JPS5967469A - Method for measuring dielectric characteristics and dc resistance of cable - Google Patents

Method for measuring dielectric characteristics and dc resistance of cable

Info

Publication number
JPS5967469A
JPS5967469A JP57177842A JP17784282A JPS5967469A JP S5967469 A JPS5967469 A JP S5967469A JP 57177842 A JP57177842 A JP 57177842A JP 17784282 A JP17784282 A JP 17784282A JP S5967469 A JPS5967469 A JP S5967469A
Authority
JP
Japan
Prior art keywords
cable
electrode
high voltage
resistance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57177842A
Other languages
Japanese (ja)
Inventor
Hideyuki Nozawa
野沢 英行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57177842A priority Critical patent/JPS5967469A/en
Publication of JPS5967469A publication Critical patent/JPS5967469A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To remove the current flowed into a measuring electrode from a high voltage electrode through a cable end part to make it possible to accurately judge whether a cable is deteriorated or not, by cooling the cable end part. CONSTITUTION:The conductor 1 provided to the terminal end of a cable to be measured is used as a high voltage electrode while the metal sheath of the cable is used as a measuring electrode and an earthed leak current collecting electrode 11 is provided in order to remove a leak current flowed into the measuring electrode from the voltage electrode through the surface of the cable end part when voltage is applied to the high voltage electrode to measure the dielectric characteristics and the DC resistance of the cable. In this case, the cable end part is cooled by a cooling medium pipe 12 to reduce the leak current flowed into the measuring electrode from the high voltage electrode through the inner side of the cable end part.

Description

【発明の詳細な説明】 本発明はケーブルの誘電特性および直流抵抗測定方法に
係り、特に漏れ電流の影響をほとんど受けないようにす
るのに好適な誘電特性および直流抵抗測定方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the dielectric properties and direct current resistance of a cable, and more particularly to a method for measuring the dielectric properties and direct current resistance of a cable so as to be hardly affected by leakage current.

ケーブルの劣化の有無を調べる方法の中の非破壊の方法
の1つに誘電特性および直流抵抗を測定する方法がある
。ケーブルの劣化が進行するにともない、誘電圧接は犬
きくなシ、直流抵抗は小さくなる。したがって、誘電特
性と直流抵抗を追跡して行けば、ケーブルの劣化の程度
および残存寿命を推定することが可能である。この試験
は1通常モデルケーブルあるいは短尺のケーブルにて実
施されており、その試料の形状は、ケーブルの端末部に
スリットを切り、ガード電極と測定電極とを分離して、
端末の沿面を通して尚圧覗極から測定電極へ流入する電
流を除去できる形状としである。
One of the non-destructive methods for examining whether a cable has deteriorated is a method of measuring dielectric properties and direct current resistance. As the cable deteriorates, the dielectric voltage connection becomes weaker and the DC resistance becomes smaller. Therefore, by tracking the dielectric properties and DC resistance, it is possible to estimate the degree of deterioration and remaining life of the cable. This test is conducted using a normal model cable or a short cable, and the shape of the sample is such that a slit is cut at the end of the cable to separate the guard electrode and the measurement electrode.
The shape is such that the current flowing from the pressure viewing electrode to the measurement electrode through the creeping surface of the terminal can be removed.

しかし、実線路に用いられているケーブルの劣化の有無
の確認は、OFケーブルの場合は、含浸油中のガスのガ
ス分析等の補助的方法もあるが、通常はある線路からサ
ンプリングして各独特性を調査することによって行われ
ている。この従来性われている方法では、ケーブルを撤
去した後、新たなケーブルを再度引き込まなければなら
ず、多くの費用、労力を要するとともに、直接的方法で
ないため、信頼性の而で問題がある。
However, in order to confirm the presence or absence of deterioration in cables used on actual lines, in the case of OF cables, there are auxiliary methods such as gas analysis of gas in impregnated oil, but usually samples are taken from a certain line. This is done by investigating unique characteristics. In this conventional method, a new cable must be re-introduced after removing the cable, which requires a lot of cost and labor, and since it is not a direct method, there are problems with reliability.

