No. 26809, but in any case, its distribution is only related to molecular weight. However, as mentioned above, it is known that the physical properties of copolymer polymers are influenced not only by the molecular weight distribution but also by the chemical composition distribution (hereinafter simply referred to as composition distribution). - There are almost no reports on the classification of olefin copolymers based on their chemical composition, and even more so, there are no known reports that define the two factors of molecular weight distribution and composition distribution.

そこで本発明者はエチレン・a−オレフィン共重合体等
の共重合高分子の品質管理あるいは品質改良のためには
分子量や化学組成だけでなく、その分布をも把握する必
要があることから、分子量分別及び組成分別法の開発に
ついて検尉した結果本発明に到達した。
Therefore, in order to control or improve the quality of copolymer polymers such as ethylene/a-olefin copolymers, the present inventors need to understand not only the molecular weight and chemical composition, but also their distribution. The present invention was arrived at as a result of investigating the development of classification and composition separation methods.

ずなわぢ本発明は、担体にコーティングしたエチレン・
a−オレフィン共重合体荀カラムに充填し、(A)  
カラム抽出湿度を1106Cy、cいしp−キシレンの
沸点未満の範囲内の任意の温度で一定に保ち、p−キシ
レンとブチルセロソルブとの混合溶媒の組成比をO/1
00ないし101110(容1i比)の範囲で連続的に
変化させて抽出する方法、もしくはCB)  T)−キ
シレンとブチルセロソルブとの混合溶媒の組成比を60
/40ないし+0010(容量比)の範囲内の一定組成
比の混合溶媒を用い、カラム抽出温度を室温から130
°C迄連続的に変化さセで6fノ出する方法、 のいずれかの方法で分別した後、各々の分別物を・個々
に再度1ぜ体にコーティングして、ツノラムに充填し、
引き続き残余の方法で分別することを特徴とするエチレ
ン・σ−オレフィン共重合体のクロス分別法を提供する
ものである。
Zunawaji The present invention utilizes ethylene coated on a carrier.
Packed into an a-olefin copolymer column, (A)
The column extraction humidity was kept constant at an arbitrary temperature within the range of 1106 Cy, below the boiling point of c-p-xylene, and the composition ratio of the mixed solvent of p-xylene and butyl cellosolve was O/1.
00 to 101110 (volume 1i ratio), or CB) T) - The composition ratio of the mixed solvent of xylene and butyl cellosolve is changed to 60
Using a mixed solvent with a constant composition ratio within the range of /40 to +0010 (volume ratio), the column extraction temperature was varied from room temperature to 130 °C.
After being separated by one of the following methods, each fraction is individually coated again into a single body and filled into a tube ram.
This invention provides a cross-fractionation method for ethylene/σ-olefin copolymers, which is characterized in that the remainder is subsequently fractionated using a residual method.

本発明の方法に適用ごれるエチレン・α−オレフィン共
重合体とは、遷移金属触媒、例えばマグネシウム化合物
とチタン化合物とから形成される高活性チタン触媒成分
と、f機アルミニ・ラム化合物からなる触媒を用い、所
謂中低圧法によってエチレンとα−オレフィンとをスラ
リー重合、気相重合、高温溶解重合などの110々の方
法で共重合させることに」;って得られるものである。
The ethylene/α-olefin copolymer that can be applied to the method of the present invention refers to a transition metal catalyst, such as a highly active titanium catalyst component formed from a magnesium compound and a titanium compound, and a catalyst consisting of an f-engine aluminum/ram compound. It is obtained by copolymerizing ethylene and α-olefin by various methods such as slurry polymerization, gas phase polymerization, and high-temperature solution polymerization using a so-called medium-low pressure method.

