JPS5968142A - Emitter chip for field ionization gas ion source - Google Patents

Emitter chip for field ionization gas ion source

Info

Publication number
JPS5968142A
JPS5968142A JP17735082A JP17735082A JPS5968142A JP S5968142 A JPS5968142 A JP S5968142A JP 17735082 A JP17735082 A JP 17735082A JP 17735082 A JP17735082 A JP 17735082A JP S5968142 A JPS5968142 A JP S5968142A
Authority
JP
Japan
Prior art keywords
tip
emitter chip
work function
emitter
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17735082A
Other languages
Japanese (ja)
Inventor
Hiroshi Arimoto
宏 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17735082A priority Critical patent/JPS5968142A/en
Publication of JPS5968142A publication Critical patent/JPS5968142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain an ion source with high field intensity and high radiation ion current density whose emission site is restricted to a specified area by making the work function of a member which forms a tip larger than that of a member which forms the bottom. CONSTITUTION:A zirconium (Zr) coat 21 is formed by covering the entire of an emitter chip 3 with a metal with the smaller work function than tungsten W that is the material of the emitter chip 3, for example zirconium Zr. In this case, since a tip 11' has exceedingly small curvature as compared with that of the bottom 11, field intensity is increased and the zirconium of this area evaporates due to electric field. At the bottom, the coat 21 is formed as it is. As a result, the work function of the emitter chip is set to the value possessed by tungsten W, i.e. approximately 4.6eV at the tip 11' and on the other hand it is set to the value possesed by zorconium Zr, i.e. approximately 4.1eV at the bottom 11. The ionization of gas particles are collectively generated near the tip 11'.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、電界電離ガスイオン源用エミッタチップに関
する。特に、イオン化が特定の領域のみで発生し放射角
イオン電流密度が大きい電界電離ガスイオン源用エミッ
タチップの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an emitter chip for a field ionized gas ion source. In particular, the present invention relates to an improvement in an emitter chip for a field ionization gas ion source in which ionization occurs only in a specific region and has a large radiation angular ion current density.

(2)技術の背景 イオンヒームエツヂング法、イオンビーム露光法等、イ
オンビームを使用してなす手法におけるイオン源として
は、電界電離ガスイオン源電界放射液体金属イオン源等
が一般的に使用されている。
(2) Background of the technology Field ionization gas ion sources, field emission liquid metal ion sources, etc. are generally used as ion sources in methods using ion beams, such as ion beam etching and ion beam exposure. has been done.

電界電離ガスイオン源とは、イオン化されるカス、例え
ば、水素(j−12) 、ヘリウム(1−1e) 、ア
ルゴン(Ar)等が10−10  じi’orr)程度
の圧力ヲモつ。
A field ionization gas ion source is one in which ionized scum, such as hydrogen (j-12), helium (1-1e), argon (Ar), etc., is at a pressure of about 10-10 i'orr).

て供給される真空容器中に配設された針状電極、すなわ
ち、エミッタチップの先端近傍に1〜3〔■/A〕程度
の高電界を発生させて、この近傍においてガスを電界電
離させ、開口を有する対向電極との間に発生させた静電
界によって、このイオンを上記の開口から放出する装置
であり、第1図の如き基本構造を有する。図において、
1は絶縁体からなる真空容器であり、1′はガスの導入
口であり、2は対向電極であり、直径1  [mm]程
度のイオン放出用開口2′を有する。そして、3はエミ
ッタチップである。
A high electric field of about 1 to 3 [■/A] is generated in the vicinity of the tip of a needle-like electrode, that is, an emitter tip, which is provided in a vacuum container supplied with the gas, and the gas is ionized by the electric field in this vicinity. This device releases these ions from the above-mentioned opening by means of an electrostatic field generated between a counter electrode having an opening, and has a basic structure as shown in FIG. In the figure,
1 is a vacuum container made of an insulator, 1' is a gas inlet, and 2 is a counter electrode, which has an ion ejection opening 2' with a diameter of about 1 mm. 3 is an emitter chip.

