JPS5968161A - Low pressure electric-discharge lamp - Google Patents
Low pressure electric-discharge lampInfo
- Publication number
- JPS5968161A JPS5968161A JP16053482A JP16053482A JPS5968161A JP S5968161 A JPS5968161 A JP S5968161A JP 16053482 A JP16053482 A JP 16053482A JP 16053482 A JP16053482 A JP 16053482A JP S5968161 A JPS5968161 A JP S5968161A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- space
- discharge space
- tube
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/70—Arrangements for deflecting ray or beam
Landscapes
- Discharge Lamps And Accessories Thereof (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、高輝度で且つ大光束が得られる全く新規な低
圧放電灯に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a completely new low-pressure discharge lamp that has high brightness and provides a large luminous flux.
(背景技術)
高輝度でしかも大光束が得られる放電灯としては、例え
ば水銀灯の如き高圧金属蒸気放電灯等が実現され実用化
されている。(Background Art) High-pressure metal vapor discharge lamps such as mercury lamps have been realized and put into practical use as discharge lamps that can provide high luminance and large luminous flux.
しかしながら、このタイプの放電灯は、定常点灯時は高
気圧、高6υ、で動作するように設計されているため、
第1図に示すように点灯開始後数分間は管内が低温、低
気圧であるため光が十分でない、いわゆるウオームアツ
プの時間(同図において0〜 tlの時間)を必要とし
、また、点灯後一旦消灯して即百点灯させようとすると
、管内が高温、高圧になっているため再始動できず、再
始動可能になるまでに消灯後数分間(同図において L
2〜 t3)を要するという欠点がある。更に、所望の
光色、色温度を得ようとしても、実用的に使えるtik
電(発光)物質は数種以下に限定されるため特定の光色
〜色温度となってしまい、自由な設計がしVltいとい
う欠点もある。更にまた、高温となるため一般の軟質ガ
ラスが使えず、高価な石英ガラス、多結晶アルミナ管等
を必要とし、加工も合せ高価になる欠点がある。However, this type of discharge lamp is designed to operate at high pressure and high 6υ during steady lighting.
As shown in Figure 1, the inside of the tube is at low temperature and low pressure for several minutes after lighting starts, so there is not enough light, which requires a so-called warm-up time (time from 0 to tl in the figure). If you try to turn the lights on immediately after turning them off, you will not be able to restart them due to the high temperature and pressure inside the pipe, and it will take several minutes after the lights go out before you can restart them (L in the same figure).
The disadvantage is that it requires 2 to t3). Furthermore, even when trying to obtain the desired light color and color temperature, it is possible to use TIK that can be used practically.
Since the number of electro-luminescent substances is limited to a few types or less, the light has a specific color to color temperature, and there is also the drawback that it is difficult to design freely. Furthermore, due to the high temperature, general soft glass cannot be used, and expensive quartz glass, polycrystalline alumina tubes, etc. are required, and processing is also expensive.
(発明の目的)
本発明は上記欠点に鍜のなされたもので、その目的とす
るところは、従来の放電灯とは全く異なる原理からなる
、コンパクトで瞬時点灯可能でしかも高輝度、大光束の
低圧金属蒸気放電灯を提供するにある。(Object of the Invention) The present invention has been made to address the above-mentioned drawbacks, and its purpose is to provide a compact, instantaneous light-up lamp with high brightness and large luminous flux, which is based on a completely different principle from conventional discharge lamps. To provide low pressure metal vapor discharge lamps.
