JPS58157838A - Polyethylene composition for electrical insulation - Google Patents

Polyethylene composition for electrical insulation

Info

Publication number
JPS58157838A
JPS58157838A JP3810682A JP3810682A JPS58157838A JP S58157838 A JPS58157838 A JP S58157838A JP 3810682 A JP3810682 A JP 3810682A JP 3810682 A JP3810682 A JP 3810682A JP S58157838 A JPS58157838 A JP S58157838A
Authority
JP
Japan
Prior art keywords
polyethylene
molecular weight
low
crosslinking
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3810682A
Other languages
Japanese (ja)
Inventor
Takashi Inoue
俊 井上
Masaji Sunada
砂田 政次
Satoshi Kaneko
智 金子
Tsutomu Kawamura
力 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP3810682A priority Critical patent/JPS58157838A/en
Publication of JPS58157838A publication Critical patent/JPS58157838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled composition having improved crosslinking properties, high- speed molding characteristics, electrical tree resistance after crosslinking, electrical strength properties. etc., comprising a low-density polyethylene consisting essentially of a specific high-pressure polyethylene and a crosslinking agent. CONSTITUTION:100pts.wt. low-density polyethylene containing >=70wt% high- pressure polyethylene having 0.924-0.928g/cc, preferably 0.925-0.927g/cc density, 1-5g/10min, preferably 2-4g/10min melt index, 2-5, preferably 3-4 ratio of weight-average molecular weight/number-average molecular weight, 1.25-1.40 die swell ratio, and >=0.2, preferably 0.2-0.5 terminal vinyl group based on 1,000 carbons is blended with 0.5-5pts.wt. crosslinking agent (e.g., dicumyl peroxide, etc.), to give the desired composition.

Description

【発明の詳細な説明】 本発明紘、耐電気トリー注、耐電圧特注に優れ、かつ架
橋性、高速成形性を向上せしめた電気絶縁用ポリエチレ
ン組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyethylene composition for electrical insulation, which has excellent properties such as electrical strength, electrical resistance, and voltage resistance, and has improved crosslinkability and high-speed moldability.

詳しくは、本発明は、低密度ポリエチレンと架橋剤とか
らなる電気絶縁用ポリエチレン組成物において、低密度
ポリエチレンとして、 (1)  密度が0.924〜0.928f/i工、(
2)  メルトインデックスが1〜5 F/10分、(
3)重量平均分子量/数平均分子量(Mw/un)が2
〜5、(4)ダイスウニ蔦比CD、S、R)が1.25
〜1.40、 そして(5)  末端ビニル基の数が1
000カーボン当90.2個以上である高圧法ポリエチ
レンを主成分とする低密度ポリエチレンを用いることを
特徴とする特注、高速成形柱管向上させ、架橋後の電気
特性、特に耐電圧特注、耐電気トリー性、耐熱性 およ
び外観に優れた成形物會得ることができる電気絶縁用ポ
リエチレン組成物に関するものである。
Specifically, the present invention provides a polyethylene composition for electrical insulation comprising low-density polyethylene and a crosslinking agent, in which the low-density polyethylene (1) has a density of 0.924 to 0.928 f/i, (
2) Melt index is 1 to 5 F/10 minutes, (
3) Weight average molecular weight/number average molecular weight (Mw/un) is 2
~5, (4) Dice sea urchin Tsuta ratio CD, S, R) is 1.25
~1.40, and (5) the number of terminal vinyl groups is 1
Custom-made, high-speed molded columnar tube characterized by using low-density polyethylene whose main component is high-pressure polyethylene with 90.2 or more carbon atoms per 000 carbon, improved electrical properties after crosslinking, especially withstand voltage, electrical resistance The present invention relates to a polyethylene composition for electrical insulation that can provide molded products with excellent tree properties, heat resistance, and appearance.

従来から、電気絶縁材料としてFi種々のグラスチック
材料が使用されている。特にポリオレフィン系重合体は
優れた電気特性、機械%注、化学的安定性などの諸特注
を有しなかでも低密度ポリエチレンは誘電損失も少なく
、かつ架橋させて、その耐熱性を向上させうるため電カ
ケープル用、電線等の電気絶縁材料として広く利用され
ている。そして一般に電カケープル用絶縁材料として要
求される%性は耐電圧性、耐電気トリー性、耐熱性等の
電気特性、機械的強度、耐久性および高速成形性、外観
性、そして架II注等に優れることである。
Conventionally, various glass materials such as Fi have been used as electrical insulating materials. In particular, polyolefin polymers have various special features such as excellent electrical properties, mechanical properties, and chemical stability, but low-density polyethylene has low dielectric loss and can be crosslinked to improve its heat resistance. Widely used as an electrical insulating material for power cables and wires. In general, the properties required for insulating materials for power cables include electrical properties such as voltage resistance, electrical tree resistance, and heat resistance, mechanical strength, durability, high-speed formability, appearance, and frame II Note. It's about being excellent.