かかるイオン源にあっては、輝度が大きいこと、すなわ
ち、放射角イオン電流密度が大きいことが望ましい。放
射角イオン電流密度を増大させるためには、エミツタチ
・ツブ先端に供給さ6るガス分子を増大させるようにエ
ミ・ソタチ・ツブの曲率を太き(し、エミッタチップの
先端にガス分子のイオン化確率が選択的に大きい領域を
形成すればよ00ところで、電界電離ガスイオン源にお
いて、ガス分子がエミッタチップ先端近傍で最もイオン
化されやすい位jyBtにあるときのイオン化確率D 
it次式で与えられる。
For such an ion source, it is desirable that the brightness is high, that is, the radiation angle ion current density is high. In order to increase the radiation angle ion current density, the curvature of the emitter tip should be made thicker to increase the number of gas molecules supplied to the tip of the emitter tip (and the ionization of gas molecules at the tip of the emitter tip should be increased). By the way, in a field ionization gas ion source, the ionization probability D when gas molecules are at the position jyBt where they are most likely to be ionized near the tip of the emitter tip is
It is given by the following equation.

但し、(1)式において、 ■)はカス分子のイオン化確率であり、■はガス分子の
イオン化エネルギーであり、φはエミッタチップの仕事
関数であり、Fはエミッタチップの先端近傍における電
界強度である。
However, in equation (1), ■) is the ionization probability of gas molecules, ■ is the ionization energy of gas molecules, φ is the work function of the emitter tip, and F is the electric field strength near the tip of the emitter tip. be.

上式から明らかなように、イオン化確率りを増加させる
ためには、(イ)イオン化されるガスのイオン化エネル
ギー■が小さいこと、(ロ)エミ・ソタチ・ツブの仕事
関数φが大きいこと、及び、(ハ)電界強度Fが大きい
ことが有効である。一方、放射角イA゛ン電流密度を大
きくして輝度を太き(するため1こはエミッタチップ先
端に供給されるガス分子力く増大するようにエミツタチ
・ツブの曲率を大きくし、エミッションサイトをエミ・
ンタチ・ツブ先端の特定の領域に限定することが望まし
い。
As is clear from the above equation, in order to increase the ionization probability, (a) the ionization energy ■ of the gas to be ionized is small, (b) the Emi-Sotachi-Tsubu work function φ is large, and , (c) It is effective that the electric field strength F is large. On the other hand, in order to increase the current density of the radiation angle A and increase the brightness, one thing is to increase the curvature of the emitter tip so that the force of the gas molecules supplied to the tip of the emitter tip increases, and the emission site Emi
It is desirable to limit the treatment to a specific area at the tip of the tip.

(:3)従来技術と問題点 従来技術においては、上記のエミ・ソションサイトを形
成する方法として、(イ)タングステン(W)等よりな
る針状部材の先端を(100)面となし、コttt−t
、 500K[lC加熱し、同時ニ1 (V/A)程の
電界をかける、いわゆる、表面拡散によって先端を突出
させる方法、及び、(ロ)タングステンへ■等よりなる
針状部材の先端部に窓素(N2) 、酸素(U2) 、
炭’X (C)等をもってコンタミネーションを行ない
、このコンタミネートされた部分のみをエミッションサ
イトとする方法等が使用されてきた。(イ)の方法によ
って得られる構造では、形状の選択に制限があり安定性
、再現性が低い。一方、(ロ)の方法によって得られる
構造は、先端の形状が完全に他律的に決定されるため制
御性、再現性が低下するという欠点を有する。そのため
、エミッションサイトの(ト°シ造の改良の要:;1j
が強まっている。
(:3) Prior art and problems In the prior art, as a method of forming the above-mentioned emi-sosion site, (a) the tip of a needle-like member made of tungsten (W) or the like is made into a (100) plane; cottt-t
, a method of protruding the tip by so-called surface diffusion, heating at 500 K[lC and simultaneously applying an electric field of about 1 (V/A); Window element (N2), oxygen (U2),
A method has been used in which contamination is carried out using Charcoal'X (C) or the like, and only the contaminated area is used as an emission site. In the structure obtained by method (a), the selection of shapes is limited and stability and reproducibility are low. On the other hand, the structure obtained by method (b) has the disadvantage that the shape of the tip is determined completely heteronomously, resulting in poor controllability and reproducibility. Therefore, it is important to improve the emission site's structure: ;1j
is getting stronger.

