JPS59674A - Laser doppler speedometer - Google Patents

Laser doppler speedometer

Info

Publication number
JPS59674A
JPS59674A JP10978182A JP10978182A JPS59674A JP S59674 A JPS59674 A JP S59674A JP 10978182 A JP10978182 A JP 10978182A JP 10978182 A JP10978182 A JP 10978182A JP S59674 A JPS59674 A JP S59674A
Authority
JP
Japan
Prior art keywords
light
measured
optical
signal
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10978182A
Other languages
Japanese (ja)
Inventor
Koji Morishita
森下 耕次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP10978182A priority Critical patent/JPS59674A/en
Publication of JPS59674A publication Critical patent/JPS59674A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To improve measurement precision and to remove the evil influence of the surface condition of an object to be measured, by irradiating the object with a wide parallel light beam and converging and detecting scattered light from wide area, and measuring the speed. CONSTITUTION:Coherent light from a laser device 1 is collimated by a collimator lens system 2 into the wide parallel beam, which illuminates the object 13 of measurement. Reflected and scattered light 14 from the object 13 is transmitted through a half-mirror 3 and convered to a focal plane 15. Light beams incident to input terminals 5a and 5b are inputted to and multiplexed by a photocoupler 7, whose output is inputted to a photodetector 8 to perform heterodyne detection. The signal from the photodetector 9 is passed through a signal analyzing device 10 and multiplied by a specific constant at an output device 11 to generate a signal corresponding to the movement speed of the object 13. Thus, the measurement precision is improved and the evil influence of the surfac condition of the object to be measured is removed.

Description

【発明の詳細な説明】 本発明は、移動中の物体にコヒーレントな光をあて、そ
の散乱光のドツプラーシフトを検知することによって物
体の速度を検出するレーザドッグ(従来技術とその問題
点) 従剰、レーザドツプラ速度計としてはレーザ光を物体に
照射して物体上に干渉稿を形成し、この干渉稿を観察す
ることによって速度を計測するもの、およびレーザビー
ムを集束して物体に照射し物体からの反射光を検出する
ことにより物体の移動速度を検出するものが知られ,、
ている。
Detailed Description of the Invention The present invention provides a laser dog (prior art and its problems) that detects the speed of an object by shining coherent light onto a moving object and detecting the Doppler shift of the scattered light. Conventional laser Doppler velocimeters include those that irradiate an object with a laser beam to form an interference pattern on the object and measure the speed by observing this interference pattern, and those that measure the speed by focusing a laser beam and irradiating it onto the object. There are known devices that detect the moving speed of an object by detecting the reflected light from the object.
ing.

しかしながら、前記従来形においては、前者の方法は使
用する光学系の精度を極めて高くする必要があるととも
に、計測対象物の位置特に光軸方向の位置が変動する場
合には計測精度が低下するという不都合があった。また
、後者の方法にあっては、計測対象物上にレーザビーム
を所定範囲外に反射してしまうような凹凸あるいは反射
率の低い影の部分がある場合は計測中に速度を計測する
ための信号が得られない期間が生ずる等の不都合があっ
た。
However, in the conventional method, the accuracy of the optical system used must be extremely high, and the measurement accuracy decreases when the position of the object to be measured, especially in the optical axis direction, changes. There was an inconvenience. In addition, in the latter method, if there are irregularities on the measurement target that reflect the laser beam outside the specified range or shadow areas with low reflectance, it is necessary to There were disadvantages such as a period during which no signal could be obtained.

(発明の目的) 本発明の目的は、前述の従来形における問題点敷物から
の散乱光を集光するレンズの焦点面上に2つの光導波手
段を設け、これらの光導波手段の出力を混合してヘテロ
ダイン検波するという構想に基づき、速度計と計測対象
物との間の距離の変動によって計測精度が低下すること
を防止し、かつ計測対象物の表面状態による悪影響を除
去することにある。
(Object of the Invention) The object of the present invention is to provide two optical waveguides on the focal plane of a lens that condenses the scattered light from the rug, and to mix the outputs of these optical waveguides. Based on the concept of heterodyne detection, the objective is to prevent measurement accuracy from decreasing due to variations in the distance between the speedometer and the object to be measured, and to eliminate the adverse effects of the surface condition of the object to be measured.