前記エチレン・σ−Aレフイン共重合体においてエチレ
ンと共重合されるσ−副レフィンの例としては、プロピ
レン、1−ブテン、1−ペンテン、1−ヘキ七ン、4−
メチル−1−ペンテン、1−オクテン、1−デセン、1
−テトラデセン、1−オクタデセンの炭素数3ないし1
8のα−オレフィンを挙げることができる。これらのα
−オレフィンを2種以上併用したものでもよい。
Examples of the σ-auxiliary olefin copolymerized with ethylene in the ethylene/σ-A reflex copolymer include propylene, 1-butene, 1-pentene, 1-hexene, 4-
Methyl-1-pentene, 1-octene, 1-decene, 1
-Tetradecene, 1-octadecene with 3 to 1 carbon atoms
8 α-olefins can be mentioned. These α
- A combination of two or more olefins may be used.

本発明の方法により、エチレン・α−オレフィン共重合
体を分別するには、予めエチレン・α−オレフィン共重
合体を担体にコーティングしておく必要がある。前記担
体は、p−キシレン及びブチルセロソルブに不溶のもの
であればとくに限定はされないが、一般には、珪藻土、
ガラスピーズ、鋼球等が好適である。エチレン・a−オ
レフィン共重合体を担体にコーティングする方法として
は、種々公知の方法、例えばエチレン・α−オレフィン
共重合体をp−キシレン及びブチルセロソルブ等の一定
混合溶媒に溶解した後、溶媒を蒸発しエチレン・σ−オ
レフィン共重合体を担体上に乾固する方法及び該溶液を
室温付近道温度を下げることによ))エチレン・α−オ
レフィン共重合体を担体」二に吸着させる方法等が挙げ
られる。
In order to separate the ethylene/α-olefin copolymer by the method of the present invention, it is necessary to coat the carrier with the ethylene/α-olefin copolymer in advance. The carrier is not particularly limited as long as it is insoluble in p-xylene and butyl cellosolve, but generally diatomaceous earth,
Glass beads, steel balls, etc. are suitable. There are various known methods for coating the carrier with the ethylene/α-olefin copolymer, such as dissolving the ethylene/α-olefin copolymer in a certain mixed solvent such as p-xylene and butyl cellosolve, and then evaporating the solvent. A method of drying the ethylene/σ-olefin copolymer on a carrier, and a method of adsorbing the ethylene/α-olefin copolymer onto the carrier by lowering the temperature of the solution to around room temperature. Can be mentioned.

前記方法により担体にコーティングしたエチレン・α−
オレフィン共重合体をカラムに充填した後は、以下の2
つの分別法、すなわち (A)  カラム抽出温度を110’Cないしp−キシ
レンの沸点未満、好ましくは115ないし1 、’) 
5 ’(:の範囲内の任意の温度で一定に保ち、p−キ
シレンとブチルセロソルブとの混合溶媒の組成比をO/
100ないし10010(容量比)の範囲で連続的に変
化させて抽出する方法と、 (T3)  p−キシレンとブチルセロソルブとの1 
合溶媒の組成比を/10/40ないし10010(容量
1ヒ)、好ましくは7 (J/30ないし90/Irl
、とくに好ましくは75/25ないし85/15の範囲
内の一定組成比の混合溶媒を用い、カラム抽出温度を室
温から130’C迄連続的に変化させて抽出する方法、
の内のいずれかの方法で分別し、各々の分別物を個々に
再度前記方法で担体にコーティングした後、残余の方法
で分別を行う。すなわち、(AJ法−(B)法あるいは
(B)法−(A)法のいずれの組み合わせて分別を行っ
ても、得られる分別物は同しである。
Ethylene α- coated on the carrier by the above method
After filling the column with the olefin copolymer, the following two steps are carried out.
(A) column extraction temperature of 110'C to below the boiling point of p-xylene, preferably 115 to 1,');
The composition ratio of the mixed solvent of p-xylene and butyl cellosolve is kept constant at an arbitrary temperature within the range of 5' (:
(T3) A method of extracting by continuously changing the volume ratio in the range of 100 to 10010 (volume ratio), and (T3) 1 of p-xylene and butyl cellosolve.
The composition ratio of the combined solvent is /10/40 to 10010 (volume 1), preferably 7 (J/30 to 90/Irl
, a method of extraction using a mixed solvent with a constant composition ratio, particularly preferably within the range of 75/25 to 85/15, and continuously changing the column extraction temperature from room temperature to 130'C;
After fractionating by one of the following methods, each fraction is individually coated on a carrier again by the above method, and then fractionated by the remaining methods. That is, no matter which combination of (AJ method-(B) method or (B) method-(A) method) is used for fractionation, the fractionated products obtained are the same.