(4)発明の、目的 本4b明の目的は、この要請に応えることにあり、エミ
ッタチップにおいて全体の曲率が大きく、先端に供給さ
れるガス分子が多(、さらにその最先’ii++の仕1
f関数がそのまわりに比べて大ぎいエミッションサイト
が特定の領域に限定されており、また該エミッションサ
イトにおいては曲率が小さいため電界強度が太き(、放
射角イオン電流密度が大きいイオン源を描成しうる電界
電離ガスイオン源用エミッタチップを提供することにあ
る。
(4) Purpose of the Invention The purpose of the present invention is to meet this demand, and the emitter chip has a large overall curvature, and a large number of gas molecules are supplied to the tip (and furthermore, the end of the 'ii++ specification). 1
The emission site where the f-function is large compared to the surrounding area is limited to a specific region, and the curvature at the emission site is small, so the electric field strength is thick (this describes an ion source with a large radiation angular ion current density). An object of the present invention is to provide an emitter chip for a field ionized gas ion source.

(5)発明の構成 本発明によれば、(イ)先端部をなす部材の仕事関数が
基底部をなす部材の仕事関数より大きいことを1時機と
する、電界電離ガスイオン源用エミッタチップが提供さ
れ、また上記(イ)の構成において、前記先端)51;
をなす部材はタングステン(W)またはイリジウム(I
r)であり、前記羞底部をなす部材はジルコニウム(Z
r)またはバリウム(L3a)である電界電離カスイオ
ン源用エミッタデツプが提供される。
(5) Structure of the Invention According to the present invention, (a) there is provided an emitter chip for a field ionization gas ion source in which the work function of the member forming the tip portion is larger than the work function of the member forming the base portion; and in the configuration of (a) above, the tip) 51;
The material that makes up is tungsten (W) or iridium (I
r), and the member forming the bottom portion is made of zirconium (Z
An emitter dip for a field ionized gas ion source is provided, which is barium (L3a) or barium (L3a).

前記け)式において、エミッタチップの仕事関数φが太
きいと、イオン化確率J)は大きくなるが、逆に仕事関
数φが小さいとイオン1ヒ確率りは小さくなる。すなわ
ち、エミッタチップ先端のエミッションサイトとなすべ
き領域以外の領域の仕事関数φを小さくなせば、それら
の領域ではイオン化確率が小さくなり、イオン化がほと
んと′起こらr、イオン化はエミッンヨンサイトで集中
して起こるため、放射角イオン電流密度が増加するとい
うことが予想される。本発明は、この着想にもとづいて
なされたものであり、エミッタチップとしてタン、ゲス
テン(−V)、イリジウム(Ir)等の剣状部材を防用
し、まず従来の表面拡散法を(重用して先端部を突出さ
せ、その全面にジルコニウム(Zr) 。
In the above equation, when the work function φ of the emitter tip is large, the ionization probability J) becomes large, but conversely, when the work function φ is small, the ion 1-hi probability J) becomes small. In other words, if the work function φ of the region other than the region that should be the emission site at the tip of the emitter tip is made smaller, the ionization probability will be smaller in those regions, ionization will hardly occur, and ionization will be concentrated at the emission site. Therefore, it is expected that the radiation angle ion current density will increase. The present invention was made based on this idea, and first, a sword-shaped member made of tan, Gesten (-V), iridium (Ir), etc. was used as the emitter chip, and the conventional surface diffusion method (heavily used) was first applied. The tip is made to protrude, and the entire surface is coated with zirconium (Zr).

バリウム(13a)等上記タングステンい■)、イリジ
ウム(Ir )等よりも仕事関数の小さい金属で被覆し
、さらに電界魚元法を使用して、基底部のコ一部材を残
し先端の突出部、すなわち、エミッションサイトのみの
被留材を除去Vる。このようにして形成されたエミッシ
ョンサイトは、放射角イオン電流密度の増大に有効に寄
与する。
It is coated with a metal having a smaller work function than the above-mentioned tungsten (1), iridium (Ir), etc., such as barium (13a), and then using the electric field method, the protrusion at the tip is formed, leaving only one core member at the base. That is, the retained material only at the emission site is removed. The emission sites thus formed effectively contribute to increasing the radiation angular ion current density.