(発明の開示)
本発明の基本的構成を第2図に示す。本発明に係る低圧
放電灯(J、気密空間を形成する円筒状の外管1と、該
外管1内の略中心に配設された同心円筒状の内管2とよ
り成り、咳内管2の両端は開口し、該両開口部には1対
の電極3,3が配設され、内管2内を放電空間へとし、
外管1内のその他の空間を非放電空間Bとする。そして
、放電空間へを形成する外表面積ずなわぢ内管2の外表
面積Saに対する非放電空間Bを形成する外表面積すな
わち外管1の外表面積sbを
sb≧5・Sa
とし、主放電(発光)物質を金属蒸気とする。(Disclosure of the Invention) The basic configuration of the present invention is shown in FIG. The low-pressure discharge lamp (J) according to the present invention consists of a cylindrical outer tube 1 forming an airtight space, and a concentric cylindrical inner tube 2 disposed approximately at the center of the outer tube 1. Both ends of the inner tube 2 are open, and a pair of electrodes 3, 3 are disposed in both openings, making the inside of the inner tube 2 a discharge space.
The other space inside the outer tube 1 is defined as a non-discharge space B. Then, the outer surface area forming the non-discharge space B, that is, the outer surface area sb of the outer tube 1, is set to sb≧5·Sa with respect to the outer surface area Sa of the inner tube 2, which forms the outer surface area forming the discharge space. ) The substance is a metal vapor.
なお、外管1及び内管2の形状は上記のように円筒状で
ある必要はなく、外管1は例えば現行の水銀灯の如き形
状でもよく、内管2は屈曲していても、また、放電電流
と同方向の磁界を印加することにより主放電を封し込め
れば実質上内管2はなくてもよく、要は放電を限定する
構成すなわち放電空間へが形成されればよい。Note that the shapes of the outer tube 1 and the inner tube 2 do not have to be cylindrical as described above, and the outer tube 1 may have the shape of a current mercury lamp, for example, and the inner tube 2 may be bent. As long as the main discharge can be contained by applying a magnetic field in the same direction as the discharge current, the inner tube 2 may not be provided in practice, and it is sufficient to form a structure that limits the discharge, that is, a discharge space.
次に、かかる放電灯の動作原理及び効果を説明する。ま
ず本発明に係る放電灯は、前述のように低圧金属蒸気放
電であるので、螢光ランプとその動作原理は本質的に同
一であり、始動後直ちに十分な明るさに達し、消灯後の
再点灯も直ちにできる。また、放電空間へに対し非放電
空間B−h<極端に広< (sb≧5・Sa)、且つ
、各放電空間A1 Bは同気密であるため金属蒸気の最
冷温度は、放電空間内温度に比し十分低くなり高9ノ率
な放射を維持できる。つまり、放電空間へに対する非放
電空間Bの比(B/八とする)を変えると、勿論、Ii
k電空間Δ及び非hk電空間■3の外表面11sa、S
bや包絡形状にも左右されるが、これらを典型的な形状
として固定すると、第3図に示す如き特性が得られる。Next, the operating principle and effects of this discharge lamp will be explained. First of all, since the discharge lamp according to the present invention is a low-pressure metal vapor discharge as mentioned above, its operating principle is essentially the same as that of a fluorescent lamp. You can also turn on the lights immediately. In addition, since the non-discharge space B-h<extremely wide< (sb≧5・Sa) with respect to the discharge space, and each discharge space A1 B is airtight, the coldest temperature of the metal vapor is within the discharge space. It is sufficiently low compared to the temperature and can maintain a high 90% radiation. In other words, if we change the ratio of non-discharge space B to discharge space (assumed to be B/8), of course Ii
Outer surface 11sa, S of k electric space Δ and non-hk electric space ■3
Although it depends on b and the envelope shape, if these are fixed as typical shapes, the characteristics shown in FIG. 3 can be obtained.
なお、同図においてゴaは放電空間への表面温度を、’
I’ bば非放電空間Bの表面温度を、Tcは周囲温度
をそれぞれ示す。In addition, in the same figure, Goa expresses the surface temperature to the discharge space as '
I'b represents the surface temperature of the non-discharge space B, and Tc represents the ambient temperature.
