JPS596789A - Drive device for induction motor - Google Patents

Drive device for induction motor

Info

Publication number
JPS596789A
JPS596789A JP57111599A JP11159982A JPS596789A JP S596789 A JPS596789 A JP S596789A JP 57111599 A JP57111599 A JP 57111599A JP 11159982 A JP11159982 A JP 11159982A JP S596789 A JPS596789 A JP S596789A
Authority
JP
Japan
Prior art keywords
current
command
magnetic flux
primary current
slip frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57111599A
Other languages
Japanese (ja)
Inventor
Akira Nanbae
難波江 章
Yasubumi Akagi
泰文 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK, Toyo Electric Manufacturing Ltd filed Critical Toyo Denki Seizo KK
Priority to JP57111599A priority Critical patent/JPS596789A/en
Publication of JPS596789A publication Critical patent/JPS596789A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • H02P21/09Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To maintain magnetic flux constant even at transient time by calculating a slip frequency command from a magnetic flux current command and a primary current amplitude detected value under slip frequency control system vector control, thereby controlling the primary current frequency. CONSTITUTION:An induction motor 5 is driven by a converter 2 and an inverter 4, a magnetic flux current command Iphi, and a torque current command IT are inputted to an arithmetic circuit 10, which outputs the primary current amplitude command I1S, which is subtracted by the signal from a current detector 6, thereby controlling the converter 2. On the other hand, the command Iphi and the signal from a current detector 6 are inputted to arithmetic circuits 20, 21, thereby obtaining a slip frequency command fS1, and a transient slip frequency command fS2, which are added by the signal from a speed detector 7, thereby controlling the inverter 4. Accordingly, the detected current value is inputted to the arithmetic circuits 20, 21, thereby maintaining the magnetic flux constant even if a delay exists in the primary current amplitude control system, and obtaining preferable controlling performance.

Description

【発明の詳細な説明】 誘導電動機の高速応制御方式として、磁束とトルクを独
立に制御するベクトル制御が広く行われている・ベクト
ル制御tc bいては、誘導電動機の1次電流を磁束と
平行する磁束電流と直交するトルク電流とに分離して考
え、この両者を独立に制御することが基礎となっている
。実施にあたっては、磁束の方向を知ることがポイント
となるが、これには電動機本体に取り付けた磁束検出器
や、1次電流、電圧等の諸電気量から求める直接法と、
1次電流振幅と周波数の関係から間接的に求める間接法
とがある◇後者はすべり周波数制御方式ベクトル制御と
してよく知られており、本発明はこの方式の改良に関す
るものであり、以下図面に基づいて本発明の内容を詳細
に説明する〇第1図は従来から行われているすべり周波
数制御方式ベクトル制御の一例のブロック図である・1
は交流電源入力端であり、2はこの交流電圧を直流に変
換するコンバータで、コンバータ制御回路16からの信
号により直流出力電圧を制御する。
[Detailed Description of the Invention] As a high-speed response control method for induction motors, vector control, which controls magnetic flux and torque independently, is widely practiced. The basic concept is to consider the magnetic flux current that is generated separately and the torque current that is orthogonal to each other, and to control both independently. In implementation, the key is to know the direction of the magnetic flux, and this can be done by using a magnetic flux detector attached to the motor body or by the direct method, which is determined from various electrical quantities such as primary current and voltage.
There is an indirect method that calculates indirectly from the relationship between the primary current amplitude and frequency ◇ The latter is well known as slip frequency control method vector control, and the present invention relates to an improvement of this method, and the following is based on the drawings. The contents of the present invention will be explained in detail below.〇Figure 1 is a block diagram of an example of vector control using the conventional slip frequency control method.・1
2 is an AC power input terminal, and 2 is a converter that converts this AC voltage into DC, and the DC output voltage is controlled by a signal from the converter control circuit 16.