以下図面により本発明の詳細な説明する。添付の図面は
、本発明の1実施例に係わるレーザドツプラ速度計の概
略の構成を示す。同図の速度計は、コヒーレントな光を
発生する光源としてのレーザ装置1、レーザ装置1から
の光を幅広の平行光線にするためのコリメータレンズ系
2、ハーフミラ−3、レンズ4、光ファイバ等によって
構成される光導波路5および6、各光導波路5および↓ 6らの光を混合して他の光導波路8に送出する光結合器
7、光導波路8からの光を光電変換する受光器9、例え
ばスにクトラムアナライザのような信号解析装置10お
よび出力装置11を具備する。
The present invention will be explained in detail below with reference to the drawings. The accompanying drawings schematically show the structure of a laser Doppler velocimeter according to an embodiment of the present invention. The speedometer shown in the figure includes a laser device 1 as a light source that generates coherent light, a collimator lens system 2 for converting the light from the laser device 1 into a wide parallel beam, a half mirror 3, a lens 4, an optical fiber, etc. optical waveguides 5 and 6, an optical coupler 7 that mixes the light from each optical waveguide 5 and 6 and sends it to another optical waveguide 8, and a light receiver 9 that photoelectrically converts the light from the optical waveguide 8. , for example, a signal analysis device 10 such as a spectrum analyzer, and an output device 11.

各光導波路5および6の入力端5aおよび6aはレン、
ズ4の焦点面すなわちフーリエ変換面15上に光軸12
に対して対称の位置に取り付けられている。また、計測
対象物13は例えば紙あるいは鉄板等であり、レンズ4
の光軸12に対して一定角度例えば直角方向に移動する
ようにされる。
The input ends 5a and 6a of each optical waveguide 5 and 6 are lenses,
The optical axis 12 is located on the focal plane of the lens 4, that is, the Fourier transform plane 15.
installed in a symmetrical position. Further, the measurement object 13 is, for example, paper or an iron plate, and the lens 4
The optical axis 12 of the optical axis 12 is moved at a constant angle, for example, in a perpendicular direction.

上述の構成において、レーザ装置1からのコヒーレント
な光はコリメータレンズ系2によって幅広の平行光線に
変換され、ハーフミラ−3によって反射されて計測対象
物13に照射される。計測対象物13からの反射散乱光
14はハーフミラ−3を透過しレンズ4によって焦点面
15上に集束される。この場合、計測対象物13からの
散乱光のうち光軸12に対して同一角度で反射される光
即ち平行な光線はすべて焦点面15上の1点に集束され
る。従って、各光導波路5および6の入力端5aおよび
6aにはそれぞれ計測対象物13からそれぞれ相異なる
一定角度で反射されてきた散乱光が集束される。また、
各入力端5aおよび6aに入射される光は計測対象物1
3の移動によるドツプラーシフトを受けその周波数が変
化する。このドツプラーシフトによる周波数変化は計測
対象物13からの散乱光が光軸12となす角度をθとし
、計測対象物13の移動速度をτとするとIJs石θに
比例する。従って、各入力端5aおよび6aの位置を固
定しておくことによって、計測対象物13からこれらの
入力端5aおよび6aに入力される散乱光の光軸12に
対する角度は一定となるから、これらの各入力端5aお
よび6aに入力される光のドツプラーシフト量は計測対
象物13の速度υに比例する。各入力端5aおよび6a
に入射されたこのような光は各々光導波路5および6を
介して光結合器7に入力され混合された後、他の光導波
路8を介して受光器9に入力される。受光器9において
は、例えばフォトダイオード等によって入力された光を
2乗検波して電気信号に変換するとともに、この入力光
を構成するわずかに波長の異なるコヒーレントな光をヘ
テロダイン検波する。
In the above configuration, coherent light from the laser device 1 is converted into a wide parallel light beam by the collimator lens system 2, reflected by the half mirror 3, and irradiated onto the measurement object 13. Reflected and scattered light 14 from the measurement object 13 passes through the half mirror 3 and is focused onto the focal plane 15 by the lens 4. In this case, all of the scattered light from the measurement object 13 that is reflected at the same angle with respect to the optical axis 12, that is, parallel light rays, is focused on one point on the focal plane 15. Therefore, the scattered light reflected from the measurement object 13 at different fixed angles is focused on the input ends 5a and 6a of the optical waveguides 5 and 6, respectively. Also,
The light incident on each input end 5a and 6a is the measurement target 1.
The frequency changes due to the Doppler shift caused by the movement of 3. The frequency change due to this Doppler shift is proportional to the IJs value θ, where θ is the angle that the scattered light from the measurement object 13 makes with the optical axis 12, and τ is the moving speed of the measurement object 13. Therefore, by fixing the positions of the input ends 5a and 6a, the angle of the scattered light input from the measurement object 13 to the input ends 5a and 6a with respect to the optical axis 12 becomes constant. The amount of Doppler shift of the light input to each input terminal 5a and 6a is proportional to the speed υ of the measurement object 13. Each input end 5a and 6a
These lights incident on the optical waveguides 5 and 6 are input to the optical coupler 7 and mixed, and then input to the optical receiver 9 via the other optical waveguide 8. The light receiver 9 performs square law detection of the light inputted by, for example, a photodiode or the like and converts it into an electrical signal, and also performs heterodyne detection of coherent light having slightly different wavelengths, which constitutes the input light.

