JPH0340361A - Low pressure rare gas discharging fluorescent lamp with hot cathode - Google Patents

Low pressure rare gas discharging fluorescent lamp with hot cathode

Info

Publication number
JPH0340361A
JPH0340361A JP1173207A JP17320789A JPH0340361A JP H0340361 A JPH0340361 A JP H0340361A JP 1173207 A JP1173207 A JP 1173207A JP 17320789 A JP17320789 A JP 17320789A JP H0340361 A JPH0340361 A JP H0340361A
Authority
JP
Japan
Prior art keywords
brightness
increase
light emission
tube current
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1173207A
Other languages
Japanese (ja)
Other versions
JPH0817090B2 (en
Inventor
Takashi Osawa
隆司 大澤
Seijiyurou Mihashi
三橋 征寿郎
Yujiro Kamano
鎌野 裕二郎
Katsuo Murakami
勝男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17320789A priority Critical patent/JPH0817090B2/en
Priority to KR1019900008489A priority patent/KR920010666B1/en
Priority to EP90111134A priority patent/EP0402878B1/en
Priority to EP93110967A priority patent/EP0570024B1/en
Priority to DE69032825T priority patent/DE69032825T2/en
Priority to DE69019597T priority patent/DE69019597T2/en
Priority to US07/538,084 priority patent/US5187415A/en
Publication of JPH0340361A publication Critical patent/JPH0340361A/en
Priority to KR1019920013015A priority patent/KR930003837B1/en
Publication of JPH0817090B2 publication Critical patent/JPH0817090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To increase the brightness without involvement of abrupt rise of the tube voltage and eliminate risk of brightness saturation due to the increase in the tube current by using at least Kr as the light emission gas, and setting its partial voltage below a specific value. CONSTITUTION:A pair of electrodes 2a, 2b are installed in a glass bulb 1, wherein a filament coil coated with electron emitting substance is used. A fluorescent substance layer 3 is formed over the inner surface of this bulb 1. Within this bulb 1, a light emission gas 4 of Kr is encapsulated at 5Torr or less. If the tube current is increased, therefore, the brightness is increased due to combination of the light emission from the fluorescent substance layer with the increase of the atomic light emission in the visible range of Kr. Even though further increase of the tube current has resulted in saturated condition of the light emission from the layer 3, the atomic light emission will increase in the visible range of Kr to accomplish increase of the brightness.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、ファクシミリ、複写機などの事務自動化(
OA)関連機器に用いる熱陰挿形低圧希ガス放電蛍光ラ
ンプの輝度改善に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to office automation such as facsimiles and copying machines (
OA) This paper relates to improving the brightness of heat shaded low pressure rare gas discharge fluorescent lamps used in related equipment.

〔従来の技術〕[Conventional technology]

近年、OA機番用光源として、希ガス放電による発光を
利用した蛍光ランプが採用されている。
In recent years, fluorescent lamps that utilize light emission from rare gas discharge have been adopted as light sources for office automation equipment.

たとえば、キセノン(Xe)を主成分とするガスを封入
した高輝度グローランプが発表されている。これは管内
のXeガスのグロー放電が発する紫外線で蛍光体を励起
して発光する冷陰桶形番ガス放電蛍光ランプである。こ
のランプは水銀を使用しないで広い温度範囲にわたり安
定した光出力が得られ、かつ蛍光体の変更により用途に
応じた光源色が1iIられる利点がある。
For example, high-intensity glow lamps filled with a gas containing xenon (Xe) as a main component have been announced. This is a cold bucket type gas discharge fluorescent lamp that excites the phosphor with ultraviolet light emitted by the glow discharge of Xe gas inside the tube to emit light. This lamp has the advantage that stable light output can be obtained over a wide temperature range without using mercury, and that the color of the light source can be changed depending on the application by changing the phosphor.