4は直流電流を交流に変換するインバータで、インバー
タ制御回路19からの信号により交流出力電流の周波数
を制御する。コンバータ2の出力は直流リアクトル3を
経てインバータ4に4力1れており、インバータ4の出
力は制御対象となる誘導電動機5に接続される。直流リ
アクトル3は誘導電動機1次電流の脈動成分を低減させ
るOCれらのコンバータ2.直流リアクトル3.インバ
ータ4.コンバータ制御回路16詔よびインバータ制御
回路19は電流形インバータ装置としてよく知られたも
のである。
Reference numeral 4 denotes an inverter that converts direct current to alternating current, and controls the frequency of the alternating current output current by a signal from the inverter control circuit 19. The output of the converter 2 is sent to an inverter 4 via a DC reactor 3, and the output of the inverter 4 is connected to an induction motor 5 to be controlled. A DC reactor 3 is connected to an OC converter 2 which reduces the pulsating component of the induction motor primary current. DC reactor 3. Inverter 4. Converter control circuit 16 and inverter control circuit 19 are well known as current source inverter devices.

6は電流検出器で、電流検出回路13と共に誘導電動機
5の1次電流振幅工!を検出する。誘導電動機5に機械
的に接続されたパルス発生器7は、速度検出回路17と
共に誘導電動機5の回転周波数fmを検出する。
6 is a current detector, which together with the current detection circuit 13 controls the primary current amplitude of the induction motor 5! Detect. A pulse generator 7 mechanically connected to the induction motor 5 detects the rotation frequency fm of the induction motor 5 together with a speed detection circuit 17 .

8は磁束電流指令■φの入力端、9はトルク電流指令I
Tの入力端で、磁束電流指令■φ、トルク電流指令IT
は共に演算回路10 、11および12へ送られ、各演
算回路はそれぞれ1次電流振幅指令■18.すべり周波
数指令fj1および過渡すべり周波数指令fsmを算出
する。
8 is the input terminal of the magnetic flux current command ■φ, 9 is the torque current command I
At the input terminal of T, magnetic flux current command ■φ, torque current command IT
are both sent to arithmetic circuits 10, 11, and 12, and each arithmetic circuit receives the primary current amplitude command ■18. A slip frequency command fj1 and a transient slip frequency command fsm are calculated.

減算器14は1次電流振幅指令11sから電流検出回路
13により検出した1次電流振幅11を減算してその出
力を電流制御回路15に送り、電流制御回路15出力に
よってコンバータ制御回路16が動作して、1次電流振
幅Ifの検出値が1次電流振幅指令Itsと一致するよ
う制御される。
The subtracter 14 subtracts the primary current amplitude 11 detected by the current detection circuit 13 from the primary current amplitude command 11s and sends the output to the current control circuit 15, and the converter control circuit 16 is operated by the current control circuit 15 output. Thus, the detected value of the primary current amplitude If is controlled to match the primary current amplitude command Its.

加算器18はすべり周波数指令fat、過渡すべり周波
数指令fi11および速度検出回路17により検出した
回転周波afMを加算し、1次電流周波数指令flを発
生してインバータ制御回路19を制御する。
Adder 18 adds slip frequency command fat, transient slip frequency command fi11, and rotational frequency afM detected by speed detection circuit 17 to generate primary current frequency command fl to control inverter control circuit 19.

以上のごとく構成された従来装置の動作はよく知られて
いるので詳述することは避けるが、演算回路10 、1
1および12においてはそれぞれ磁束電流指令Iφとト
ルク電流指令ITとから、次式によって1次電流振幅指
令118 tすべり周波数指令flllおよび過渡すべ
り周波数指令fsmの演算を行っている。
The operation of the conventional device configured as described above is well known and will not be described in detail, but the arithmetic circuits 10, 1
1 and 12, a primary current amplitude command 118t slip frequency command fllll and a transient slip frequency command fsm are calculated from the magnetic flux current command Iφ and torque current command IT using the following equations, respectively.