受光器9からの信号は信号解析装置10に入力されて焦
点面15上の各入力端5aおよび6aに入力された光の
周波数差に対応する信号に変換され、この信号は出力装
置11において所定の定数が掛算されることによって計
測対象物13の移動速度υに対応する信号とされる。
The signal from the light receiver 9 is input to the signal analyzer 10 and converted into a signal corresponding to the frequency difference of the light input to each input end 5a and 6a on the focal plane 15. By multiplying by the constant , a signal corresponding to the moving speed υ of the measurement object 13 is obtained.

次に、上述のレーザドツプラ速度計の動作を数式を用い
て説明する。添付の図面に示すように、焦点面15の平
面座標を座標軸Xおよびyによって表わし、計測対象物
13の面を座標軸ξおよびηによって表わす。また、レ
ンズ4の焦点距離を2とし、数式の簡略化のため計測対
象物13がレンズ4の前方の焦点位置にあると仮定する
。このとき、計測対象物13の表面における散乱光の振
幅をA(ξ、η;t)とすると焦点面の振幅U(x、y
:t)は、で表わされる。ここでωX、ωyはそれぞれ
X方向。
Next, the operation of the above-described laser Doppler velocimeter will be explained using mathematical formulas. As shown in the accompanying drawings, the plane coordinates of the focal plane 15 are represented by coordinate axes X and y, and the plane of the measurement object 13 is represented by coordinate axes ξ and η. Further, it is assumed that the focal length of the lens 4 is 2, and that the measurement object 13 is at the focal position in front of the lens 4 to simplify the formula. At this time, if the amplitude of the scattered light on the surface of the measurement object 13 is A (ξ, η; t), then the amplitude of the focal plane U (x, y
:t) is represented by. Here, ωX and ωy are respectively in the X direction.