従って、放電空間へのみよりなる単一管放電灯に比べ放
電空間温度はより商618.になるものの、最冷温度は
非放電空間Bで規制されるため、より低温になる。そし
て、その差は」二記B/Δが大きくなればなる程大きく
なる。このことは、ランプ入力を増し高輝度、大光束を
図っていく場合、非雷に効果的となる。Therefore, the temperature of the discharge space is lower than that of a single-tube discharge lamp which is only connected to the discharge space. However, since the coldest temperature is regulated by the non-discharge space B, it becomes lower. The difference becomes larger as B/Δ becomes larger. This is effective against lightning when increasing the lamp input and aiming for high brightness and large luminous flux.
今、金属蒸気として水銀を例にとり考えると、水銀のエ
ネルギ一単位図は第4図に示す通りであり、螢光ランプ
の場合には254nmの紫外線放射を螢光体により可視
光に変換している。この場合の効率は、螢光体を固定す
れば254nmの紫外線放射効率で決石。 254nm
の紫外線放射効率はfJS5図に示す如く、約40℃の
水銀温度(それに相当する水銀蒸気圧は約数+amTo
rr)が最大になることは周知の通りである。そこで、
ランプ入力を増してくると、一般に水銀最冷温度は40
°Cよりどんどん高(なり最適域から外れていく。Now, taking mercury as a metal vapor as an example, the energy unit diagram of mercury is as shown in Figure 4. In the case of a fluorescent lamp, 254 nm ultraviolet radiation is converted into visible light by a phosphor. There is. In this case, if the phosphor is fixed, the efficiency is determined by the UV radiation efficiency of 254 nm. 254nm
As shown in the fJS5 diagram, the ultraviolet radiation efficiency of
It is well known that rr) is the maximum. Therefore,
As the lamp input increases, the coldest temperature of mercury generally reaches 40
It becomes higher and higher than °C (becomes out of the optimum range).
而して、本発明のようにコンパクトな放電空間で大光束
を出そうとすると、必然的に狭い放電空間r(1;に大
きな入力を投入・Uざるをえないため、水銀最冷温度は
極0iAIに上がり、単管の場合、同時に范気圧も上が
るため、効率の著しい低下と、蒸気圧増大による始動及
び最始動悪化を来すが、本発明に係る放電灯は、放電空
間への周囲に相対的に大きな非放電空間Bを設けたため
水銀最冷温度の低減が図れ、最適の水銀最冷温度側近に
設計し維持することができ、紫外線放射効率を十分高く
することができる。Therefore, in order to emit a large luminous flux in a compact discharge space as in the present invention, a large input must be input into the narrow discharge space r(1), so the coldest temperature of mercury is In the case of a single tube, the pressure rises to extremely low AI, and in the case of a single tube, the pressure also rises at the same time, resulting in a significant drop in efficiency and deterioration in start-up and final start-up due to increased vapor pressure.However, the discharge lamp according to the present invention Since a relatively large non-discharge space B is provided, the coldest temperature of mercury can be reduced, the temperature can be designed and maintained close to the optimum coldest temperature of mercury, and the ultraviolet radiation efficiency can be made sufficiently high.
次に、」二記S h≧5・Saなる数値限定の根拠を説
明する。発熱体の外表面の温度は、発熱部分(本発明に
おいては放電空間A)における発熱量(本発明において
は実質的には放電電力)が一定であれば略発熱体の外表
面積に相関するので、非放電空間Bの外表面温度をTb
とし、外表面積をsbとし、周囲温度をTcとすると、
非放電空間■3を略真空に近付ければ非放電空間Bの外
表面での温度上昇Δ=rbはおおよそ
ΔTl+ =”l”b −Tcc<1 /Sbとなる。Next, the basis for the numerical limitation of ``2, Sh≧5・Sa'' will be explained. The temperature of the outer surface of the heating element is approximately correlated to the outer surface area of the heating element if the amount of heat generated (substantially the discharge power in the invention) in the heat generating portion (discharge space A in the invention) is constant. , the outer surface temperature of non-discharge space B is Tb
If the outer surface area is sb and the ambient temperature is Tc, then
If the non-discharge space (3) is brought close to a vacuum, the temperature rise Δ=rb on the outer surface of the non-discharge space B becomes approximately ΔTl+=“l”b−Tcc<1/Sb.