Il、= FT■   ・・・・・・・・・・・・(1
)但しT2は誘導電動機2次時定数 第1図に示した従来装置は、比較的簡単な回路5 構成にて高性能なベクトル制御を実現できるため、広く
行われているものであるが、次のような欠点を有してい
る。すなわち、加算器18における1次電流周波数指令
fIの演算や、この結果に基づくインバータ制御回路1
9によるインバータ4の周波数の制御はほとんど時間的
な遅れなく行われるのに対し、直流リアクトル3による
振幅変化の遅れや、コンバータ2における位相制御のむ
だ時間遅れなどにより、1次電流振幅Isの制御は1次
電流振幅指令118に対して時間遅れを生じる〇従って
、過渡時には所定の磁束電流指令Iφおよびトルク電流
指令ITを発生して1次電流振幅指令118および1次
電流周波数指令flを指令していながら、実際の1次電
流振幅工1は指令と異なったものとなるため、実際の磁
束やトルクも指令とは異なったものとなり、両者の独立
性が失なわれ、磁束変化に起因する振動現象が生じたり
する。
Il, = FT■ ・・・・・・・・・・・・(1
) However, T2 is the secondary time constant of the induction motor. It has the following drawbacks. That is, the calculation of the primary current frequency command fI in the adder 18 and the inverter control circuit 1 based on this result.
9 controls the frequency of the inverter 4 with almost no time delay, whereas the primary current amplitude Is is controlled due to a delay in the amplitude change caused by the DC reactor 3, a dead time delay in phase control in the converter 2, etc. causes a time delay with respect to the primary current amplitude command 118. Therefore, during a transient period, a predetermined magnetic flux current command Iφ and torque current command IT are generated to command the primary current amplitude command 118 and the primary current frequency command fl. However, since the actual primary current amplitude 1 is different from the command, the actual magnetic flux and torque are also different from the command, and the independence of the two is lost, causing vibrations caused by magnetic flux changes. A phenomenon may occur.

この現象を以下数式的に検討してみる。前記の+11 
、 (2) 、 (3)式により算出した1次電流振幅
指令118*すべり周波数指令rst 、過渡すべり周
波数指令f3意に対して、実際の各位が過渡時も含めて
これらの指令と等しく制御されておれば、実際の磁束電
流(IQとする)とトルク電流(■讐とする)も磁束電
流指令Iφ、トルク電流指令ITの各指令値と等しくな
るoしかし、すべり周波数と過渡すべり周波数は指令値
どおりに制御されたとしても、前述の制御遅れのために
1次電流振幅■1は過渡時の1次電流振幅指令Issと
は異なったものとなる0この時の磁束電流I−とトルク
電流■ルは、(1)式のIl8を工1として次の各式を
満足する値となる。
Let us consider this phenomenon mathematically below. +11 above
, (2) , (3) For the primary current amplitude command 118*slip frequency command rst and transient slip frequency command f3 calculated using equations 118 and 3, each actual component is controlled equally to these commands, including during transient times. If so, the actual magnetic flux current (IQ) and torque current (IQ) will also be equal to the magnetic flux current command Iφ and torque current command IT. However, the slip frequency and transient slip frequency are Even if the control is performed according to the value, the primary current amplitude ■1 will be different from the primary current amplitude command Iss during the transient period due to the control delay described above.0 At this time, the magnetic flux current I- and the torque current (2) L is a value that satisfies each of the following equations, with I18 in equation (1) being 1.

11=65m    ・・・・・・・・・・・・(4)
(2) 、 (5)式あるいは(3) 、 (6)式よ
りとなり、(t) 、’(4)式より となることがわ力)る。
11=65m ・・・・・・・・・・・・(4)
From equations (2) and (5) or equations (3) and (6), it follows that (t) and (4).

同様に、o+ 、 (4) 、 (7)式よりとなる。Similarly, o+ is obtained from equations (4) and (7).

(81、(9)式から明らかなように、1次電流振幅1
1が1次電流振幅指令IIBと異なると、その比の割合
で磁束電流I−,)ルク電流鋳も磁束電流指令■φ、ト
ルク電流指令ITと異なったものとなる。
(81, as is clear from equation (9), the primary current amplitude 1
1 differs from the primary current amplitude command IIB, the magnetic flux current I-, ) torque current also differs from the magnetic flux current command ■φ and the torque current command IT by the ratio.