また、被覆相であるジルコニウム(Zr) 、バリウム
(1,33)等は、電界蒸妬された後、エミッタチップ
表面に単原子層として残留すると、仕事関数は更に小さ
くなり、選択的イオン化が更に促進される。
Furthermore, if the coating phase, such as zirconium (Zr) or barium (1,33), remains as a monoatomic layer on the surface of the emitter chip after being subjected to electric field vaporization, the work function becomes even smaller, and selective ionization becomes even more difficult. promoted.

(6)発明の実施例 以下図面を参照しつつ、本発明の一実施例に係る電界電
離ガスイオン源用エミッタテップについ工説明し、本発
明の構成と特有の効果とを明らかにする。
(6) Embodiments of the Invention Referring to the drawings, an emitter tip for a field ionized gas ion source according to an embodiment of the present invention will be explained below to clarify the structure and unique effects of the present invention.

一例として、エミッタチップ用針状部材としてタングス
テン(W)、被覆材としてジルコニウム(Z[)を使用
した場合の1ミツシヨンサイトの形成方法について述べ
る。
As an example, a method for forming one mission site will be described when tungsten (W) is used as the emitter chip needle member and zirconium (Z[) is used as the coating material.

第2図参照 jI径1.00 (l+m)程度のタングステン(W)
よりなる針状部4゛411の一端を電解研磨することに
より先端の曲率半径を2.000 (A)程度となし、
更にその先!1んの結晶面を(100)面となし、真空
中で1、500 (K、]程度に加熱し同時に11:V
/A)程電界をかけ表面拡散させるごとによりエミッシ
ョンサイトとなすべき突出した先端部11’を形成する
Refer to Figure 2 j Tungsten (W) with diameter of about 1.00 (l+m)
By electrolytically polishing one end of the needle-like part 4 411, the radius of curvature of the tip is about 2.000 (A),
Even beyond that! The crystal plane of 1mm is set as the (100) plane, heated to about 1,500 (K) in vacuum, and at the same time heated to 11:V.
/A) Each time an electric field is applied and the surface is diffused, a protruding tip 11' which is to be an emission site is formed.

第3図参照 上記エミッタチップの材料であるタングステン(W)よ
り小さい仕事関数を有する金属、例えばジルコニウム(
Zr)を、エミッタチップの全体に被覆し、ジルコニウ
ム(Zr )被膜21を形成する。
See Figure 3 Metals with a smaller work function than tungsten (W), which is the material of the emitter tip, such as zirconium (
Zr) is coated over the entire emitter chip to form a zirconium (Zr) coating 21.

この工程は真空蒸着法を使用するか、または、ジルコニ
ウム(Zr)の溶融液にエミッタチップを浸漬すること
により実行できる。
This step can be performed using a vacuum evaporation method or by dipping the emitter tip into a zirconium (Zr) melt.

第4図参照 電界蒸兜法を使用して、先端部11′に形成されタシル
コニウム(Zr)被膜21を除去する。このとき、タン
グステン(W)の蒸9j=TIi界はジルコニウム(Z
r)の蒸発電界よりも大きいため、タングステン(’W
 )は除去されず、ジルコニウム(Zr)のみが選択的
に除去される。
Referring to FIG. 4, the electric field vaporization method is used to remove the Zr coating 21 formed on the tip 11'. At this time, the vapor 9j=TIi field of tungsten (W) is zirconium (Z
r) is larger than the evaporation electric field of tungsten ('W
) is not removed, but only zirconium (Zr) is selectively removed.