従って、非放電空間Bの外表面積sbが人であればある
程、非放電空間13の外表面温度T bは周囲温度i”
cに近イ;1くわりである。Therefore, the more people occupy the outer surface area sb of the non-discharge space B, the more the outer surface temperature T b of the non-discharge space 13 becomes the ambient temperature i''
It is close to C; it is close to 1.
また、放電空間Aは非放電空間Bの外表面を新な周囲温
度とみなしての関係となるので、放電空間へのみよりな
る単管での温度上昇をΔl’aoとすると、非放電空間
Bで囲われている場合には、その温度上昇ΔTaはおお
よそ
ΔTa#Δ’T’ao+Δ′「b
となる。すなわち、非放電空間13の外表面積sbが大
になればなる程、放電空間への外表面温度Taは放電空
間へのみよりなる単管での外表面温度に近付くことにな
る。In addition, the relationship between discharge space A and non-discharge space B is based on the assumption that the outer surface of non-discharge space B is the new ambient temperature. If the area is surrounded by The outer surface temperature Ta approaches the outer surface temperature of a single tube that is connected only to the discharge space.
このように、非放電空間Bの放電空間へに対する外表面
積が大になればなる程(第3図においてB/Δが大にな
ればなる程)、非放電空間Bの外表面温度1゛bば周囲
温度1゛cに、放電空間Δの外表面温度T aは放電空
間へのみによる単管での外表面温度に近付くことになり
、(非放電空間Bの外表面積Sb)!;(放電空間への
外表面積Sa)のとき、すなわぢ第3図においてB/Δ
が1のときは逆の極限で、非放電空間13の外表面温度
′I″bは放電空間Δのめによる単管での外表面温度に
近側き、hり型空間への外表面温度Taは」−記単管で
の外表面温度に、非放電空間Bの外表面7品度T bと
周囲温度′「Cの?品度差分を足したレヘルになる。そ
して、S b≧5・Saになると、放電空間Δのめによ
る+’Q管での温度上昇の約115以下となる。 しか
るに、今、コンパクトで高輝度、高出力のランプを得よ
うとすると、一般に放電空間AのみによるQ’+管で推
定すると、放電空間への温度は、 100〜数100°
Cという極端に高い値となるが、士、記のようにsb≧
5・Saとすることにより、非放電空間13の外表面温
度Tbを普通に単管が設n1、使用されるときの管温度
に近くなる訳である。In this way, the larger the outer surface area of the non-discharge space B to the discharge space (the larger B/Δ in FIG. 3), the larger the outer surface temperature of the non-discharge space B, 1゛b. If the ambient temperature is 1゛c, the outer surface temperature Ta of the discharge space Δ approaches the outer surface temperature of a single tube that enters the discharge space only (outer surface area Sb of the non-discharge space B)! ; (outer surface area Sa to the discharge space), that is, B/Δ in FIG.
When is 1, it is the opposite limit, and the outer surface temperature 'I''b of the non-discharge space 13 is close to the outer surface temperature of a single tube due to the discharge space Δ, and the outer surface temperature of the h-shaped space is Ta is equal to the sum of the external surface temperature of the single tube, the external surface quality T b of the non-discharge space B, and the quality difference of the ambient temperature C. Then, S b ≧ 5 - When it comes to Sa, the temperature rise in the +'Q tube due to the discharge space Δ is about 115 or less. However, when trying to obtain a compact, high-intensity, and high-output lamp, generally only the discharge space A is used. According to Q'+ tube, the temperature to the discharge space is 100 to several 100 degrees.