誘導電動機は磁束電流I2を流す巻線とトルク電流工i
を流す巻線とを別個に有しているのではなく、同じ一次
巻線より画成分電流を供給し、トルク電流エラは電磁誘
導で1次巻線力)ら2次巻線に供給している0従って、
連応性を要求されるベクトル制御では、トルクを制御す
る過渡時にも磁束を一定に保ってトルクに比例するトル
ク電流のみを変化させ、磁束の変化に伴う電磁的な相干
渉のないようにするのが望ましいが、第1図の装置では
前述のように磁束電流指令Iφを一定にしておいても実
際の磁束電流I;は変動するため磁束一定とはならず、
2次時定数に起因するトルクの振動現象等の悪影響があ
る。
An induction motor has a winding that carries a magnetic flux current I2 and a torque current I
Instead of having a separate winding that flows the current, the component current is supplied from the same primary winding, and the torque current error is supplied from the primary winding force by electromagnetic induction to the secondary winding. There is 0 Therefore,
In vector control, which requires coordination, the magnetic flux is kept constant even during torque control transients, and only the torque current proportional to the torque is changed to avoid electromagnetic phase interference due to changes in magnetic flux. However, in the device shown in FIG. 1, even if the magnetic flux current command Iφ is kept constant as described above, the actual magnetic flux current I; fluctuates, so the magnetic flux is not constant.
There are adverse effects such as torque vibration phenomena caused by the second-order time constant.

本発明はこのような欠点を排除し、簡単でより高性能な
すべり周波数制御方式ベクトル制御を実現すべくなされ
たもので、過渡時においてt磁束一定を保ち、良好な制
御特性を得ることを可能としたものである〇 第2図は本発明に力1かる改良ベクトル制御の一実施例
のブロック図であり、第1図と同一の符号は同一部分を
示し、すべり周波数指令fs1および過渡すべり周波数
指令fs!を演算するための演算回路20および21の
部分が第1図と異なる以外はすべて同一である◎すなわ
ち、第1図の演算回路11および12に入力されていた
トルク電流指令ITに代えて、第2図の演算回路20お
よび21には1次電流9 娠幅工1の検出値が入力されており、次式の演算を行っ
ている。
The present invention has been made to eliminate these drawbacks and realize a simple and higher-performance slip frequency control method vector control, which makes it possible to maintain t magnetic flux constant during transients and obtain good control characteristics. Figure 2 is a block diagram of an embodiment of the improved vector control using force 1 according to the present invention. Command fs! The calculation circuits 20 and 21 for calculating are all the same as those in FIG. The detected value of the primary current 9 and the width width 1 is input to the calculation circuits 20 and 21 in FIG. 2, and the following calculation is performed.

この場合の実際の磁束電流I2とトルク電流坪を考えて
みるとs II e I讐は(4)式を満足すると共に
、(5)、α1式のflllを等しいと置いた次式が成
立する。
Considering the actual magnetic flux current I2 and torque current tsubo in this case, s II e I s satisfies equation (4), and the following equation holds true, setting flll in equation (5) and α1 to be equal. .

(4)、04式より ・”、 I’φ=Iφ        ・・・・・・・
・曲a1が成立する。
(4), From formula 04・”, I'φ=Iφ ・・・・・・・・・
- Song a1 is established.

同様に、(t) 、 (41、(ta式よりIO となる。Similarly, (t), (41, (ta formula, IO becomes.

a3.α4式から明らかなように、第2図装置ではトル
ク電流科はトルク電流指令ITとは異なるものの、磁束
電流■−はトルク電流指令工φと等しく磁束一定が保た
れる・ また、(6)式を(4) 、 (11式を用いて変形し
ていくととなり、19式と等しく、演算回路21の妥当
性が証明される。
a3. As is clear from the α4 equation, in the device shown in Figure 2, although the torque current is different from the torque current command IT, the magnetic flux current - is equal to the torque current command φ, and the magnetic flux is kept constant. Also, (6) When formula (4) is transformed using formula (11), it becomes equal to formula 19, which proves the validity of the arithmetic circuit 21.