近年、生産!I:を向上させるために生産ラインのスピ
ードアップが要求され、上記諸特注を損なわずにょシ高
速注の優れたレジンの開発が要望されている。
In recent years, production! In order to improve I:, speeding up of the production line is required, and there is a demand for the development of an excellent resin that can be cast at high speed without compromising the above-mentioned custom orders.

しかるに現在使用されている電カケープル用低密度ポリ
エチレンは高速成形時にメルト7ラクチエアと言われる
流動の乱れが生じ被傍表面が荒れるという欠点を有して
いる。
However, the currently used low-density polyethylene for power cables has the disadvantage that during high-speed molding, flow disturbances called melt air occur and the surrounding surface becomes rough.

上記高速成形性を改良する方法として最も簡単にはメル
トフローインデックス(以下Mlと称する)を大きくす
ること、即ち分子量を小さくすることが考えられるが、
率にMIt−上けると溶融粘度が下が広ケーブル成形後
架橋管で架橋する時に溶融レジンが垂れて偏心したシ、
あるいは被覆表面が架橋管に接触し傷になった夛すると
hうトラブルが起る。
The simplest way to improve the above-mentioned high-speed moldability is to increase the melt flow index (hereinafter referred to as Ml), that is, to decrease the molecular weight.
If the MIt ratio is increased, the melt viscosity will be lower.When crosslinking with a crosslinked pipe after forming a wide cable, the molten resin will drip and become eccentric.
Alternatively, troubles may occur if the coated surface comes into contact with the crosslinked pipe and becomes scratched.

また一方、電カケープル用レジンの重要な特注の1つと
して架橋性に優れていることが求められる。この架II
性に寄与する因子としては一般に分子内二重結合の内の
末端ビニル基、低分子量成分、短鎖分岐、長鎖分岐等が
考えられている。この中で長鎖分岐は架橋性を阻害する
因子でゲル分率を下げてしまぺ短鎖分岐は高圧法の場合
には非常に複雑でその効果はけつきシしない。また低分
子量成分については分子量分布を狭くしてそのf1ヲ少
なくすることによシ架橋性を改良することが試みられて
いる。例えば特開昭57−5737号においては、化学
架橋剤を含有する密度0.925 f/a1以上で、か
つ結晶厚み901以上、届し鰯が8以下、MFRが0.
3〜4 f/10分の架橋性ポリエチレンが提案され、
分子量分布を狭くして低分子量成分會少なくすることに
よる架橋性の改良が試みられているが、その効果は非常
に小さく、また高速成形性、および外観性の優れたもの
を得ることが難かしい。
On the other hand, one of the important special requirements for resins for power cables is that they have excellent crosslinking properties. This rack II
Factors that contribute to the properties are generally considered to be terminal vinyl groups in intramolecular double bonds, low molecular weight components, short chain branches, long chain branches, etc. Among these, long chain branching is a factor that inhibits crosslinking and reduces the gel fraction. Short chain branching is very complicated in the case of high pressure methods, and its effect is not limited. For low molecular weight components, attempts have been made to improve crosslinking properties by narrowing the molecular weight distribution and reducing f1. For example, in JP-A No. 57-5737, a chemical cross-linking agent is contained, the density is 0.925 f/a1 or more, the crystal thickness is 901 or more, the delivered sardine is 8 or less, and the MFR is 0.
3-4 f/10 min crosslinkable polyethylene has been proposed,
Attempts have been made to improve crosslinking by narrowing the molecular weight distribution and reducing the number of low molecular weight components, but the effect is very small, and it is difficult to obtain products with high-speed moldability and excellent appearance. .

本発明者らは従来の電気絶縁用レジン特に電カケープル
用レジンの欠点を改良すべく鋭意検討を続け、高圧法ポ
リエチレンの架橋性に最も大きく寄与する因子がポリエ
チレン分子内の不飽和基、その中でも特に末端ビニル基
の効果が犬であることを見出すと共に更に検討の結果、
前記電カケープル用レジンの要求特注全顕著に向上させ
ると共に高速成形性および外観性にも顕著に優れたポリ
エチレン組成物を開発することに成功し本発明に到達し
た。
The present inventors have continued to study intensively to improve the shortcomings of conventional electrical insulation resins, particularly resins for electrical cables, and found that the factor that contributes most significantly to the crosslinking properties of high-pressure polyethylene is the unsaturated group within the polyethylene molecule. In particular, we found that the effect of the terminal vinyl group was significant, and as a result of further investigation,
The present invention has been achieved by successfully developing a polyethylene composition that significantly improves all the requirements for the resin for electrical cables, and also exhibits remarkable high-speed moldability and excellent appearance.