X方向の空間周波数を表わし である。またλは光の波長、2はレンズの焦点距離を表
わす。X軸上に光軸からX6だけはなれた点に第lの光
導波路を置く。ファイバの径は散乱光の範囲に比べて充
分小さいと考えられるからこの開口関数をディラックの
δ関数でδ(x x6 +y )とおくと、導波路内に
導かれる光振幅■I(Xo、t)は、V、 (XO、t
) = // U(x、y:t)δ(x−xo、y)d
xdy=: U(XOIO:t)        ’・
・・・・(3)となる。同様に第1の導波路と光軸に対
して対称に置かれる第2の導波路内に導ひかれる光振幅
v2 (xQ + L )は、 ■2(XOIt) −N U(x、y:t)δ(x+x
(1+ y)dxdy= U(−x@ 、 0 : t
 )       ・・・・・・(4)となる。vI+
V2を光結合器で合波すると合成振幅5(xO,t)は 5(x(1,t)  = U(xo、O:t)+U(x
o、0at)    ・+・・・+  (5)と表わさ
れる。(5)式に(1)式を代入しSを求めると、ωx
(1=2πx(1/λ2とおいて、を得る。光検出器で
検知できるのは光強度I=lS12であるから、■を求
めると、 と書ける。ここでA(ξ、η;t)として次の形を考え
る。
It represents the spatial frequency in the X direction. Further, λ represents the wavelength of light, and 2 represents the focal length of the lens. The l-th optical waveguide is placed on the X-axis at a point separated by X6 from the optical axis. Since the diameter of the fiber is considered to be sufficiently small compared to the range of scattered light, if this aperture function is set as δ(x x6 +y) by Dirac's δ function, the amplitude of the light guided into the waveguide ■ ) is V, (XO, t
) = // U(x,y:t)δ(x-xo,y)d
xdy=: U(XOIO:t)'・
...(3). Similarly, the amplitude of light guided into the first waveguide and the second waveguide placed symmetrically with respect to the optical axis v2 (xQ + L) is: 2(XOIt) −N U(x, y: t) δ(x+x
(1+y)dxdy=U(-x@, 0: t
) ...(4). vI+
When V2 is combined with an optical coupler, the combined amplitude 5 (xO, t) is 5 (x (1, t) = U (xo, O: t) + U (x
o, 0at) ・+...+ (5) Substituting equation (1) into equation (5) to find S, we get ωx
(Set as 1=2πx(1/λ2) to obtain.Since the light intensity that can be detected by the photodetector is I=lS12, if we calculate ■, we can write: Here, as A(ξ, η; t) Consider the following shape.

A(ξ、η:t) = A(ξ−υt、η)     
   ・・・・・(8)これはA(ξ、η)という・母
ターンが速度゛τでξ方向に形を変化させずに移動して
いることを示す。よって(8)式を(7)式に代入して
、 となる。ここで*はたたみ込み積分を表す。またA、は
Aをη方向に積分したもので一般的に有限な関数と考え
てよい。■を時間についてフーリエ変換し、その周波数
特性を調べてみる。たたみ込み定理を使って1 、i’CI)=匹X−ωXoυt ) *A1 (v 
を月2〕となる。ここでA1はA1の複素共役を表す。
A(ξ, η:t) = A(ξ−υt, η)
...(8) This shows that the mother turn A(ξ, η) is moving at a speed ゛τ in the ξ direction without changing its shape. Therefore, by substituting equation (8) into equation (7), we obtain the following. Here * represents convolution integral. Further, A is the integral of A in the η direction, and can be generally considered to be a finite function. Let's perform a Fourier transform on (2) in terms of time and examine its frequency characteristics. Using the convolution theorem, 1, i'CI) = individuals X-ωXoυt) *A1 (v
month 2]. Here, A1 represents the complex conjugate of A1.

また1〔・・・〕はフーリエ変換を表す。また、り〔c
llls(ωx(Ivt):)=2 (δ(fo−πυ
)+δげ0+−iV月 ・(1υであ’) 、7 CA
+(?7t)l)=4(fo )とおけば(1t)式は
1    ωXQ 1〔I〕ミAf)−戸フ14(2,9月2(〔δ(f−
丁)+δ(f+パν)〕*〔δ(f−ジV)+δ(f十
巳ひV)刀2π       2π l    ωXQ 2万p14(779月・(2δ(f)+δCfo−、’
+7)+δ(/+、、j)となる。(12式において大
カッコ(・・・)の前の項は定数であり、犬カッコ(・
・・)内の第1項は0周波数すなわち直流分を意味する
。第2項、第3項から光信号■は周波数ωX6τ/πに
鋭いピークを持つことがわかる。そして、この周波数f
を検知すれば速度τは、 として求めることかで−きる。
Also, 1 [...] represents Fourier transform. Also, Ri [c
lls(ωx(Ivt):)=2 (δ(fo−πυ
)+δage0+-iV month ・(1υde'), 7 CA
+(?7t)l)=4(fo), then equation (1t) becomes 1 ω
Ding) + δ (f + Pa ν)] * [δ (f - DiV) + δ (f Tomihi V) Katana 2π 2π l ωXQ 20,000 p14 (779 months・(2δ(f) + δCfo-,
+7)+δ(/+,,j). (In formula 12, the term before the brackets (...) is a constant, and the term before the brackets (...) is a constant.
The first term in ) means 0 frequency, that is, the DC component. It can be seen from the second and third terms that the optical signal (2) has a sharp peak at the frequency ωX6τ/π. And this frequency f
If it is detected, the speed τ can be calculated as .