(A)法において、カラム抽出温度が110°C未満の
温度では、組成による分別が起こり好ましくない。
In method (A), if the column extraction temperature is less than 110°C, compositional fractionation will occur, which is undesirable.

即ち、(△)法においてカラム抽出温度が110°C未
満の温度では、(B)法に準じた結果を与えるためであ
る。一方、p−キシレンの沸点以上の温度になるとp−
キシレンが沸騰してヂャンネリングを起こし満足な抽出
が行われない。また、p−キシレンとブチルセロソルブ
の混合溶媒の組成比は0/100ないし10010(容
量比)の範囲内で連続的に変化させるが、抽出初期の組
成比及び抽出終了時の組成比ハ、分別の対象となるエチ
レン・α−オレフィン共重合体の分子量及び組成比に応
じて適宜選択され得るが、一般的にはブチルセロソルブ
にp−キシレンあるいはp−キシレンとブチルセロソル
ブの一定混合溶媒を連続的に加えることに」こり連続的
に変化させることが好ましい。尚(A)法による分別は
エチレン・α−オレフ・rシ共重合体の分子量による分
別を選択的に行う方法である。
That is, in method (Δ), when the column extraction temperature is less than 110° C., the results are similar to method (B). On the other hand, when the temperature exceeds the boiling point of p-xylene, p-
Xylene boils and causes channeling, making it impossible to extract satisfactorily. In addition, the composition ratio of the mixed solvent of p-xylene and butyl cellosolve is continuously changed within the range of 0/100 to 10010 (volume ratio). It can be selected as appropriate depending on the molecular weight and composition ratio of the target ethylene/α-olefin copolymer, but generally p-xylene or a certain mixed solvent of p-xylene and butyl cellosolve is continuously added to butyl cellosolve. It is preferable to change the stiffness continuously. Incidentally, the fractionation according to method (A) is a method of selectively fractionating the ethylene/α-olef/r-silicone copolymer based on its molecular weight.

(13)法において、p−キシレンとブチルセロソルブ
との混合溶媒の組成比でp−キシレンの容量比が60未
満の混合溶媒を用いると、抽出温度範囲が狭くなるため
分別操作−1−好ましくない。p−キシレンとブチルセ
ロソルブの混合溶媒組成比を75 / 25ないし85
/15の範囲内にすると分別操作上抽出温度範囲が適当
であるーにに、抽出物の溶解性が良くカラム内での閉塞
が防止できるためとくに好ましい。カラム抽出を行う際
には、カラム抽出湿度は室温から130’C迄連続的に
変化さゼるが、予め室温から130°C迄の温度を数段
に分けて該温度て一時的に保ってもよい。尚(BJ法に
よる分別はエチレン・α−副レフィン共重合体の化学組
成による分別を選択的にtテう方法である。
In method (13), if a mixed solvent of p-xylene and butyl cellosolve is used in which the volume ratio of p-xylene is less than 60, the extraction temperature range will be narrowed, which is not preferable for fractionation operation-1. The mixed solvent composition ratio of p-xylene and butyl cellosolve is 75/25 to 85.
A range of /15 is particularly preferable because the extraction temperature range is appropriate for fractionation operations, and the solubility of the extract is good and clogging in the column can be prevented. When performing column extraction, the column extraction humidity changes continuously from room temperature to 130°C, but the temperature is divided into several stages from room temperature to 130°C in advance and temporarily maintained at this temperature. Good too. Incidentally, (fractionation by the BJ method is a method in which fractionation based on the chemical composition of the ethylene/α-auxiliary olefin copolymer is selectively carried out).