すなわち、本発明け、 (1)密度が0.924〜0.928 f /cc。That is, the present invention (1) Density is 0.924 to 0.928 f/cc.

(2)メルトインデックスが1〜5 F/10分、(3
)重量平均分子量/数平均分子量(Mw/un)が2〜
5、(4)ダイスウェル比CD、S、R)が1.25〜
1.40、  且つ(5)末端ビニル基の数が1000
カーボン当シ0.2個以上である高圧法ポリエチレンを
主成分とする低密度ポリエチレンと架橋剤からなる電気
絶縁用ポリエチレン組成物を提供するものであり、上記
特定範囲の低密度ポリエチレンと架橋剤を用いることに
よシ、従来の問題点を解決り、 (1)  高速成形性
、(2)耐電圧性、(3)耐電気トリー性、(4)  
耐熱性、(5)外観表面荒れの防止、(6)架橋特注、
(7)体積固有抵抗率0)および(8)加熱変形率、等
全顕著に向上させることが可能となった。またこのもの
は繁雑な工程を要せず、安価に製造しうるという効果も
有する。
(2) Melt index is 1 to 5 F/10 minutes, (3
) Weight average molecular weight/number average molecular weight (Mw/un) is 2~
5. (4) Dice swell ratio CD, S, R) is 1.25 ~
1.40, and (5) the number of terminal vinyl groups is 1000
The present invention provides an electrically insulating polyethylene composition consisting of low density polyethylene whose main component is high-pressure polyethylene containing 0.2 or more carbon atoms and a crosslinking agent. By using this method, the problems of the conventional method can be solved: (1) high-speed formability, (2) voltage resistance, (3) electrical resistance, (4)
Heat resistance, (5) prevention of surface roughness, (6) custom crosslinking,
(7) Volume resistivity (0) and (8) Heat deformation rate, etc., can all be significantly improved. This product also has the advantage that it does not require complicated processes and can be manufactured at low cost.

本発明では、低密度ポリエチレンとして、前記したとお
広(1) 密度が0.924〜0.928f/cc。
In the present invention, as the low density polyethylene, the above-described Toohiro (1) density is 0.924 to 0.928 f/cc.

(2)メルトインデックスが1〜5F/10分、(3)
  重量平均分子量/数平均分子量(Mw/un)が2
〜5、(4)ダイスウェル比CD、S、R)が1.25
〜1.40、 且つ(5)末端ビニル基の数が1000
カーボン当り0.2個以上である高圧法ポリエチレンを
主成分とする低密度ポリエチレンを選択することにより
、電気絶縁材料、特に電カケープル用絶縁材料としての
諸特at向上させることができるのである。
(2) Melt index is 1-5F/10 minutes, (3)
Weight average molecular weight/number average molecular weight (Mw/un) is 2
~5, (4) Dice swell ratio CD, S, R) is 1.25
~1.40, and (5) the number of terminal vinyl groups is 1000
By selecting low-density polyethylene whose main component is high-pressure polyethylene containing 0.2 or more carbon atoms per carbon, various properties of the material can be improved as an electrical insulating material, especially an insulating material for electrical cables.

すなわち、本発明は(1)  密度t O,924〜0
.928 t /cc、好ましくは0.925〜0.9
27f/ccとすることによシミカケ−プルの常用温度
における耐熱性會90℃前後から100℃前後と大幅に
上昇させ加熱変形率を小さくシ、総電力量(ト上させる
ことを可能としたものである。上記密度が(1924f
/cC未満においては成形時において流れむらが生じ、
0.928を超えると被覆表面に鮫肌(シャークスキン
)という表面荒れを生じ、いずれにおいても外観不良と
なる。
That is, the present invention provides (1) density t O,924~0
.. 928 t/cc, preferably 0.925-0.9
By setting the temperature to 27f/cc, the heat resistance of Shimika cable at the normal operating temperature is significantly increased from around 90°C to around 100°C, reducing the heat deformation rate and making it possible to increase the total electric power consumption. The above density is (1924f
/cC, uneven flow occurs during molding,
When it exceeds 0.928, surface roughness called shark skin occurs on the coated surface, resulting in poor appearance in any case.

(2)Mlは1〜5 f/10分、好ましくは2〜4f
/10分で、1 f/10分未満においては押出時に発
熱し、スコーチし易くまた流れむらやシャークスキンが
生じ外観不良とな広5 F/10分を超えると架橋処理
前に樹脂の垂れ下シが起シ、偏肉が生じる。
(2) Ml is 1-5 f/10 min, preferably 2-4 f
If the extrusion time is less than 1 F/10 minutes, heat will be generated during extrusion, resulting in scorching, uneven flow, or shark skin, resulting in poor appearance. Cracks occur and uneven thickness occurs.