しかし、この冷陰極形番ガス放電蛍光ランプは、点灯に
高電圧を要するため、取扱に若干の問題があった。そこ
で発明者らは、点灯電圧が低く、高電圧にまつわる問題
点が少ない熱陰極形番ガス放電蛍光ランプを検討してき
た。その結果、熱陰挿形番ガス放7TC蛍光ランプの、
光出力は、定性的に第2図に示した様な特性があること
を確認した。これは管径15.5mm両熱陰極、交流正
弦波30kl+、で点灯させ、管電流100mA一定と
しており、封入ガスは100%Xeを用いている。図で
も明らかなとおり、Xe圧力が5トル(Torr)程度
で輝度は最低となっており、輝度を向上させるには、封
入ガス圧を下げるか、あるいは逆に上げればよい。とこ
ろが、封入ガス圧を下げた場合は、管電圧の上昇はさほ
ど急ではないが、逆に封入ガス圧を上げた場合は、管電
圧も急激に上昇する。即ち、5To r rf1度のガ
ス圧を境にランプの電気特性が大きく傾向を異にしてい
る。発明者らは、Xeを発光ガスとしてXe混入詐を1
0%と固定し、残部90%をHe。
However, this cold cathode model gas discharge fluorescent lamp required a high voltage for lighting, which caused some problems in handling. Therefore, the inventors have been studying hot cathode type gas discharge fluorescent lamps that have a low lighting voltage and have fewer problems associated with high voltages. As a result, the heat shade type gas discharge 7TC fluorescent lamp,
It was confirmed that the optical output qualitatively had the characteristics shown in FIG. It is lit with a bi-hot cathode tube diameter of 15.5 mm, an AC sine wave of 30 kl+, the tube current is constant at 100 mA, and the filled gas is 100% Xe. As is clear from the figure, the brightness is at its lowest when the Xe pressure is around 5 Torr, and in order to improve the brightness, the pressure of the filled gas can be lowered or conversely increased. However, when the pressure of the filled gas is lowered, the tube voltage does not rise so suddenly, but when the pressure of the filled gas is increased, the tube voltage also rises rapidly. That is, the tendency of the electric characteristics of the lamp differs greatly at a gas pressure of 5 Tor rf 1 degree. The inventors used Xe as a luminescent gas to investigate the Xe-containing fraud.
The remaining 90% is He.

Ne、Ar、Krと変更してみたところ、1Torr程
度の同じ封入ガス圧ではHe、Ne。
When I tried changing it to Ne, Ar, and Kr, it turned out to be He and Ne at the same filled gas pressure of about 1 Torr.

Ar、Krという順番で輝度は低下した。また、例えば
Xe、Neの二種混合ガスを用い、Xeの混入量を増加
させると、ITorr程度の同じ封入ガス圧では輝度は
低下した。上記はITorr程度という5To r r
程度以下のガス圧領域でのことであるが、これは管電圧
低下の目的に合致した効果的な領域であるからであり、
それ以上のガス圧領域では、また変った現像がでたが、
ここでは[1的よりはずれるので省略する。さて混合ガ
スを用いた場合の最低輝度を与える封入ガスJ、’Eは
、Xs混合比の低下にともない高圧側、即ち5Torr
程度より高い圧力に移るが、近似的にはXsの分FEは
いずれも5Torr1f1度であった。
The brightness decreased in the order of Ar and Kr. Further, when a mixed gas of two types of Xe and Ne is used and the amount of Xe mixed is increased, the brightness decreases at the same filled gas pressure of about ITorr. The above is about 5 Torr
This is because this is an effective region that meets the purpose of reducing tube voltage.
In the gas pressure range higher than that, strange development occurred, but
Here, I will omit [[1] because it is off the mark. Now, when a mixed gas is used, the filled gases J and 'E that give the lowest brightness are on the high pressure side, that is, 5 Torr, as the Xs mixture ratio decreases.
Moving on to higher pressures, approximately FE for Xs was 5 Torr 1 f 1 degree.