It is an extremely high value of C, but sb≧ as shown in
5.Sa, the outer surface temperature Tb of the non-discharge space 13 becomes close to the tube temperature when a single tube is normally installed and used.
次に、放電空間A内の放電維持時の平均陽光柱電位伸度
Eについて述べる。陽光柱電位傾度Eがln1いという
ことは、放電中の電子温度すなわち電子エネルギーが大
きいことを意味する。ところが、現行の螢光ランプでは
周知の如く、陽光柱電位傾度Eが0.9〜1.IV /
cm程度であるため、第4図に示ずエネルギー準位図に
おいて最低のエネルキー準位(63p2)への励起が最
も多く、その励起準位から払底準位への254nmの紫
外線放射による発光か最も強くなるような設計になって
いる。しかるに、陽光柱電位傾度Eを1,5V/cm以
上に上げると、より高い準位(7−”S、 64D等
)への励起度合が増え、254nm、 185nmの
紫外線放射の増加と共に、546nm、 436nm、
405nm、 577〜579nm等の放射による可
視発光も急激に増してくる。これは254nmの放射の
みを有効利用する螢光ランプの場合は相対的に低効率に
なるが、254nm、 185nmの両紫外線を励起
源とする螢光体を用いると共に、他の可視光スペクトル
ラインをそのまま利用することにより、逆に全体として
より高効率の放電灯を提供することができる。また、他
側として力Fミウムを金属蒸気とした場合も同様の効果
が得られる。すなわち、第6図に示すエネルギー準位図
において、通當の低圧放電をする場合、0.8〜IV
/ cm程度の陽光柱電位傾度已にすると、SP励起十
位よりの326nm、 229nmの紫外線放射効率が
最大になるのは周知の1fflりである。しかるに、陽
光柱電位(頃度巳を1.5V/cm以上とすることによ
り、前述の水銀放電同様、68以上の高((へ位への励
起が急激にt+/I加し、有効な発光を伴うことができ
る。Next, the average positive column potential elongation E during discharge maintenance in the discharge space A will be described. The fact that the positive column potential gradient E is ln1 small means that the electron temperature during discharge, that is, the electron energy is large. However, as is well known, in current fluorescent lamps, the positive column potential gradient E is 0.9 to 1. IV /
cm, the lowest energy level (63p2) in the energy level diagram (not shown in Figure 4) is the most excited, and the most excitation is due to 254 nm ultraviolet radiation from that excited level to the bottom level. It is designed to be strong. However, when the positive column potential gradient E is increased to 1.5 V/cm or more, the degree of excitation to higher levels (7-''S, 64D, etc.) increases, and as the ultraviolet radiation at 254 nm and 185 nm increases, the ultraviolet radiation at 546 nm, 436nm,
Visible light emission due to radiation of 405 nm, 577 to 579 nm, etc. will also increase rapidly. This would result in relatively low efficiency in the case of a fluorescent lamp that effectively uses only 254 nm radiation, but it uses a phosphor that uses both 254 nm and 185 nm ultraviolet radiation as an excitation source, and also uses other visible light spectral lines. By using it as is, it is possible to provide a discharge lamp with higher overall efficiency. Moreover, the same effect can be obtained when the force Fmium is used as a metal vapor on the other side. That is, in the energy level diagram shown in FIG.
It is well known that when the positive column potential gradient is on the order of / cm, the UV radiation efficiency of 326 nm and 229 nm from the SP excitation deciles reaches its maximum at about 1 ffl. However, by setting the positive column potential to 1.5 V/cm or more, the excitation to the positive position rapidly increases to t+/I, which is similar to the above-mentioned mercury discharge, resulting in effective light emission. can be accompanied by
第7図は本発明の異なる実施例を示す簡略図で(alは
縦断面図、(blば横断面図である。前記基本構成と異
なる構成は、内管2の一端は外管1に当接することによ
り閉塞し他端のみ開口し、内管2の内面に螢光体4を被
着した点で、螢光体4としては高温特性の優れた希土類
螢光体を主体としたもの、例えば、桃色のイツトリウム
・オキサイド、緑色の珪酸亜鉛やアルミン酸マグネシウ
ム、青色のアルミン酸マグネシウム・バリウム等を適宜
混合し、所望の光色としたものが望ましく、また、内管
2を10關以下とし、更に上記陽光柱電位傾度E≧1.