本発明の方法でエチレン・α−オし、フィン共重合体の
クロス分別を行うことにより、今迄になく分子咋シ分布
及び組成分布が狭い分別物を得ることができるので、エ
チレン・α−オレフィン共重合体のより正確な品質管理
あるいは品質改良に役立てることができる。
By cross-fractionating the fin copolymer using the method of the present invention, it is possible to obtain a fractionated product with a narrower molecular weight distribution and composition distribution than ever before. It can be useful for more accurate quality control or quality improvement of olefin copolymers.

次に実施例を挙げて本発明を更に具体的に説明するが、
本発明はその要旨を越え4rい限りこれらの実施例に何
ら制約されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these embodiments in any way as long as it goes beyond the gist of the invention.

実施例1 エチレン・ブテン−1共重合体であるベークライト73
44ブレンド(ユニオン・カーバイド社製:MrrR=
2.27g/lomi、ns密度= 0.925 g 
/Cm3)のクロス分別結果について以下に述べる。本
実施例では、転)の方法により分子量分別を行った後、
この分別物をさらに(B)の方法により組成分別を行っ
た。
Example 1 Bakelite 73, an ethylene-butene-1 copolymer
44 blend (manufactured by Union Carbide: MrrR=
2.27g/lomi, ns density = 0.925g
/Cm3) cross separation results will be described below. In this example, after performing molecular weight fractionation by the method of
This fractionated product was further subjected to compositional fractionation by the method (B).

分子量分別は既知の方法(例えば、p、 s。Molecular weight fractionation is carried out by known methods (e.g. p, s.

FranciS、 et al、、J、 Po1.ym
er nci、、 31 、453(1958片)に従
って以下のように行った。該重合物50 gをp−キシ
レン84、ブチルセロソルブ2eおよび2.6−ジター
シヤルフヂルバラク1/ゾール10gに130°Cで溶
解後、セライト(珪藻土)1.5kQを加えた。上記混
合物を攪拌し4「がら室温まで自然放冷することにより
、該重合物をセライト表面Jjこコーチインクした。こ
の溶剤を含んだセライトを円筒状カラムに充!眞した後
、カラム内溶媒をブチルセロソルブにより置換した。フ
チルセロソルフ全ツノラム内に移送・流出させなから、
ツノラム内温度を120’Cまで上昇させた。カラム内
温度が120°Cに恒温後、ノアラム内へ移送する溶剤
中のp−キシレン量を連続的に増加させることにより、
流出液から各分別区分を得た。各分別区分はメタノール
に「I+沈後、p別・乾燥して以下の操作に用いた。表
1に分子量分別結果をまとめた。表中、x(’v)は各
分別区分の重量分率から引算される累積重量分率である
。極限粘度〔η〕はデカリン中135°Cで測定した値
である。分子量測定はG I−’ C法(ゲル・パーミ
ェーション・クロマトグラフィー)により次の条件で測
定した。
FranciS, et al, J, Po1. ym
Ernci, 31, 453 (1958 piece) as follows. After dissolving 50 g of the polymer in p-xylene 84, butyl cellosolve 2e, and 10 g of 2,6-diterthyalphylbarak 1/sol at 130°C, 1.5 kQ of celite (diatomaceous earth) was added. The above mixture was stirred and allowed to cool naturally to room temperature for 4 hours to ink the polymer onto the surface of Celite. After filling a cylindrical column with Celite containing this solvent, the solvent in the column was drained. Replaced with butyl cellosolve.Futyl cellosolve was not transferred or flowed out into the entire tunorum.
The temperature inside the horn ram was raised to 120'C. After the column temperature was constant at 120°C, by continuously increasing the amount of p-xylene in the solvent transferred to Noarum,
Each fraction was obtained from the effluent. Each fractionated category was precipitated with methanol, separated by P, and dried for use in the following operations. Table 1 summarizes the molecular weight fractionation results. In the table, x ('v) is the weight fraction of each fractionated category. It is the cumulative weight fraction subtracted from .The intrinsic viscosity [η] is the value measured in decalin at 135°C.The molecular weight was measured by the G I-'C method (gel permeation chromatography) as follows. Measured under the following conditions.