(3)GPCにより求められた分子量分布CMw/un
)は2〜5、好ましくは3〜4で、分子量分布が2未満
においてはシャークスキンを生じ、5t−超えると流れ
むらを生じ、この場合も外観不良のものしか得られない
(3) Molecular weight distribution CMw/un determined by GPC
) is 2 to 5, preferably 3 to 4. If the molecular weight distribution is less than 2, shark skin will occur, and if it exceeds 5 t, uneven flow will occur, and in this case, only a product with poor appearance will be obtained.

(4)ダイスウェル比CD、S、R)は1.25〜L4
0であシ、1.40を超えると流れむらを生じ、1.2
5未満ではシャークスキンが生じ外観不良となる。
(4) Dice swell ratio CD, S, R) is 1.25 to L4
If it exceeds 1.40, uneven flow will occur, and if it exceeds 1.2
If it is less than 5, shark skin will occur and the appearance will be poor.

また(5)末端ビニル基の数′1に100Gカーボン当
り0.2個以上とすることによル架m注訃よび架橋後の
架橋率(ゲル分率)t−75%以上の高架橋率とし、融
点以上の耐熱性を大幅に向上させている。該末端ビニル
基の数が0.2個未満において岐架橋率が低下し高温で
の変形が大きく耐熱性が劣る。通常は、たとえば0.2
〜0.5個程度で十分所期の効果を達成することができ
る。
(5) By setting the number of terminal vinyl groups to 0.2 or more per 100G carbon, a high crosslinking rate of 75% or more can be achieved. , has significantly improved heat resistance above the melting point. When the number of terminal vinyl groups is less than 0.2, the branching and crosslinking rate decreases, and deformation at high temperatures is large, resulting in poor heat resistance. Usually, for example, 0.2
~0.5 pieces can sufficiently achieve the desired effect.

この様な高圧法ポリエチレン、例えば分子量の比Mw/
Mnの小さな低密度ポリエチレンを実験的に得るには、
市販の低密度ポリエチレンを低分子量成分から高分子量
成分までの複数の成分に分別し、低分子量成分と高分子
量成分の両方もしくはいずれか一方の成分を取シ除くこ
とにより得ることができる。
Such high-pressure polyethylene, for example, the molecular weight ratio Mw/
To experimentally obtain low density polyethylene with small Mn,
It can be obtained by separating commercially available low density polyethylene into a plurality of components from low molecular weight components to high molecular weight components, and removing both or either of the low molecular weight components and the high molecular weight components.

また、工業的には、重合温度のばらつきや、滞留時間の
不均一等の原因により分子量の比Mω/M?Lil、大
きくなるので、これらの条件をなるべく一定にしてエチ
レンの重合を行ない、重合圧力、重合温度、モデファイ
ヤー勢の重合条件全適宜選択することによシ望ましい分
子量、分子量分布、等を有する高圧ポリエチレン會得る
ものである。例えば、特定のモデファイヤーと低い重合
温度で重合し更にホモジナイズして前記(1)〜(5)
の特定範囲のポリエチレンを得ることができる。
In addition, from an industrial perspective, molecular weight ratio Mω/M? Since ethylene polymerization is carried out while keeping these conditions as constant as possible, and by appropriately selecting all polymerization conditions such as polymerization pressure, polymerization temperature, and modifier, it is possible to obtain a high-pressure polymer with a desired molecular weight, molecular weight distribution, etc. Polyethylene is used. For example, by polymerizing with a specific modifier at a low polymerization temperature and further homogenizing, the above (1) to (5)
A specific range of polyethylene can be obtained.

本発明は高速成形性および架橋特注等を向上させるため
に上記(1)〜(5)の特定範囲の物注會有する高圧法
ポリエチレンを生成分として、含有する低密度ポリエチ
レンを使用する結果押出機によシ押出成形する場合には
押出機内でのスコーチ(早期架橋)全防止し、良好な押
出加工が可能となる。低密度ポリエチレン中の上記(1
)〜(5)の特定範囲の物性を有する高圧法ポリエチレ
ンの量は70重量−以上が好ましい。
In order to improve high-speed moldability and cross-linking customization, the present invention is an extruder that uses low-density polyethylene containing high-pressure polyethylene as a product component, which has a specific range of materials as described in (1) to (5) above. When extrusion molding is performed, scorch (early crosslinking) in the extruder is completely prevented, allowing for good extrusion processing. The above (1) in low density polyethylene
The amount of high-pressure polyethylene having physical properties within the specific ranges of (5) to (5) is preferably 70% by weight or more.