5V/cmなる高電位傾度は、主として荷電粒子の拡散
、再結合を増大させる周知の構成、例えばネオン、ヘリ
ウム等の軽希ガスの封入、細管の採用、内性11ji面
の非円形状化等により達成することが望ましい。FIG. 7 is a simplified diagram showing a different embodiment of the present invention (al is a longitudinal sectional view, (bl is a horizontal sectional view). In a configuration different from the basic configuration described above, one end of the inner tube 2 is in contact with the outer tube 1. The phosphor 4 is made of a rare-earth phosphor with excellent high-temperature properties, e.g. , pink yttrium oxide, green zinc silicate and magnesium aluminate, blue magnesium barium aluminate, etc. are preferably mixed appropriately to obtain the desired light color, and the inner tube 2 is set to 10 degrees or less, Furthermore, the positive column potential gradient E≧1.
The high potential gradient of 5 V/cm is mainly due to well-known configurations that increase the diffusion and recombination of charged particles, such as the inclusion of light rare gases such as neon and helium, the use of thin tubes, and the non-circular shape of the internal 11ji surface. It is desirable to achieve this by
第8図は本発明の更に異なる実施例を示す簡略図で(8
1は縦断面図、(blは横断面図である。本実施例14
内管2を紫外線透過ガラスで形成し、1対の電極3,3
が位置する両端は閉塞し管中央部に開口部5を設りると
共に、外管1の内面に螢光体4を被着したものである。FIG. 8 is a simplified diagram showing still another embodiment of the present invention (8
1 is a longitudinal cross-sectional view, (bl is a cross-sectional view. Example 14
The inner tube 2 is made of ultraviolet-transparent glass, and a pair of electrodes 3, 3
Both ends where are located are closed, an opening 5 is provided in the center of the tube, and a phosphor 4 is coated on the inner surface of the outer tube 1.
(発明の効果)
本発明は上記のように、気密に形成された管内に、それ
ぞれ同気密な放電空間へと非放電空間Bを設り、1記非
放電空間Bの外表面積sbを放電空間への外表面積Sa
の5倍以上とし、主放電物質を金属蒸気としたことを特
徴とする低圧蒸気放電灯であるため、高輝度、大光束の
放電灯であるにもかかわらず、瞬時点灯が可能で、瞬時
に十分な光束が得られるといった、従来の放電灯とは全
く異なる新規な低圧放電灯を提供できる。また、放電空
間への温度が高々数100°Cであるため、高価な石英
ガラスや多結晶アルミナを管材として使わなくても済む
という付加的効果も有する。(Effects of the Invention) As described above, the present invention provides a non-discharge space B in each airtight discharge space in a tube formed airtight, and the outer surface area sb of the first non-discharge space B is the discharge space. outer surface area Sa
Because it is a low-pressure steam discharge lamp, it is characterized by having a metal vapor as the main discharge material, so it can be lit instantly even though it is a discharge lamp with high brightness and large luminous flux. It is possible to provide a new low-pressure discharge lamp that is completely different from conventional discharge lamps and can provide sufficient luminous flux. Furthermore, since the temperature of the discharge space is several 100° C. at most, there is an additional effect that there is no need to use expensive quartz glass or polycrystalline alumina as the tube material.