以上、Xe放電蛍光ランプの定性的な説明をしたが、高
輝度低電圧という目的がら発明者らは、Xe分圧が5T
o r r以下のランプを検討してきた。
The above is a qualitative explanation of the Xe discharge fluorescent lamp, but for the purpose of high brightness and low voltage, the inventors
We have been considering lamps with o r r or less.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

今、仮にXe分圧が5Torr以下の領域を低圧、それ
以上を中圧領域と呼ぶことにする。発明者らは低圧Xe
放電を検討してきたわけであるが、低圧領域には、高輝
度化に対して大きな問題点がイを在することが明らかに
なった。それは、例えば問題を簡単にし、定性的に解説
するために、今100%Xeガスをランプに封入する場
合を考える。実際には、他との混合ガスを用いた方が高
輝度ではあるが。すると、中圧領域のランプは、管電流
の増加に伴い、輝度は上昇してゆくが、低圧領域のラン
プは、ある管電流値を境に、管電流の増加が逆に輝度の
低下を作ってしまい、第3図に示す様に、管電流約70
mAで輝度は最大値をとり、管電流を変化させてもこれ
以上の輝度が出せないという問題点があることがわかっ
た。これは中圧領域のランプにはなかった問題点である
Now, let us assume that a region where the Xe partial pressure is 5 Torr or less will be called a low pressure region, and a region higher than that will be called an intermediate pressure region. The inventors used low-pressure Xe
Although we have been studying discharge, it has become clear that there are major problems in the low-voltage region when it comes to increasing brightness. For example, in order to simplify the problem and explain it qualitatively, let us now consider the case where a lamp is filled with 100% Xe gas. In reality, however, the brightness is higher when mixed gases are used. Then, for lamps in the medium-pressure range, the brightness increases as the tube current increases, but for lamps in the low-pressure range, the increase in tube current conversely causes a decrease in brightness after a certain tube current value. As shown in Figure 3, the tube current is about 70
It was found that there is a problem in that the brightness reaches its maximum value at mA, and even if the tube current is changed, no higher brightness can be achieved. This is a problem that did not exist with lamps in the medium pressure range.

この発明は、上記の問題点を解決するためになされたも
のである。すなわち、中圧領域の様に輝度増加に管電圧
の急激な上昇を仔わず、しかも前記の様に管電流増加に
よる輝度の飽和がない熱陰極形低圧希ガス放電蛍光ラン
プを得ることを目的とする。
This invention has been made to solve the above problems. That is, the objective is to obtain a hot cathode type low-pressure rare gas discharge fluorescent lamp that does not involve a sudden increase in tube voltage when increasing brightness as in the medium pressure region, and also does not saturate brightness due to increased tube current as described above. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

このため、この発明に係る熱陰極形低圧希ガス放電蛍光
ランプは、ガラスバルブ内に少なくとも安定放電状態で
熱陰極として動作する電極を含む一対の主棒を設け、前
記ガラスバルブ内面に蛍光体層を形成し、さらに内部に
発光ガスを封入し、放電によりこの発光ガスが発する放
射で前記蛍光体層を発光させる封入発光ガス分圧が5ト
ル(Torr)以下であり、かつ発光ガスは少なくとも
クリプトン(にr)であることを特徴とする構成によっ
て前記目的を達成しようとするものである。
For this reason, the hot cathode type low pressure rare gas discharge fluorescent lamp according to the present invention is provided with a pair of main rods including electrodes that operate as hot cathodes at least in a stable discharge state in the glass bulb, and a phosphor layer is formed on the inner surface of the glass bulb. A luminescent gas is further sealed inside, and the luminescent gas has a partial pressure of 5 Torr or less, which causes the phosphor layer to emit light with radiation emitted by the luminescent gas during discharge, and the luminescent gas is at least krypton. The above objective is achieved by a configuration characterized by (r).

〔作用〕[Effect]

Xeは、主に147ナノメードル(nm)の真空紫外線
を放射し、これにより蛍光体を励起し発光させていた。
Xe mainly emits vacuum ultraviolet light of 147 nanometers (nm), which excites the phosphor and causes it to emit light.