このとき、先端部11′は基底部IJに比して曲率が非
常に小さいため、電界強度が大きくなりこの領域のジル
コニウム(Zr)が電界蒸発する。このため先端部11
’のジルコニウム(Zr )被覆2tが完全に除去され
ても、基底部では、1戊然として被覆21が形成された
状態にある。したがって、エミッタチップの仕事関数は
、先端部11′においてはタングステン(、W )の有
する値、すなわち4.1eV)程度となり、一方、基底
部11ではジルコニウム(Zr)の有する値、すなわち
4.1(eV)程度となり、ガス分子のイオン化は先端
部11′近傍で集中的に発生し、放射角イオン電流密度
が増大する。
At this time, since the tip portion 11' has a very small curvature compared to the base portion IJ, the electric field strength increases and zirconium (Zr) in this region is evaporated by the electric field. Therefore, the tip 11
Even if the zirconium (Zr) coating 2t is completely removed, the coating 21 remains completely formed at the base. Therefore, the work function of the emitter tip is approximately 4.1 eV, which is the value of tungsten (, W ) at the tip 11', and 4.1 eV, which is the value of zirconium (Zr) at the base 11. (eV), ionization of gas molecules occurs intensively near the tip 11', and the radiation angular ion current density increases.

サラニ、基底部11での残留ジルコニウム(7,r)被
膜の厚さが極めて薄くなり、極端な場合では、単原子層
となると、仕事関数はさらに小さく、2.7(e V)
程度まで低減されるため、更に効果的である。
When the thickness of the residual zirconium (7,r) film at the base 11 becomes extremely thin, and in extreme cases becomes a monolayer, the work function becomes even smaller, 2.7 (e V).
It is even more effective.

また、エミッタチップ用部材としては、上記のタングス
テン(W’)の他に、仕事関数力5.3 rev)程度
であるイリジウム(Ir)等、さらに肢覆材としては上
記のジルコニウム(Zr)の池に仕事関数が2.5  
[eV:l程度であるバリウム(13a)等も使用する
ことができ、同様の効果を得る己とができる。
In addition to the above-mentioned tungsten (W'), materials for the emitter tip include iridium (Ir), which has a work function power of about 5.3 rev), and zirconium (Zr) as the limb covering material. The work function of the pond is 2.5.
[Barium (13a), which has a voltage of about eV:l, can also be used to obtain the same effect.

エミッタチップを上記せる植造七なVことにより、エミ
ッションサ−f l−ではその幾何学的形状にもとづき
電界強度が大きくなり、さらに他の領域では仕事関数の
差にもとづきガス分子のイオン化確率が小さくなり、エ
ミッションサイトでの集中的なイオン化が助長されてお
り、この両方の侃能の相采効果をもって、放射角イオン
電流密度が大きい、エミッタチ・ツブが拠土見できる。
Due to the height of the emitter tip, the electric field strength increases in the emission sensor due to its geometrical shape, and the ionization probability of gas molecules increases in other regions due to the difference in work function. As a result, intensive ionization at the emission site is promoted, and the combined effect of both of these capabilities makes it possible to see an emitter tube with a large radiation angular ion current density.

(7)発明の効果 以′−上説明せるとおり、本発明によれば、エミッタチ
ップのエミッションサイトが特定の領域に限定されてお
り、電界強度が太き(よつ”C放射イオン直流密度が大
きいイオン源を溝成しうる電界電離ガスイオン源用エミ
ッタチップを提供することができる。
(7) Effects of the Invention As explained above, according to the present invention, the emission site of the emitter chip is limited to a specific area, and the electric field strength is large (i.e., the direct current density of C emitted ions is high). It is possible to provide an emitter chip for a field ionization gas ion source that can form a large ion source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電界電離ガスイオン源の基本構造の一例を示す
概念図であり、第211乃至第4ν1は、本発明の−t
k、施例に係る電界電離ガスイオン源用エミッタチップ
のエミッションサイトの形成方法における主要工程完了
後のエミッタチップ売場部分の断面図である。 J・・・・・・真空容器、1′・・・・・・ガス34人
口、2・・・・・・対向電極、2′・・・・・・対向型
部に設けられたイオン放出用開口、3・・・・・・エミ
ッタチップ、11・・・・・・エミッタチップ先端の基
底部、11′・・・・・・エミッタチップのエミッショ
ンサイトとなる先端部、21・・・・・・Zrによりコ
ートされた領域。 一2弼−
FIG. 1 is a conceptual diagram showing an example of the basic structure of a field ionization gas ion source, and 211th to 4ν1 are -t
k is a sectional view of the emitter chip sales area after completion of the main steps in the method for forming an emission site of an emitter chip for a field ionized gas ion source according to an example; J... Vacuum container, 1'... Gas 34 population, 2... Counter electrode, 2'... For ion emission provided in the opposing mold part. Opening, 3...Emitter chip, 11...Base of the tip of the emitter chip, 11'...Tip that becomes the emission site of the emitter chip, 21... - Area coated with Zr. 12-