第1図は高圧金属蒸気放電灯の点灯特性図、第2図は本
発明の基本構成を説明する簡略図で、(alは断面図、
fblば斜視図、第3図は本発明に係る放電灯の管内温
度特性図、第4図は水銀のエネルギー準位図、第5図は
254nmの紫外線放射り]率を示す特性図、第6図は
カドミウムのエネルギー準位図、第7図は本発明の異な
る実施例を示す簡略図で(alは縦1:lli面図、t
blは横断面図、第8図は本発明の更に異なる実施例を
示す簡略図でfa+は縦断面図、(b)は横断面図であ
る。
■・・・外管、2川内管、3・・・電極、4・・・螢光
体。
特許出願人
松下電工株式会社
代理人 弁理士 竹元敏丸
(ほか2名)
第1図
(” <1)>第3図
B/A
第41
2イニ 514
4v−011月迭
第6t4
集8図 (b)
(+2)
]−糸11 子i1i J−I己 7薯二(自発1市
正)114訂]158年11月1日
Q’14’l庁し官 殿
■、事1ノ1の表示
11計r157年 特許側 第1[1i0534号2、
発明の名称
((q下方煽太丁
3、補正をする壱
事111“との関係 特許出願人
件 所 大+ur丁門真市大字門真1048番
地名 称(5B3)松下電工株式会社
代表者 小 林 郁4、代理
人FIG. 1 is a lighting characteristic diagram of a high-pressure metal vapor discharge lamp, and FIG. 2 is a simplified diagram explaining the basic configuration of the present invention.
fbl is a perspective view, FIG. 3 is a temperature characteristic diagram inside the tube of the discharge lamp according to the present invention, FIG. 4 is an energy level diagram of mercury, FIG. 5 is a characteristic diagram showing the 254 nm ultraviolet radiation rate, and FIG. The figure is an energy level diagram of cadmium, and FIG. 7 is a simplified diagram showing different embodiments of the present invention (al is a vertical 1:lli plane view,
bl is a cross-sectional view, FIG. 8 is a simplified diagram showing another embodiment of the present invention, fa+ is a longitudinal cross-sectional view, and (b) is a cross-sectional view. ■...Outer tube, 2 inner tubes, 3...electrode, 4...fluorescent body. Patent Applicant Matsushita Electric Works Co., Ltd. Agent Patent Attorney Toshimaru Takemoto (and 2 others) Figure 1 ("<1)> Figure 3 B/A 41 2 ini 514 4v-011 6t4 Vol. 8 (b) (+2)] - Thread 11 Child i1i J-I Self 7 薯二 (Voluntary 1 City Correction) 114th Edition] November 1, 158 Display 11 total r 157 years Patent side No. 1 [1i0534 No. 2,
Name of the invention (Relationship with (q. , agent
Claims (7)
空間式と非放電空間Bを設け、上記放電空間への外表面
積Saに対する非放電空間Bの外表面積sbを sb≧5・Sa とU7、主放電物質を金属蒸気としたごとを特徴とする
低圧放電灯。(1) A discharge space and a non-discharge space B each having the same airtight structure are provided in an airtight tube, and the outer surface area sb of the non-discharge space B is set as sb≧5・Sa with respect to the outer surface area Sa to the discharge space. U7, a low-pressure discharge lamp characterized by using metal vapor as the main discharge substance.
Eを E≧1.5V/cm とした特許請求の範囲第1項記載の低圧1ik電灯。(2) The low-voltage 1ik electric lamp according to claim 1, wherein the average positive column potential gradient E during discharge maintenance in the discharge space A is E≧1.5V/cm.
内に開口部を有する内管を配設することにより構成した
特許請求の範囲第1項または第2項記載の低圧放電灯。(3) The low-pressure discharge according to claim 1 or 2, wherein the l-number electric space A is constructed by arranging an inner tube having an opening inside an outer tube forming the non-discharge space B. electric light.