以上詳細に説明したごとく、本発明にかかる第2図装置
のベクトル制御では、1次電流振幅制御系に遅れのある
場合でも磁束一定が保たれ、ベクトル制御の本質である
磁束とトルクの独立制御性が失なわれず、良好な制御性
能を得ることができる。
As explained in detail above, in the vector control of the apparatus shown in FIG. 2 according to the present invention, the magnetic flux is kept constant even when there is a delay in the primary current amplitude control system, and the independent control of magnetic flux and torque is the essence of vector control. Good control performance can be obtained without loss of properties.

また、第2図の実施例では演算回路20 、21の入力
信号となる1次電流振幅■!を、電動機の入力電患 流より検する場合を示したが、インバータの入出力電流
間には一定の関係があるので、インバータの入力側で検
出し、これを演算回路の一方の入力信号として利用して
もよい。
Moreover, in the embodiment shown in FIG. 2, the primary current amplitude ■! which becomes the input signal of the arithmetic circuits 20 and 21! is detected from the input current of the motor, but since there is a certain relationship between the input and output currents of the inverter, it is detected at the input side of the inverter, and this is used as one input signal of the arithmetic circuit. You may use it.

なお、以上の説明は電流形インバータを実施例として用
いたが、電流形インバータに限らず、サイクロコンバー
タや電流制御形のパルス幅変調を行った電圧形インバー
タなど誘導電動機の1次電流振幅と周波数を制御できる
ものであれば、他の電力変換器にも同様化適用でき、ま
た、演算回路10 、20 、21なども独立したもの
である必要はなく、マイクロコンビ五−夕のごとく同一
のハードウェアで各種の演算を行うものであってもよい
ことは言うまでもない。
Note that although the above explanation uses a current source inverter as an example, it is not limited to current source inverters, but also applies to the primary current amplitude and frequency of induction motors such as cycloconverters and voltage source inverters that perform current control type pulse width modulation. As long as it can be controlled, it can be similarly applied to other power converters, and the arithmetic circuits 10, 20, 21, etc. do not need to be independent, but can be implemented using the same hardware as the microcombi Goto. Needless to say, the software may be used to perform various calculations.

【図面の簡単な説明】[Brief explanation of the drawing]

\J′ 第1図は従来から行われているすべり周波数制御方式ベ
クトル制御の一例のブロック図、第2図は本発明1こ力
1かる改良ベクトル制御の一実施例のブロック図である
。 1・・・・・・交流電源入力端、2・・・・・・コンバ
ータ、3・・・・・直流リアクトル、4・・・・・イン
バータ、5・・・・・・誘導電動機、6・・・・・・電
流検出器、7・・・・・・パルス発生器、8・・・・・
・磁束電流指令入力端、9・・・・・・トルク電流指令
入力端、10 、11 、12 、20 、21・・・
・・・演算回路、13・・・・・・電流検出回路、14
・・・・・・減算器、15・・・・・・電流制御回路、
16・・・・・・コンバータ制御回路、17・・・・・
・速度検出回路、18・・・・・・加算器、19・・・
・・・インバータ制御回路□ 第 1 日 82 口
\J' Fig. 1 is a block diagram of an example of conventional vector control based on slip frequency control, and Fig. 2 is a block diagram of an embodiment of improved vector control according to the present invention. 1...AC power input terminal, 2...Converter, 3...DC reactor, 4...Inverter, 5...Induction motor, 6... ...Current detector, 7...Pulse generator, 8...
- Magnetic flux current command input terminal, 9...Torque current command input terminal, 10, 11, 12, 20, 21...
... Arithmetic circuit, 13 ... Current detection circuit, 14
...subtractor, 15...current control circuit,
16...Converter control circuit, 17...
・Speed detection circuit, 18... Adder, 19...
...Inverter control circuit □ Day 1 82

Claims (1)