Claims (2)

【特許請求の範囲】[Claims] (1)先端部をなす部材の仕事関数が基底部をなす部材
の仕事関数より大きいことを特徴とする、電界電離ガス
イオン源用エミッタチップ。
(1) An emitter chip for a field ionization gas ion source, characterized in that the work function of the member forming the tip is larger than the work function of the member forming the base.
(2)前記先端部をなす部材はタングステンまたはイリ
ジウムであり、前記基底部をなす部材はシリコニウムま
たはバリウムである、特許請求の範囲第1項記載の電界
電離ガスイオン源用エミッタチップ。
(2) The emitter chip for a field ionization gas ion source according to claim 1, wherein the member forming the tip portion is tungsten or iridium, and the member forming the base portion is silicone or barium.
JP17735082A 1982-10-08 1982-10-08 Emitter chip for field ionization gas ion source Pending JPS5968142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17735082A JPS5968142A (en) 1982-10-08 1982-10-08 Emitter chip for field ionization gas ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17735082A JPS5968142A (en) 1982-10-08 1982-10-08 Emitter chip for field ionization gas ion source

Publications (1)

Publication Number Publication Date
JPS5968142A true JPS5968142A (en) 1984-04-18

Family

ID=16029426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17735082A Pending JPS5968142A (en) 1982-10-08 1982-10-08 Emitter chip for field ionization gas ion source

Country Status (1)

Country Link
JP (1) JPS5968142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255147A (en) * 1988-04-02 1989-10-12 Kokuritsu Kogai Kenkyusho Ionizing method for high pressure mass analysis
JP2011514637A (en) * 2008-03-03 2011-05-06 カール ツァイス エヌティーエス エルエルシー Gas field ion source with a coated tip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255147A (en) * 1988-04-02 1989-10-12 Kokuritsu Kogai Kenkyusho Ionizing method for high pressure mass analysis
JP2011514637A (en) * 2008-03-03 2011-05-06 カール ツァイス エヌティーエス エルエルシー Gas field ion source with a coated tip
TWI474362B (en) * 2008-03-03 2015-02-21 Carl Zeiss Microscopy Llc Gas field ion source with coated tip

Similar Documents

Publication Publication Date Title
JP2742750B2 (en) Field emission electron emitter and method of forming the same
EP0732720A1 (en) Cathode, electron beam emission apparatus using the same, and method of manufacturing the cathode
US6465797B2 (en) Electron beam illumination apparatus, electron beam exposure apparatus, and device manufacturing method
TW409292B (en) Thin film forming apparatus
JPS5968142A (en) Emitter chip for field ionization gas ion source
JPH0828190B2 (en) Ion beam device
JPS5968143A (en) Emitter chip for field ionization gas ion source
JP2020153821A (en) Sample support, sample support manufacturing method, ionization method, and mass spectrometry
WO2022130764A1 (en) Sample support, ionization method, and mass spectrometry method
JPS584423B2 (en) ion gun
JP3397616B2 (en) Thermal field emission electron gun and method of manufacturing emitter for thermal field emission electron gun
JPS60100421A (en) Ion beam device
JPH0451438A (en) Electron beam exposure device and method
JP2637948B2 (en) Beam plasma type ion gun
JPS63288017A (en) Formation of fine pattern
JPS63200435A (en) Ion beam generator
KR20080100158A (en) Electron gun, electron beam exposure apparatus and exposure method
JPS5960952A (en) Electron gun for electron-beam exposure device
JPS59130056A (en) Proton beam illuminating source
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
JPS60146438A (en) Ion beam generation device
KR20230072780A (en) Emitter tip and Manufacturing method thereof
JPH09263933A (en) Mechanism of crucible part in vapor deposition device
JP2020165809A (en) Sample support
JPS6085515A (en) Manufacture of semiconductor device