を被着した特許請求の範囲第3項記載の低圧放電灯。(4) The low-pressure discharge lamp according to claim 3, wherein a phosphor mainly composed of a rare earth phosphor is coated on the inner surface of the inner tube.
螢光体を被着した特許請求の範囲第3項記載の低圧放電
灯。(5) A low-pressure discharge lamp according to claim 3, wherein the inner tube is made of an ultraviolet-transmitting material, and a fluorescent substance is coated on the inner surface of the outer tube.
範囲第3項、第4項または第5項記載の低圧放電灯。(6) The low-pressure discharge lamp according to claim 3, 4, or 5, wherein the straight line i of the inner tube is 101 or less.
主として荷電粒子の拡散、再結合を増大させることによ
り達成した特許請求の範囲第2項〜第6項記載の低圧j
jk電灯。(7) The high potential elongation IE of the above E≧1.5V/cm,
The low pressure j according to claims 2 to 6 achieved mainly by increasing the diffusion and recombination of charged particles.
jk electric light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16053482A JPS5968161A (en) | 1982-09-14 | 1982-09-14 | Low pressure electric-discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16053482A JPS5968161A (en) | 1982-09-14 | 1982-09-14 | Low pressure electric-discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5968161A true JPS5968161A (en) | 1984-04-18 |
JPH0222980B2 JPH0222980B2 (en) | 1990-05-22 |
Family
ID=15717048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16053482A Granted JPS5968161A (en) | 1982-09-14 | 1982-09-14 | Low pressure electric-discharge lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5968161A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947511A (en) * | 1972-09-08 | 1974-05-08 | ||
JPS5444370A (en) * | 1977-08-23 | 1979-04-07 | Philips Nv | Low pressure mercury vapor discharge lamp |
-
1982
- 1982-09-14 JP JP16053482A patent/JPS5968161A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947511A (en) * | 1972-09-08 | 1974-05-08 | ||
JPS5444370A (en) * | 1977-08-23 | 1979-04-07 | Philips Nv | Low pressure mercury vapor discharge lamp |
Also Published As
Publication number | Publication date |
---|---|
JPH0222980B2 (en) | 1990-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4940918A (en) | Fluorescent lamp for liquid crystal backlighting | |
US2687486A (en) | Gaseous discharge lamp | |
JPS5968161A (en) | Low pressure electric-discharge lamp | |
JPH0527221B2 (en) | ||
US5432403A (en) | Negative glow discharge lamp having improved color stability and enhanced life | |
US3252028A (en) | High-output fluorescent lamp having means for maintaining a predetermined mercury vapor pressure during operation | |
JP3190228B2 (en) | Single die fluorescent lamp lighting device | |
JP3460365B2 (en) | Discharge lamps and lighting devices | |
JPS5968162A (en) | Low pressure sodium lamp | |
JPH0340361A (en) | Low pressure rare gas discharging fluorescent lamp with hot cathode | |
JPS63218145A (en) | High pressure sodium lamp | |
JPH0817403A (en) | Rare gas discharge lamp | |
KR930003837B1 (en) | Hot cathode type low pressure rare gas discharge fluorescent lamp | |
JPS5842946B2 (en) | fluorescent lamp | |
JP3203804B2 (en) | Capillary fluorescent lamp and backlight device | |
JPS60151951A (en) | Small-size fluorescent lamp | |
JPH0745239A (en) | Low pressure mercury vapor discharge lamp and equipment | |
JPH04129160A (en) | Luminous device | |
JPS61171050A (en) | Bulb-type fluorescent lamp | |
JPS60202654A (en) | Fluorescent lamp device | |
Murayama et al. | IES Transaction: Compact Lamp with two Interior Fluorescent Tubes | |
JPS5868862A (en) | Low pressure rare gas discharge lamp | |
JPH04301356A (en) | High pressure sodium lamp | |
JPS62168338A (en) | Metal halide lamp | |
JPS5838447A (en) | Neon gas discharge lamp for optical device |