またこのような高圧法ポリエチレンに必要に応じ混合さ
れる低密度ポリエチレンとしては例えば他種のエチレン
単独重合体またはエチレンを主成分とするプロピレン、
ブテン−1、ヘキセン−1,4−メチルーベlテンー1
等のσ−オレフィンとの共重合体、エチレン−酢酸ビニ
ル共重合体等が挙げられ高圧法、中圧法、低圧法いずれ
の製法で得たポリエチレンでもよい。
Examples of low-density polyethylene that can be mixed with such high-pressure polyethylene as necessary include other types of ethylene homopolymers or propylene mainly composed of ethylene,
Butene-1, hexene-1,4-methyl-butene-1
Examples include copolymers with σ-olefins such as, ethylene-vinyl acetate copolymers, etc., and polyethylene obtained by any of high-pressure, medium-pressure, and low-pressure methods may be used.

また本発明に用いられる架橋剤は通常用いられる有機過
酸化物たとえばジクミルパーオキサイド、ターシャリー
ブテルジクンルパーオキサイド、2.5−ジメチル−2
,5−ジ(ターシャリ−グチルパーオキシ)ヘキサノ、
2.5−ジメチル−2,5−ジ(ターシャリ−ブチルパ
ーオキシ)ヘキセy−3などでラシ、低密度ポリエチレ
ン100重量部に対して通常0.5〜5重量部、好まし
くは1〜3重量重量部源れる。また必要に応じて一般に
用いられる老化防止斉に電圧安定剤、銅害防止剤、カー
ボンブラック等の通常の添加剤t−添加しても差支えな
い。
In addition, the crosslinking agent used in the present invention is a commonly used organic peroxide such as dicumyl peroxide, tert-buterdicumyl peroxide, 2,5-dimethyl-2
, 5-di(tertiary-glutylperoxy)hexano,
2,5-dimethyl-2,5-di(tert-butylperoxy)hexyl-3 etc., usually 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight, per 100 parts by weight of low density polyethylene. The weight part is sourced. Further, if necessary, conventional additives such as voltage stabilizers, copper damage inhibitors, carbon black, etc. may be added in addition to commonly used anti-aging agents.

本発明の組成物全通例の条件でケーブル導体に被覆し架
橋する方法は水蒸気加熱、誘電加熱等の通常の方法で差
支えなく特に限定されない。
The method of coating and crosslinking the composition of the present invention on a cable conductor under the usual conditions may be any conventional method such as steam heating or dielectric heating, and is not particularly limited.

以上述べた様に、本発明の組成物を用いることにより、
従来の組成物に比し耐電工注、耐電気トリー注、耐熱性
等の電気特性が大幅に向上し、繁雑な工程もなく、安価
に製造できる。
As mentioned above, by using the composition of the present invention,
Compared to conventional compositions, it has significantly improved electrical properties such as electrical resistance, electrical tree resistance, and heat resistance, and can be manufactured at low cost without complicated processes.

以下本発明全実施例および比較例に基づいて具体的に説
明するが、本発明はその要旨を逸脱しない限ルこれらに
限定されるものでない。
The present invention will be specifically explained below based on all Examples and Comparative Examples of the present invention, but the present invention is not limited thereto unless it departs from the gist thereof.

実施例1〜4および比較例1〜5 高圧法によりモデファイヤー、温度、圧力等の重合条件
全種に変更し、第1表に示される様な所望の物at−有
する高圧法ポリエチレンを製造し、該樹脂の物性値およ
び電気特性、成形性、外観性について評価した。その結
果を第1表に示した。
Examples 1 to 4 and Comparative Examples 1 to 5 High-pressure polyethylene having the desired properties as shown in Table 1 was produced by changing all polymerization conditions such as modifier, temperature, and pressure using a high-pressure method. The physical properties, electrical properties, moldability, and appearance of the resin were evaluated. The results are shown in Table 1.

第1表に示される様に実施例1〜4は電気特性およびゲ
ル分率、高速成形性、外観性の良いものが得られた。
As shown in Table 1, Examples 1 to 4 had good electrical properties, gel fraction, high-speed moldability, and good appearance.

また比較例1は密度、M命/us、 D、S−Rt一本
発明の範囲外にしたところトリー発生電圧、加熱変形率
、体積固有抵抗率が悪く、樹脂の押出量が悪<2.3K
I/HRで流れむらを生じた。
In addition, in Comparative Example 1, when the density, M life/us, D, and S-Rt were set outside the range of the present invention, the tree generation voltage, thermal deformation rate, and specific volume resistivity were poor, and the extrusion amount of the resin was poor <2. 3K
I/HR caused uneven flow.