【特許請求の範囲】[Claims] 誘導電動機の1次電流を2次鎖交磁束発生に寄与する磁
束電流とトルク発生に寄与するトルク電流の2成分に分
離し独立に制御するにあたり、磁束電流指令とトルク電
流指令から1次電流の振幅指令を算出して1次電流振幅
を帰還制御すると共に、磁束電流指令と1次電流振幅の
検出値とからすべり周波数指令を算出し、該算出信号に
速度検出回路より検出した回転周波数を加算して1次電
流周波数を制御することを特徴とする誘導電動機駆動装
置。
In order to separate the primary current of an induction motor into two components, a magnetic flux current that contributes to secondary flux linkage generation and a torque current that contributes to torque generation, and to control them independently, the primary current is calculated from the magnetic flux current command and the torque current command. Calculate the amplitude command and feedback control the primary current amplitude, calculate the slip frequency command from the magnetic flux current command and the detected value of the primary current amplitude, and add the rotation frequency detected by the speed detection circuit to the calculated signal. An induction motor drive device characterized in that the primary current frequency is controlled by:
JP57111599A 1982-06-30 1982-06-30 Drive device for induction motor Pending JPS596789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111599A JPS596789A (en) 1982-06-30 1982-06-30 Drive device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111599A JPS596789A (en) 1982-06-30 1982-06-30 Drive device for induction motor

Publications (1)

Publication Number Publication Date
JPS596789A true JPS596789A (en) 1984-01-13

Family

ID=14565435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111599A Pending JPS596789A (en) 1982-06-30 1982-06-30 Drive device for induction motor

Country Status (1)

Country Link
JP (1) JPS596789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162480A (en) * 1986-12-24 1988-07-06 小形 正美 Method of preventing thermal deformation of thin plastic vessel at time of filling and heating
JPH05124686A (en) * 1991-04-30 1993-05-21 Frisco Findus Ag Food packing material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175915A (en) * 1974-11-20 1976-06-30 Gen Electric
JPS5791688A (en) * 1980-11-25 1982-06-07 Yaskawa Electric Mfg Co Ltd Vector control apparatus for induction motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175915A (en) * 1974-11-20 1976-06-30 Gen Electric
JPS5791688A (en) * 1980-11-25 1982-06-07 Yaskawa Electric Mfg Co Ltd Vector control apparatus for induction motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162480A (en) * 1986-12-24 1988-07-06 小形 正美 Method of preventing thermal deformation of thin plastic vessel at time of filling and heating
JPH05124686A (en) * 1991-04-30 1993-05-21 Frisco Findus Ag Food packing material

Similar Documents

Publication Publication Date Title
US6229719B1 (en) Method of inverter control and apparatus of the same
EP0629038B1 (en) AC motor control
JPH03128691A (en) Voltage type pwm converter-inverter system and control system thereof
JP4889329B2 (en) Control device for voltage source inverter
JP2585376B2 (en) Control method of induction motor
JP4230793B2 (en) Power converter
JPS596789A (en) Drive device for induction motor
JP2001204196A (en) Variable speed driving system of ac motor
JPH089697A (en) Vector control apparatus of induction motor
KR0181399B1 (en) Unbalancing source voltage control apparatus of voltage type pwm converter and its method
GB1584286A (en) Method of controlling the motor current in convertor-supplied three-phase motors
JP3302854B2 (en) Induction motor control device
JPS6355313B2 (en)
JP2946157B2 (en) Induction motor speed control device
JPH03135389A (en) Method and device for controlling voltage type inverter
JPS6330236Y2 (en)
SU1108597A2 (en) Electric drive with asynchronous phase-wound rotor motor
JPH0343862B2 (en)
KR0167170B1 (en) Vibration restraint equipment for linear elevator
JPH0552154B2 (en)
JP2792025B2 (en) Vector controller for induction motor
JPS6115582A (en) Controlling method of induction motor
JPH07123360B2 (en) Induction motor vector controller
JPH06105580A (en) Method and apparatus for estimating speed of inverter device motor and vector controller of motor using the same method
JPS6332032B2 (en)