以上の解析は物体がレンズの焦点面上にある場合につい
て行なったが、それ以外の位置でも振幅段階で位相項が
付くだけで強度は変化しないと思われる。ゆえにこの光
学系で速度を検知することができる。
The above analysis was performed when the object was on the focal plane of the lens, but it is thought that the intensity does not change even at other positions, only a phase term is added at the amplitude stage. Therefore, speed can be detected with this optical system.

なお、上述においては、信号解析装置10としてス被り
トラムアナライザを用いたが、信号解析装置lOはこれ
に限ることなく例えばドラッキングフィルタ等を用いて
周波数ピークを検出することも可能であり、また、入力
信号の周期等を測定する装置を用いることも可能である
In addition, in the above description, a spread tram analyzer is used as the signal analysis device 10, but the signal analysis device 10 is not limited to this, and it is also possible to detect frequency peaks using, for example, a dragging filter. It is also possible to use a device that measures the period, etc. of an input signal.

このように、本発明によれば、計測対象物に幅広の平行
光線を照射し、広い面積からの散乱光を集束検出して速
度を計測するから、速度計と計測対象物との間の距離が
変動しても計測精度が低下することなく、また計測対象
物における表面の凹凸、あるいは反射率の変化があって
も計測信号が遮断されることがなく的確に速度の計測が
行なうことができる。
As described above, according to the present invention, since the speed is measured by irradiating the object to be measured with a wide parallel beam of light and converging and detecting the scattered light from a wide area, the distance between the speedometer and the object to be measured is The speed can be accurately measured without decreasing the measurement accuracy even if the speed changes, and the measurement signal will not be interrupted even if the surface of the object to be measured is uneven or the reflectance changes. .

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面は本発明の1実施例に係わるレーザドツプラ
速度計の構成を示す概略図である。 l・・レーザ装置、2・・・コリメータレンズ系、3・
・・ハーフミラ−14・・・レンズ、5,6.8・・・
光導波路、7・・光結合器、9・・受光器、10・・信
号解析装置、11・・出力装置、12・・光軸、13・
・・計測対象物、14・・散乱光、15・・焦点面。 特許出願人 立石電機株式会社 代理人  弁理士 伊 東 辰 雄 〃  弁理士伊東哲也 手続補正書 昭和57年10月29日 特許庁長官 若 杉 和 夫 殿 1事件の表示 昭和57年特許願第109781号 2、発明の名称 レーザドツプラ速度計 3補正をする者 事件との関係  特許出願人 居所 京都府京都市右京区花園土堂町10番地名称 (
294)立石電機株式会社 代表者 立 石 孝 雄 4代理人〒105 住所 東京都港区虎ノ門二丁目8番1号5補正命令の日
付  自発補正 6補正の対象 明細書中、「発明の詳細な説明の欄」 7、補正の内容 ぞれ訂正する。 (2)  同書、第9頁0り式中の11fo”および同
頁第12行の°′イげ。)″ を、それぞれ「f」、「
9!L(f)」に訂正する。 (3)  同書、同頁0a式を下式のように訂正する。 「
The accompanying drawings are schematic diagrams showing the configuration of a laser Doppler velocimeter according to one embodiment of the present invention. l... Laser device, 2... Collimator lens system, 3...
・・Half mirror 14・・Lens, 5, 6.8・・・
Optical waveguide, 7... Optical coupler, 9... Light receiver, 10... Signal analyzer, 11... Output device, 12... Optical axis, 13...
...Measurement object, 14. Scattered light, 15. Focal plane. Patent Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Tatsuo Ito Patent Attorney Tetsuya Ito Procedural Amendment October 29, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi Indication of Case 1 Patent Application No. 109781 of 1982 2. Name of the invention Relationship to the Laser Doppler speedometer 3 correction case Patent applicant residence 10 Hanazono Tsuchido-cho, Ukyo-ku, Kyoto-shi, Kyoto Name (
294) Tateishi Electric Co., Ltd. Representative Takao Tateishi 4 Agent 105 Address 2-8-1 Toranomon, Minato-ku, Tokyo 5 Date of amendment order Voluntary amendment 6 In the specification subject to amendment, "Detailed description of the invention" Column 7. Correct each amendment. (2) In the same book, p. 9, 11fo" in the formula and line 12 of the same page, "f" and "
9! Corrected to "L(f)". (3) Correct the formula 0a on the same page in the same book as shown below. "