しかし、ランプを詳細に観察すると、以下の様な現象が
発生していることが推定できる。つまり、低圧領域では
管電流の増加に伴い、147nmの放射は増加するが、
ある程度の管電流値以上では、この147nmの放射は
増加せず飽和し、Xeの赤外域放射にエネルギーが消f
?されてしまい、従って輝度は増加しない。中圧領域で
はこれの飽和がないか、あるいは非常に高い管電流値に
なっているため、管7tt流の増加が147nmの増加
を伴い、輝度の増加を生じていた。
However, when observing the lamp in detail, it can be inferred that the following phenomenon occurs. In other words, in the low pressure region, as the tube current increases, 147 nm radiation increases.
Above a certain tube current value, this 147 nm radiation does not increase but becomes saturated, and the energy disappears in the infrared radiation of Xe.
? Therefore, the brightness does not increase. In the medium pressure region, there is no saturation or the tube current value is very high, so an increase in the tube 7tt flow was accompanied by an increase in wavelength of 147 nm, resulting in an increase in brightness.

発光ガスをにrとすると、+にKr124nmの真空紫
外線で蛍光体を励起するごとになり、この場合もやはり
管電圧の低い低圧領域でランプを作れば、管電流による
124nm真空紫外線放射は飽和していると推定できる
(第4図参照)、ところが、Krは可視域に多くの原子
発光をもっており、管電流の増加によつj24nmの真
空紫外線放射が飽和しても、これら原子発光は飽和しな
い、即ちXsが電流増加による輝度飽和現象を持つのと
は異り、K「では輝度が飽和しない。
If the luminescent gas is nir, each time the phosphor is excited with Kr124nm vacuum ultraviolet rays, in this case as well, if the lamp is made in the low pressure region where the tube voltage is low, the 124nm vacuum ultraviolet radiation due to the tube current will be saturated. However, Kr has a lot of atomic emission in the visible range, and even if the vacuum ultraviolet radiation at 24 nm is saturated by increasing the tube current, these atomic emissions will not be saturated. That is, unlike Xs, which has a brightness saturation phenomenon due to an increase in current, the brightness does not saturate in K'.

即ち、この発明の熱陰極形低圧希ガス放電蛍光ランプで
は、管電流の増加により蛍光体層の発光の増加に、に「
の可視域での原子発光の増加が加わって輝度が増し、更
に、管電流が増して、蛍光体層の発光が飽和状態に近く
なっても、可視域の原子発光は増加し、輝度が増加する
That is, in the hot cathode type low pressure rare gas discharge fluorescent lamp of the present invention, an increase in the tube current causes an increase in the luminescence of the phosphor layer.
The luminance increases due to the increase in atomic luminescence in the visible range, and even if the tube current increases and the luminescence of the phosphor layer approaches saturation, the atomic luminescence in the visible range increases and the luminance increases. do.

〔実施例〕〔Example〕

以下この発明の熱陰極形低圧希ガス放電蛍光ランプを実
施例により説明する。
Hereinafter, the hot cathode type low pressure rare gas discharge fluorescent lamp of the present invention will be explained with reference to Examples.

第1図は、この発明に係る一実施例の熱陰極形低圧希ガ
ス放竜蛍光ランプの部分断面外形図である。
FIG. 1 is a partial cross-sectional outline view of a hot cathode low pressure rare gas fluorescent lamp according to an embodiment of the present invention.

図において、1は管直径が8fflII+のガラスバル
ブである。その内部の2a、2bは一対の電極であり、
電子放射物質を塗布したトリプルフィラメントコイルを
使用し、少なくとも安定放電状態で熱陰極として動作す
る。なお電極管距離は280mmとした。
In the figure, 1 is a glass bulb with a tube diameter of 8fflII+. 2a and 2b inside are a pair of electrodes,
It uses a triple filament coil coated with an electron-emitting material and operates as a hot cathode, at least under stable discharge conditions. Note that the electrode tube distance was 280 mm.

ガラスバルブlの内面には、蛍光体層3が形成しである
。蛍光体は、Y2 S+ Os /Tbで示されるテル
ビウム付活イツトリウムシリケイトを用いである。また
、ガラスバルブlの内部にはに1100%の発光ガス4
が圧力0.ITorrで封入しである。
A phosphor layer 3 is formed on the inner surface of the glass bulb l. The phosphor used is terbium-activated yttrium silicate represented by Y2 S+ Os /Tb. In addition, the inside of the glass bulb l contains 1100% luminescent gas 4.
is pressure 0. Enclosed in ITorr.