比較例2および3においてはMlt一本発明の範囲外に
したところ比較例2では押出量L5Kf/HRと小さく
流れむらを生じ、比較例3ではドローダウンが生じ樹脂
の垂れ下シが起きた。
In Comparative Examples 2 and 3, Mlt was set outside the range of the present invention, and in Comparative Example 2, the extrusion amount was L5Kf/HR, resulting in small flow irregularities, and in Comparative Example 3, drawdown occurred and the resin drooped.

比較例4においては密度を本発明の範囲外にしたところ
押出量3.5h/HBと少なく、シャークスキンを生じ
た。
In Comparative Example 4, when the density was set outside the range of the present invention, the extrusion rate was as low as 3.5 h/HB, and shark skin was produced.

比較例5において線末端ビニル基を本発明の範囲外にし
たところ成形性および外観が良好のものが得られるがゲ
ル分率が低いものでめった。
In Comparative Example 5, when the vinyl group at the end of the line was set outside the range of the present invention, a product with good moldability and appearance was obtained, but the gel fraction was low.

実施例5 実施例1の低密度ポリエチレン100重景部にMI=3
、密度0.933、VA含有量10チのエチレン−酢酸
ビニル共重合体を10部添加し、押出機によシ混線した
。該組成物を実施例1と同様に試験したところ良好な特
性を示した。結果を第1表に示した。
Example 5 MI=3 in the high-level part of the low-density polyethylene 100 of Example 1
, 10 parts of ethylene-vinyl acetate copolymer having a density of 0.933 and a VA content of 10 cm were added, and mixed with the extruder. The composition was tested in the same manner as in Example 1 and showed good properties. The results are shown in Table 1.

比較例6 市販の高密度ポリエチレン密度0.925、MI=0.
2のポリエチレン30重量部と密度0.925〜MI=
10のポリエチレン70重量部を押出機でプレノドし、
MI=3、Mw/堀=5.5、DSR=1.43、末端
ビニル基0.29の本発明の範囲外の組成物で試験上行
なった結果、押出量3.8KI/HRで流れむらを生じ
た。
Comparative Example 6 Commercially available high density polyethylene density 0.925, MI=0.
2 30 parts by weight of polyethylene and density 0.925~MI=
70 parts by weight of polyethylene of No. 10 was pre-coated with an extruder,
As a result of testing with a composition outside the range of the present invention having MI = 3, Mw/Hori = 5.5, DSR = 1.43, and a terminal vinyl group of 0.29, flow irregularity occurred at an extrusion rate of 3.8 KI/HR. occurred.

く試験法〉 ダイスウェル比・・・・・・メルトインデキサ−から押
出されたストランドの径CD)とオリフィスの径CD0
)の比から次式により求めた。
Test method〉 Die swell ratio... Diameter CD of the strand extruded from the melt indexer) and diameter CD0 of the orifice
) was calculated using the following formula.

DSR=例。DSR=Example.

末端ビニル ・・・・・・ 厚さ0.6Xシート會赤外
線吸収スペクトルにより、波長がii、oaμの所の吸
光度を求め次式より求めた o   1 ′:J/1000C=に°lOgTx■ここで、K=0
.116、d : PEの密変、l:シート厚さ、l0
2I:特注吸収及びベースの吸光度 電気トリー ・・・・・・ 曲率半径3μmの針を使用
LA電極間距離3X、初期印加電圧5kv、10分間課
’R:、1&τステツプアツプのシングルニードル試験
で、10サンプル中5コにトリーが発生した電圧を求め
た。
Vinyl terminal... 0.6X thick sheet. Using the infrared absorption spectrum, the absorbance at the wavelength ii and oaμ was determined from the following formula: o 1 ': J/1000C = °lOgTx ■ Here , K=0
.. 116, d: Density variation of PE, l: Sheet thickness, l0
2I: Custom-made absorption and base absorbance electrical tree... Using a needle with a radius of curvature of 3 μm, distance between LA electrodes 3X, initial applied voltage 5kV, 10 minutes test 'R:, 1 & τ step-up single needle test, 10 The voltage at which trees occurred in five of the samples was determined.

加熱変形率 ・・・・・・ 径1ON−の6X厚シー)
’t 100℃のオイルバス中で荷重2.63Ktで加
圧し、30分後の変形率を求めた。
Heating deformation rate... 6X thickness seam with diameter 1ON-)
't Pressurized at a load of 2.63 Kt in an oil bath at 100°C, and the deformation rate after 30 minutes was determined.

体積固有抵抗率ψ)・・・0.3%厚レシート課電し、
10kv/、の電界強度におけるpt求めた。
Volume specific resistivity ψ)...0.3% thickness receipt charge,
pt was determined at an electric field strength of 10 kv/.