装 置 :つ副−ターズ社製 150C型力5ム:東洋
¥1rlA礼製q゛SKOIau−6(6mmφX60
(1mm) m  媒 :刈ルソジクロルベンゼン(ODCB)温度
:135°C 流量: 1.Ome/min 注入濃度’ 7.0In+!:/20m// 0DCB
((:’p、人量400pl) 1.6、東洋曹達社製およびプレッシャー・々ミカル礼
製、標準ポリスチレンを用いてユニバーサル法によりカ
ラム溶出体積は較正した。又、表中1000 c当たり
の分岐数はIT(測定により常法に従って求めた。
Equipment: 150C model made by Tsusai-Taz Co., Ltd. Power: q゛SKOIau-6 (6mmφX60
(1mm) Medium: ODCB Temperature: 135°C Flow rate: 1. Ome/min Injection concentration' 7.0In+! :/20m// 0DCB
((:'p, human capacity 400 pl) 1.6. Column elution volume was calibrated by the universal method using standard polystyrene manufactured by Toyo Soda Co., Ltd. and Pressure Sunmical Rei. In addition, the branch per 1000 c in the table The number was determined by IT (measurement) according to a conventional method.

表1の結果から、(A)の方法によるL L D P 
Eの分別は分子量分別の効果が顕著であることは明らか
である。
From the results in Table 1, L L D P by method (A)
It is clear that the effect of molecular weight fractionation is significant in the fractionation of E.

次に、上記方法により得られた分別区分の中から第2.
4,6.8および10番目の分別区分夕用いて以下に述
べる(B)の方法によりそれぞれ分別を行った。分別区
分5gをp−キシレン1,2e、ブチルセロソルブO0
ろCおよび2.6−ジクーシヤルブチルーバラークレゾ
ール1.5gに130”(:で溶用′i′後、セライ)
2750gを加えた。上記混合物を攪拌しながら室温ま
て自然放冷することにより、該分別区分をセライト表面
上にコーチ・rングした。この溶剤を含んだセライトを
円筒状カラムに充填した。その後、コーティング溶媒と
同じ溶媒組成であるl) −キシレンとブチルセロソル
ブとの組成比が80/20(容量比〕の混合溶媒をカラ
ム内に移送・流出させながら、カラム内のン晶度を室ン
晶から120℃士で適宜段階的に上げた。各温度区分で
得られた分別区分はメタノールに再沈後、p別・乾燥し
た。
Next, from among the classification categories obtained by the above method, the second.
Using the 4th, 6.8th, and 10th sorting sections, separation was carried out according to the method (B) described below. Separate 5g of p-xylene 1,2e, butyl cellosolve O0
Filter C and 1.5 g of 2.6-dicushialbutyl-valercresol with 130" (after dissolving in 'i', Cellai)
2750g was added. The mixture was allowed to naturally cool to room temperature while being stirred, and the separated sections were coached onto a Celite surface. This solvent-containing Celite was packed into a cylindrical column. After that, a mixed solvent of 80/20 (volume ratio) of l)-xylene and butyl cellosolve, which has the same solvent composition as the coating solvent, is transferred into the column and flowed out, and the crystallinity in the column is checked in the chamber. The temperature was raised in appropriate steps from the crystalline temperature to 120°C.The fractions obtained in each temperature range were reprecipitated in methanol, then separated and dried.

各分別区分の分別結果を表2〜乙にまとめた。The classification results for each classification category are summarized in Tables 2-B.

表2〜乙の結果より、各分別区分の溶出湿度とエチレン
含量との関係を第1図にプロットした。
Based on the results in Tables 2 to B, the relationship between elution humidity and ethylene content for each fractionation category was plotted in FIG.