次に、この実施例の性能を、この実施例と同一寸法、同
一構造を備え、かつ発光ガスはXe100%、圧力0.
ITorr封入したものと比較して説明する。
Next, we will discuss the performance of this example, which has the same dimensions and structure as this example, and the luminescent gas is 100% Xe, and the pressure is 0.
This will be explained in comparison with the one enclosed in ITorr.

この2種類の蛍光ランプの管電流を変化させて、ミノル
タ社製輝度計を用いランプの中央を測定し輝度を調べる
と第3図の様になった。
When the tube currents of these two types of fluorescent lamps were varied and the brightness was measured at the center of the lamp using a Minolta brightness meter, the results were as shown in Figure 3.

輝度はXe100%%、0.ITorrランプの管電流
70mAの値を100とした相対値で示した。管電流8
0mA程度までは、XelOO%。
Brightness is Xe 100%%, 0. The values are expressed as relative values, with the value of the tube current of 70 mA of the ITorr lamp set as 100. Tube current 8
XelOO% up to about 0mA.

0、ITorrの方が若干輝度は高いものの、それ以上
の管電流値でXeは輝度が低下してゆくのに対し、Kr
100,0.ITorrのランプは、輝度の飽和傾向が
ない。そして、この分光分布を調べてみると、第4図の
様になっていた。
Although the brightness of 0.ITorr is slightly higher, the brightness of Xe decreases at higher tube current values, whereas the brightness of Kr
100,0. ITorr lamps do not tend to saturate in brightness. When we investigated this spectral distribution, we found that it was as shown in Figure 4.

第4図で、実線が管電流30mA、点線が70mA、−
一点3nlLilが110mA(7)時ノモノテアル。
In Figure 4, the solid line is tube current 30mA, the dotted line is 70mA, -
When one point 3nlLil is 110mA (7), it is monotial.

図で斜線の部分は蛍光体の発光で、にrと示したのがK
rの発光である。図でも明らかなとおり、蛍光体の発光
は管TL流70mA程度で飽和しており、110mAに
してもあまり増加していないのに対し、Krの原子発光
557nm、585nmあるいは432nm、447n
m等は管電流の増加とともに発光は増加している。
In the figure, the shaded area is the light emitted by the phosphor, and the letter ``r'' is ``K''.
This is the light emission of r. As is clear from the figure, the luminescence of the phosphor is saturated at a tube TL flow of about 70 mA, and does not increase much even at 110 mA, whereas the atomic luminescence of Kr is 557 nm, 585 nm, 432 nm, 447 nm.
In the case of m, etc., the luminescence increases as the tube current increases.

つまり、Xeの輝度が飽和するのは、蛍光体を励起する
Xeの真空紫外線が飽和するのではないかとMLiI!
Ilでき、ランプ人力の増加がXeの赤外発光となって
しまう様だ。これはにrの方も同様と思われるが、Xe
と異なるのは、Krが可視域に多くのスペクトルを有し
ている点であり、これらの発光は、ランプ人力の増加に
ともない増大する。そこでKrランプは、蛍光体の光出
力が飽和しても、にr I!X子発光発光視域で増加す
るので第3図の様な効果を示すと推定できる。
In other words, the reason why the brightness of Xe becomes saturated is because the vacuum ultraviolet rays of Xe that excite the phosphor become saturated.MLiI!
It seems that the increase in lamp power will cause Xe to emit infrared light. This seems to be the same for Nir, but
The difference is that Kr has many spectra in the visible range, and these emissions increase as the lamp power increases. Therefore, even if the light output of the phosphor is saturated, the Kr lamp is able to maintain the irradiance even when the light output of the phosphor is saturated. Since the X-son emission increases in the emission viewing area, it can be assumed that the effect shown in FIG. 3 is exhibited.