ゲル分率  ・・・・・・ ボリエデレン100wt部
にDCPジグミルパーオキサイドZwt部と、4.4’
−チオビス(2−t−ブチル−5−メチルフエ/ −1
) 0.2wt部全添加し、IXシートを成形lA16
0℃で30分架橋し、その後20メツシユパスに粉砕し
、キシレンで120℃、10時間抽出し残率を求めた。
Gel fraction: 100wt part of polyadelene, Zwt part of DCP digyl peroxide, 4.4'
-thiobis(2-t-butyl-5-methylphene/-1
) Add all 0.2wt part and form IX sheet lA16
Crosslinking was carried out at 0°C for 30 minutes, and then pulverized into 20 mesh passes, extracted with xylene at 120°C for 10 hours, and the residual ratio was determined.

高速成形性 ・・・・・・ ブロー成形機を使用し、内
径9XΦ、外径10%Φのダイスを使用し押出し量 を増やしていった時に表面が荒れた時の押出し量を求め
た。樹脂温度130℃。
High-speed moldability: Using a blow molding machine and using a die with an inner diameter of 9XΦ and an outer diameter of 10%Φ, the extrusion volume was determined when the surface became rough as the extrusion volume was increased. Resin temperature 130℃.

参考例 高圧法によりモデファイヤー、温度、圧力等の重合条件
を変更し、A、B、C,D4111の物性を有する高圧
法ポリエチレンを製造し、架橋性の影響について検討し
た結果を第2表に示した。
Reference Example High-pressure polyethylene with physical properties of A, B, C, and D4111 was produced by changing the polymerization conditions such as modifier, temperature, and pressure using the high-pressure method, and the effects of crosslinking were examined. Table 2 shows the results. Indicated.

第2表 Ml    fAO分   3.0   3.0   
2.8   1.7密度   f/ed   O,92
30,9250,9280,930Mω/Mt*   
 −4,23,43,02,8低分子量成分  %  
   3.8   3.1   2.1   0.9末
端ビニル基 町o”G    o、ai   O,31
0,150,03上記第2表に示される様に、A−+B
−+C−+Dと順に分子量分布の指標であるMt2I/
M’nf小さく、即ち分子量分布を狭くすると明らかに
低分子量成分は少なくなるがゲル分率はA。
Table 2 Ml fAO min 3.0 3.0
2.8 1.7 density f/ed O,92
30,9250,9280,930Mω/Mt*
-4,23,43,02,8 low molecular weight component %
3.8 3.1 2.1 0.9 terminal vinyl group Machi o”G o, ai O,31
0,150,03 As shown in Table 2 above, A-+B
−+C−+D and Mt2I/ which is an index of molecular weight distribution in order
If M'nf is small, that is, the molecular weight distribution is narrowed, the low molecular weight components will obviously decrease, but the gel fraction will be A.

Bが最も高<、C,Dと逆に低くなっている。また同じ
末端ビニル基を有するAおよびBにおいてはkhl)/
Mt*が変化していない。仁のことからも末端ビニル基
が架橋性に大きな影響管与えていることが明らかである
B is the highest, whereas C and D are the lowest. In addition, in A and B having the same terminal vinyl group, khl)/
Mt* has not changed. It is clear from the results that the terminal vinyl group has a large influence on crosslinking properties.

Claims (1)

【特許請求の範囲】 低密度ポリエチレンと架橋剤とからなる電カケープル用
ポリエチレン組成物において、該低密度ポリエチレンー
ー(1)  密度が0.924〜0.928 f/CC
。 (2)メルトインデックスが1〜5 f710分、(3
)重量平均分子量/数平均分子量(Ih1w/M%)が
2〜5、(4)ダイスウェル比CD、S、R)が125
〜1.40、 かつ(5)末端ビニル基の数が1000
カーボン当夛0.2個以上である高圧法ポリエチレンを
主成分とする低密度ポリエチレンであることt−特徴と
する電気絶縁用ポリエチレン組成物。
[Claims] A polyethylene composition for an electric cable comprising low density polyethylene and a crosslinking agent, wherein the low density polyethylene (1) has a density of 0.924 to 0.928 f/CC.
. (2) Melt index is 1 to 5 f710 minutes, (3
) weight average molecular weight/number average molecular weight (Ih1w/M%) is 2 to 5, (4) die swell ratio CD, S, R) is 125
~1.40, and (5) the number of terminal vinyl groups is 1000
A polyethylene composition for electrical insulation, characterized in that it is a low-density polyethylene whose main component is high-pressure polyethylene having a carbon content of 0.2 or more.
JP3810682A 1982-03-12 1982-03-12 Polyethylene composition for electrical insulation Pending JPS58157838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3810682A JPS58157838A (en) 1982-03-12 1982-03-12 Polyethylene composition for electrical insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3810682A JPS58157838A (en) 1982-03-12 1982-03-12 Polyethylene composition for electrical insulation