第1図の結果から、CB)の方法で分別を行えば分子量
に依らず溶出温度とエヂレン含に1との関係は1対1に
対応しており、(Blの方法が組成分別のみが顕著に起
こることを示している。この事実をより明らかにするた
めに、各分別区分の重量平均分子量と1000c当たり
の分岐数とを第2図にプロットした。従ってL L D
 l)Rに関して言えば、仏)の方法により分子量分別
が(F3)の方法により組成分別を選択的に行いイ!l
ることか分る。即ち、(A)の方法と(B)の方法とを
組み合わゼることにより該重合物をクロス分別できるこ
とが分る。
From the results shown in Figure 1, if the fractionation is carried out using the CB method, there is a one-to-one relationship between the elution temperature and the ethylene content, regardless of the molecular weight. In order to clarify this fact more clearly, the weight average molecular weight and the number of branches per 1000 c of each fractionation are plotted in Figure 2. Therefore, L L D
l) Regarding R, molecular weight fractionation is performed by the method of France) and composition fractionation is selectively performed by the method of (F3). l
I understand that. That is, it can be seen that the polymer can be cross-fractionated by combining the method (A) and the method (B).

実施例2 実施例1に従って、エチレン・オクテン−1共重合体で
あるダウレックス61500−49 (ダウ・ケミカル
社製:MrrR==1.29g/10m1n、、密度=
0.929 g/(’II )のクロス分別を行つ、た
〇い)の方法による分子量分別結果を表7にまとめた。
Example 2 According to Example 1, ethylene octene-1 copolymer Dowlex 61500-49 (manufactured by Dow Chemical Company: MrrR==1.29 g/10 m1n, density=
Table 7 summarizes the molecular weight fractionation results by the method of 〇) in which cross-fractionation of 0.929 g/('II) was performed.

表7の中から、第2.4,6.8および10番目の分別
区分を(13)の方法により組成分別した結果は、それ
ぞれ表8−12にまとめた。各分別区分の重量平均分子
用と1000C当たりの分岐数との関係を第3図にプロ
ットした。実施例1と同じ<、(A)の方法と(B)の
方法とを組み合わせることにより該重合物をクロス分別
できることは第5図から明らか
The results of compositional classification of the 2.4th, 6.8th and 10th classification categories from Table 7 by method (13) are summarized in Tables 8-12. The relationship between the weight average molecular weight and the number of branches per 1000C for each fractionation section is plotted in FIG. It is clear from Figure 5 that the polymer can be cross-fractionated by combining the method (A) and method (B), the same as in Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はヘークライト7344フ゛レンドの
分子量分別物の組成分別結果を表曾)シ、第ろ図はダウ
レックス61500−49σ〕り)千用:分l/31j
物σ〕組成分別結果を表ねNO 出願人  三井石−Ml+化学工さ5イ十式会召二代理
人  t、lI   口     (11第1図 Elutj on  temp、/−(:第゛)図
Figures 1 and 2 show the composition fractionation results of the molecular weight fraction of Haechlite 7344 ferlend.
[Product σ] Please indicate the results of composition separation.

Claims (1)