Claims (1)

【特許請求の範囲】[Claims] :+ヒL/ント光源と、このコヒーレント光源からの出
射光を広げ計測対象物に平行に入射させる光学系と、前
記計測対象物からの散乱光を集光するレンズと、その人
力端が前記レンズの焦点面に光軸に対して対称に取り付
けられた2つの光導波手段と、この2つの光導波手段の
出力を混合してヘテロダイン検波する受光装置とこの受
光装置からの光信号を周波数解析し、その周波数棟たは
周期を測定する信号解析装置を備えたことを特徴とする
レーザドツプラ速度計。
:+HiL/int light source, an optical system that spreads the light emitted from this coherent light source and makes it incident parallel to the object to be measured, a lens that condenses the scattered light from the object to be measured, and the manual end of the Two optical waveguides are attached to the focal plane of the lens symmetrically with respect to the optical axis, a light receiving device performs heterodyne detection by mixing the outputs of these two optical waveguides, and frequency analysis is performed on the optical signal from this light receiving device. A laser Doppler speedometer characterized by being equipped with a signal analysis device for measuring the frequency ridge or period.
JP10978182A 1982-06-28 1982-06-28 Laser doppler speedometer Pending JPS59674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10978182A JPS59674A (en) 1982-06-28 1982-06-28 Laser doppler speedometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10978182A JPS59674A (en) 1982-06-28 1982-06-28 Laser doppler speedometer

Publications (1)

Publication Number Publication Date
JPS59674A true JPS59674A (en) 1984-01-05

Family

ID=14519056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10978182A Pending JPS59674A (en) 1982-06-28 1982-06-28 Laser doppler speedometer

Country Status (1)

Country Link
JP (1) JPS59674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195464A (en) * 2004-01-07 2005-07-21 Sharp Corp Optical movement information detecting device and electronic apparatus provided therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195464A (en) * 2004-01-07 2005-07-21 Sharp Corp Optical movement information detecting device and electronic apparatus provided therewith
US7317538B2 (en) 2004-01-07 2008-01-08 Sharp Kabushiki Kaisha Optical two-dimensional velocity and/or movement detector

Similar Documents

Publication Publication Date Title
US9995761B2 (en) Method for simultaneous observation of three degrees of vibrational freedom using single heterodyne beam
JP2504544B2 (en) Multidimensional laser Doppler velocimeter
DE19823951C2 (en) Focus sensor for high energy lasers
US4139304A (en) Methods and apparatus for measuring variations in distance to a surface
JPH0374763B2 (en)
JPS58182524A (en) System for detecting change in light frequency
JPH09119815A (en) Method and device for measuring film thickness
CN105333815A (en) Super lateral resolution surface three-dimensional online interference measuring system based on spectral dispersion line scanning
GB2297838A (en) Interferometer
JP2732849B2 (en) Interferometer
US4263002A (en) Differential doppler technique for on-axis backscatter measurements
US4725136A (en) Method for measuring particle velocity using differential photodiode arrays
JPS59674A (en) Laser doppler speedometer
Joyeux et al. Real time measurement of angström order transverse displacement or vibrations, by use of laser speckle
CN114295203A (en) Vortex intensity measuring device and method for vortex light beam
JP2997765B2 (en) High sensitivity space positioning method
JP2873962B1 (en) Heterodyne interferometry of white light
EP0307451A1 (en) Apparatus and method for locating the direction of an atomic beam.
JPS639877A (en) Three-dimensional measuring method
RU2108585C1 (en) Method of velocity vector laser measurement
EP0105163A1 (en) Electro-optical velocity measuring system
JPS61247903A (en) Two-dimensional displacement and speed measuring instrument utilizing laser speckle
RU2085843C1 (en) Optical roughness indicator
JPS6316232A (en) Measuring method for diameter of laser beam
JPH01313703A (en) Disturbance elimination type heterodyne interference method optical fiber sensor