Publications (1)

Publication Number Publication Date
JPS58157838A true JPS58157838A (en) 1983-09-20

Family

ID=12516215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3810682A Pending JPS58157838A (en) 1982-03-12 1982-03-12 Polyethylene composition for electrical insulation

Country Status (1)

Country Link
JP (1) JPS58157838A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999611A (en) * 1982-11-30 1984-06-08 住友電気工業株式会社 Crosslinked polyethylene cable
JPS63190206A (en) * 1987-01-30 1988-08-05 株式会社フジクラ Insulating material composition for wire and cable
EP0668296A1 (en) * 1994-02-18 1995-08-23 Mitsui Petrochemical Industries, Ltd. Ethylene polymer and process for preparing the same
FR2717817A1 (en) * 1994-03-25 1995-09-29 Furukawa Electric Co Ltd Polyethylene for insulation layer of power transmission cable and cable using it.
US5731393A (en) * 1994-02-18 1998-03-24 Mitsui Petrochemical Industries, Ltd. Ethylene polymer, process for preparing the same, solid titanium catalyst component for ethylene polymerization and ethylene polymerization catalyst
EP1020480A1 (en) * 1997-09-30 2000-07-19 Japan Polyolefins Co., Ltd. Low-density polyethylene resin for laminating, composition thereof, laminate produced therefrom and process for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999611A (en) * 1982-11-30 1984-06-08 住友電気工業株式会社 Crosslinked polyethylene cable
JPS63190206A (en) * 1987-01-30 1988-08-05 株式会社フジクラ Insulating material composition for wire and cable
EP0668296A1 (en) * 1994-02-18 1995-08-23 Mitsui Petrochemical Industries, Ltd. Ethylene polymer and process for preparing the same
US5731393A (en) * 1994-02-18 1998-03-24 Mitsui Petrochemical Industries, Ltd. Ethylene polymer, process for preparing the same, solid titanium catalyst component for ethylene polymerization and ethylene polymerization catalyst
US6054542A (en) * 1994-02-18 2000-04-25 Mitsui Petrochemical Industries, Ltd. Ethylene polymer and process for preparing the same
FR2717817A1 (en) * 1994-03-25 1995-09-29 Furukawa Electric Co Ltd Polyethylene for insulation layer of power transmission cable and cable using it.
EP1020480A1 (en) * 1997-09-30 2000-07-19 Japan Polyolefins Co., Ltd. Low-density polyethylene resin for laminating, composition thereof, laminate produced therefrom and process for producing the same
EP1020480A4 (en) * 1997-09-30 2001-09-19 Japan Polyolefins Co Ltd Low-density polyethylene resin for laminating, composition thereof, laminate produced therefrom and process for producing the same
US6521734B1 (en) 1997-09-30 2003-02-18 Japan Polyolefins Co., Ltd. Low-density polyethylene resin for laminating, composition thereof, laminates produced therefrom and process for producing the same

Similar Documents

Publication Publication Date Title
US8124877B2 (en) Semiconductive polymer composition
CA2290318C (en) Crosslinked compositions containing silane-grafted polyolefins and polypropylene
US4840996A (en) Polymeric composition
JPH06509905A (en) Electrical device with polymeric insulating member and semiconductor member
CN100498980C (en) Water-tree-retardant cable insulation material
US20170011817A1 (en) Polymer blends
CN108178874B (en) Polypropylene insulating material for high-voltage power cable and preparation method thereof
JP2002528873A (en) Electric wire and method of manufacturing the same
CN109313960B (en) Cable with advantageous electrical properties
JPS58157838A (en) Polyethylene composition for electrical insulation
KR20190011296A (en) Cable Including Insulation Layer With Non-crosslinking Resin
JPS5938984B2 (en) Method for manufacturing silane-modified ethylene polymer molded products
JP3835055B2 (en) Recyclable power cable
JPS59215342A (en) Resin composition for power cable
JP7247140B2 (en) Wiring material and its manufacturing method
JP3003837B2 (en) Crosslinkable polyethylene composition and electric wires and cables
JP3858511B2 (en) Electric wire / cable
JPS6210119A (en) Electrical-insulating crosslinked ethylene copolymer
JPS58223207A (en) Semiconductive composition
JPS6210121A (en) Electrical-insulating crosslinked ethylene copolymer
WO2016097254A1 (en) Power cable polymer composition, power cable and uses with advantageous properties
JPS63301427A (en) Manufacture of plastic power cable
JP3835056B2 (en) Recyclable power cable
JPS6210109A (en) Electrical-insulating crossedlinked ethylene copolymer
JPS6210110A (en) Electrical-insulating crosslinked ethylene copolymer