以上は、KrlOO%での実施例で示したが、Krにバ
ッファーガスとしてHe、Ne、Arを入れても効果は
同様であった。
The above was shown in an example using KrlOO%, but the same effect was obtained even if He, Ne, or Ar was added as a buffer gas to Kr.

なお、ガラスバルブの形状は、この実施例では直管形と
したが、これに限定されることなく、環形、U字形その
他の形状であっても差支えない。
Although the shape of the glass bulb is a straight tube in this embodiment, it is not limited to this, and may be annular, U-shaped, or other shapes.

参考としてにriot、30Torrのランプの分光分
布を第5図に示す。図でも明らかな通り、管電流を増加
すれば蛍光体自体の発光が増加しており低圧域とは異っ
た特性な打していた。
For reference, the spectral distribution of a Riot, 30 Torr lamp is shown in FIG. As is clear from the figure, when the tube current was increased, the luminescence of the phosphor itself increased, giving rise to characteristics different from those in the low-pressure region.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、熱陰極形低圧
希ガス放電蛍光ランプの、発光ガスを少なくともクリプ
トン(にr)、その分圧を5トル(Torr)以下とし
たので、管電流を増加させると蛍光体層の発光と、Kr
の可視域での原子発光の増加とが加わって輝度が増す。
As explained above, according to the present invention, the luminescent gas of the hot cathode low pressure rare gas discharge fluorescent lamp is at least krypton, and its partial pressure is 5 Torr or less, so that the tube current can be reduced. When increased, the luminescence of the phosphor layer and Kr
The brightness increases with the addition of increased atomic emission in the visible range.

更に管電流を増して、蛍光体層の発光が飽和状態になっ
てもKrの可視域での原子発光は増加して輝度を増すこ
とができる。しかも、輝度増加による管電圧の急激な上
昇がない。そして点灯電圧が低いので、高圧放電灯に比
して取扱上の問題もない熱陰極形低圧希ガス放電蛍光ラ
ンプを提供することができる。
Furthermore, by increasing the tube current, even if the luminescence of the phosphor layer reaches a saturated state, the atomic luminescence of Kr in the visible range increases and the brightness can be increased. Moreover, there is no sudden increase in tube voltage due to increase in brightness. Since the lighting voltage is low, it is possible to provide a hot cathode type low pressure rare gas discharge fluorescent lamp which is free from handling problems compared to high pressure discharge lamps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例である熱113M1形低
圧希ガス放電蛍光ランプの部分断面外形図、第2図は、
封入ガス100%Xe放電蛍光ランプの特性図、第3図
は、低圧希ガス放電蛍光ランプの特性比較図、第4図は
、本発明のKr100゜0、ITorr放電蛍光ランプ
の分光分布図、第5図は、Kr100%、30Torr
放電蛍光ランプの分光外IiT図である。 1はガラスバルブ、2a、2bは電極、3は蛍光体層、
4は発光ガスである。
FIG. 1 is a partial cross-sectional outline view of a thermal 113M1 type low-pressure rare gas discharge fluorescent lamp, which is an embodiment of the present invention, and FIG.
Figure 3 is a characteristic diagram of a filled gas 100% Xe discharge fluorescent lamp. Figure 4 is a characteristic comparison diagram of a low-pressure rare gas discharge fluorescent lamp. Figure 4 is a spectral distribution diagram of the Kr100°0, ITorr discharge fluorescent lamp of the present invention. Figure 5 shows Kr100%, 30Torr
It is an extra-spectral IiT diagram of a discharge fluorescent lamp. 1 is a glass bulb, 2a and 2b are electrodes, 3 is a phosphor layer,
4 is a luminescent gas.