【特許請求の範囲】[Claims] (1)担体にコーチインクしたエチレン・α−オレフィ
ン共重合体をカラムに充填し、 (A)  カラム抽出温度を110℃ないしp−キシレ
ンの沸点未満の範囲内の任意の温度で一定に保ち、p−
キシレンとブチルセロソルブとの混合溶媒の組成比を0
/100ないし10010(容量比)の範囲で連続的に
変化させて抽出する方法、もしくは、 (B)  p−キシレンとブチルセロソルブとの組成比
を60/40ないし10010(容量比)の範囲内の一
定組成比の混合溶媒を用い、カラム抽出温度を室温から
130°C迄連続的に変化させて抽出する方法、 のいずれかの方法で分別した後、各々の分別物を個々に
再度担体にコーティングしてカラムに充填い引き続き残
余の方法で分別することを特徴とするエチレン°a−オ
レフィン共重合体のクロス分別法。
(1) A column is filled with an ethylene/α-olefin copolymer coated on a carrier, (A) the column extraction temperature is kept constant at any temperature within the range of 110°C to below the boiling point of p-xylene; p-
The composition ratio of the mixed solvent of xylene and butyl cellosolve is 0.
(B) A method in which the composition ratio of p-xylene and butyl cellosolve is kept constant within the range of 60/40 to 10,010 (volume ratio). After fractionation by one of the following methods: using a mixed solvent with a different composition ratio and continuously changing the column extraction temperature from room temperature to 130°C, each fraction is individually re-coated onto a carrier. 1. A cross-fractionation method for an ethylene α-olefin copolymer, characterized in that the ethylene α-olefin copolymer is packed in a column and then fractionated by a residual method.
JP17855182A 1982-10-13 1982-10-13 Cross-fractionation of ethylene/alpha-olefin copolymer Granted JPS5968307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17855182A JPS5968307A (en) 1982-10-13 1982-10-13 Cross-fractionation of ethylene/alpha-olefin copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17855182A JPS5968307A (en) 1982-10-13 1982-10-13 Cross-fractionation of ethylene/alpha-olefin copolymer

Publications (2)

Publication Number Publication Date
JPS5968307A true JPS5968307A (en) 1984-04-18
JPH0261965B2 JPH0261965B2 (en) 1990-12-21

Family

ID=16050454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17855182A Granted JPS5968307A (en) 1982-10-13 1982-10-13 Cross-fractionation of ethylene/alpha-olefin copolymer

Country Status (1)

Country Link
JP (1) JPS5968307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145103A (en) * 1990-10-06 1992-05-19 Nippon Wax Polymer Kaihatsu Kenkyusho:Kk Molecular weight fraction from solid wax

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145103A (en) * 1990-10-06 1992-05-19 Nippon Wax Polymer Kaihatsu Kenkyusho:Kk Molecular weight fraction from solid wax

Also Published As

Publication number Publication date
JPH0261965B2 (en) 1990-12-21

Similar Documents

Publication Publication Date Title
AU648767B2 (en) Broad distribution, high molecular weight low density polyethylene and method of making thereof
JP3373516B2 (en) Impact modification of thermoplastics
RU2354669C2 (en) High impact strength film
EP1904545B1 (en) Polyethylene composition of improved processability
EP0153005B2 (en) Polyethylene wax
Schouterden et al. Fractionation and thermal behaviour of linear low density polyethylene
US4565847A (en) Blends of LLDPE, PP and EPDM or EPR for films of improved stiffness, tear and impact strength
EP0104097B1 (en) Composition of low-density polyethylene/alpha-olefin copolymers and their application to the manufacture of films
RU2375392C2 (en) Polyethylene resin for pipe fitting
AU2017322249A1 (en) Multimodal polyethylene composition and a film comprising the same
EP0102854B1 (en) Compositions of ethylene/alpha-olefine copolymers and low density polyethylene, and their use in the manufacture of films
HU218740B (en) Cable-sheathing composition
BRPI0612837B1 (en) polyethylene molding composition, process for preparing it, use of a polyethylene molding composition, and injection molded finished part
KR20110084544A (en) Multiphase polymeric composition useful for preparing cable insulation
WO1989010944A1 (en) Linear low density polyethylene of ultra low density
Defoor et al. Molecular, thermal and morphological characterization of narrowly branched fractions of 1-octene linear low-density polyethylene: 1. Molecular and thermal characterization
JPH09501721A (en) Gaskets made from homogeneous linear olefin polymers
US5041501A (en) Blends of linear low density ethylene copolymers
JPS5968307A (en) Cross-fractionation of ethylene/alpha-olefin copolymer
JP4898209B2 (en) Polyethylene molding material
US6369161B1 (en) Thermoplastic elastomeric blends
CA1142882A (en) Pipe manufactured from irradiated polyethylene containing carbon black
JPH0376325B2 (en)
WO2004075213A1 (en) Sheathed electric wire and cable
JPS58157838A (en) Polyethylene composition for electrical insulation