Claims (1)

【特許請求の範囲】[Claims] ガラスバルブ内に少なくとも安定放電状態で熱陰極とし
て動作する電極を含む一対の電極を設け、前記ガラスバ
ルブ内面に蛍光体層を形成し、さらに内部に発光ガスを
封入し、放電によりこの発光ガスが発する放射で前記蛍
光体層を発光させる封入発光ガス分圧が5トル(Tor
r)以下であり、かつ発光ガスは少なくともクリプトン
(Kr)であることを特徴とする熱陰極形低圧希ガス放
電蛍光ランプ。
A pair of electrodes including an electrode that operates as a hot cathode at least in a stable discharge state is provided in the glass bulb, a phosphor layer is formed on the inner surface of the glass bulb, and a luminescent gas is sealed inside, and the luminescent gas is released by discharge. The partial pressure of the enclosed luminescent gas which causes the phosphor layer to emit light with the emitted radiation is 5 Torr (Tor).
r) or less, and the luminescent gas is at least krypton (Kr).
JP17320789A 1989-06-13 1989-07-05 Hot cathode low pressure rare gas discharge fluorescent lamp Expired - Lifetime JPH0817090B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP17320789A JPH0817090B2 (en) 1989-07-05 1989-07-05 Hot cathode low pressure rare gas discharge fluorescent lamp
KR1019900008489A KR920010666B1 (en) 1989-06-13 1990-06-11 Low pressure rare gas arcing lamp
DE69019597T DE69019597T2 (en) 1989-06-13 1990-06-12 Low pressure noble gas discharge lamp.
EP93110967A EP0570024B1 (en) 1989-06-13 1990-06-12 Low pressure rare gas discharge lamp
DE69032825T DE69032825T2 (en) 1989-06-13 1990-06-12 Low pressure noble gas discharge lamp
EP90111134A EP0402878B1 (en) 1989-06-13 1990-06-12 Low pressure rare gas discharge lamp
US07/538,084 US5187415A (en) 1989-06-13 1990-06-13 Low-pressure rare gas discharge lamp and method for lighting same
KR1019920013015A KR930003837B1 (en) 1989-07-05 1992-07-22 Hot cathode type low pressure rare gas discharge fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17320789A JPH0817090B2 (en) 1989-07-05 1989-07-05 Hot cathode low pressure rare gas discharge fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH0340361A true JPH0340361A (en) 1991-02-21
JPH0817090B2 JPH0817090B2 (en) 1996-02-21

Family

ID=15956102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17320789A Expired - Lifetime JPH0817090B2 (en) 1989-06-13 1989-07-05 Hot cathode low pressure rare gas discharge fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH0817090B2 (en)

Also Published As

Publication number Publication date
JPH0817090B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US4972120A (en) High efficacy electrodeless high intensity discharge lamp
JPH0624116B2 (en) Hot cathode low pressure rare gas discharge fluorescent lamp
JP5137391B2 (en) Dielectric barrier discharge lamp
US2207174A (en) Electric discharge lamp
US4940918A (en) Fluorescent lamp for liquid crystal backlighting
KR860000818B1 (en) A fluorescent lamp
JPS5916707B2 (en) high pressure mercury fluorescent lamp
US4988914A (en) Red fluorescent lamp suitable for reprographic applications
US4099089A (en) Fluorescent lamp utilizing terbium-activated rare earth oxyhalide phosphor material
JPH0340361A (en) Low pressure rare gas discharging fluorescent lamp with hot cathode
KR100944287B1 (en) Fluorescent lamp and method of manufacturing the same
GB2115977A (en) High efficacy fluorescent/arc discharge light source
KR930003837B1 (en) Hot cathode type low pressure rare gas discharge fluorescent lamp
JPH05190152A (en) Fluorescent lamp for display
JP2782794B2 (en) Electrodeless discharge lamp
JP3358361B2 (en) Metal halide lamp
JPH05144412A (en) Fluorescent lamp
EP0577275A1 (en) Fluorescent lamp
US20040135486A1 (en) Highly loaded fluorescent lamp
KR920007132B1 (en) Green light emitting rare gas discharge lamp
JPH0745239A (en) Low pressure mercury vapor discharge lamp and equipment
JPH10241634A (en) Electrodeless fluorescent lamp
JPH05190138A (en) Negative glow discharge lamp in which stability of color tone and lengthening of lifetime are improved
JPH02309553A (en) Electrodeless discharge lamp
KR100731154B1 (en) Electrodeless xenon phosphor lamp

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14