実線路においても、短尺試料同様スリットを切り、測定
電極とガート電極とを分離することが原理的に可能であ
るが、サージ電圧がケーブル系統に侵入した場合、との
ス(ノット部で放電が生じ、ス)ノット部が絶縁不良に
なってし捷う。また、侵入サージ電圧により放電を起さ
ない程度の絶縁をスリット部に施すと、その部分で電界
の乱れを生じ、絶縁上好丑しくない。したがって、実系
統においては、劣化の追跡ができないのが現状であった
It is theoretically possible to cut a slit on an actual line and separate the measurement electrode from the guard electrode, as in the case of a short sample, but if a surge voltage enters the cable system, it is possible This causes poor insulation at the knot and causes it to break. Furthermore, if the slit portion is provided with insulation to a degree that does not cause discharge due to the intruding surge voltage, the electric field will be disturbed at that portion, which is not good in terms of insulation. Therefore, in actual systems, it is currently impossible to track deterioration.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、漏れ電流の影響をほとんど皆無にでき、実系
統において適時ケーブルの劣化の有無を正確に判定する
ことができるケーブルの誘電特性および直流抵抗測定方
法を提供することにある。
The present invention has been made in view of the above, and its purpose is to have dielectric properties of a cable that can almost eliminate the influence of leakage current and accurately determine whether or not the cable has deteriorated in a timely manner in an actual system. and to provide a DC resistance measurement method.

本発明の特徴は、高圧電極から測定電極にケーブル端部
の内面を通して流入する電流を除去するため、上記ケー
ブル端部を冷却するようにした点にある。
A feature of the present invention is that the cable end is cooled to remove the current flowing from the high voltage electrode to the measuring electrode through the inner surface of the cable end.

以下本発明の方法の一実施例を図を用いて詳細に説明す
る。
An embodiment of the method of the present invention will be described in detail below with reference to the drawings.

図は本発明の方法の一実施例を説明するだめのケーブル
端末部分の断面図である。図において、1はケーブル導
体、2は絶縁体、6は絶縁油、4は端末補強紙、5はベ
ルマウス、6はケーブル金属シース7と電気的に接触し
ているスズメッキ銅線、8は碍子、9は下部金具、10
は上部金具、11は碍子外表面漏れ電流捕捉電極、12
は冷媒管、16は冷媒管12を断熱している断熱材、1
4はケーブル導体1に接続された高圧電極課電線、15
は金属/−スフと電気的に接続された下部金具9に接続
された測定電極リード線、16は漏れ電流捕捉電極11
に接続された漏れ電流接地線である。
The figure is a sectional view of a cable terminal portion for explaining an embodiment of the method of the present invention. In the figure, 1 is a cable conductor, 2 is an insulator, 6 is an insulating oil, 4 is a terminal reinforcing paper, 5 is a bell mouth, 6 is a tin-plated copper wire that is in electrical contact with the cable metal sheath 7, and 8 is an insulator. , 9 is the lower metal fitting, 10
11 is the upper metal fitting, 11 is the insulator outer surface leakage current capturing electrode, 12
1 is a refrigerant pipe; 16 is a heat insulating material insulating the refrigerant pipe 12;
4 is a high-voltage electrode power line connected to cable conductor 1, 15
16 is a measurement electrode lead wire connected to the lower metal fitting 9 which is electrically connected to the metal/splash, and 16 is a leakage current capture electrode 11.
is the leakage current ground wire connected to the

高圧電極課電線14からケーブル端末部のケーブル導体
1に電圧を印加すると、測定電極である金属シース7に
電気的に接触しているスズメッキ銅線6が巻回されてい
るじゃへい層に補強紙4および碍子8の内面を通じて電
流が流れる。また、碍子8の外表面を通して測定電極リ
ード線15に電流が流れる。これらの沿面を通して流れ
る電流があると、絶縁体2の誘電特性、直流抵抗の測定
の際大きな誤差の原因になるか、または、測定を困難に
する。そこで、これらの電流を下記の方法によって除去
するようにしている。すなわち、碍子8の外表面の漏れ
電流は、ベルマウス5より上部の位置の碍子8の外表面
に接触させた漏れ電流捕捉電極11から漏れ電流接地線
16を通して大地へ流し、測定電極リート線15には流
入しないようにする。また、端末補強紙4の沿面および
碍子8の内沿面を通して測定電極リート線15に流入す
る電流は、ベルマウス5より上部の碍子8の外表面に設
置した冷媒管12に例えば液体窒素を流してその近傍を
冷却してそれの低減をはかるようにする。絶縁油と固体
誘電体の沿面の絶縁抵抗は、温度が低下するにしたがっ
て大きくなり、OFケーブル用合成油と端末補強紙4、
碍子8との界面の抵抗は、温度が約25°C低下する毎
に約1桁大きくなる。したがって、上記部分の温度があ
る温度以下になれば、上記沿面部は電気的に絶縁された
とみなすことができる。ここで、冷却時に絶縁油6が凍
結してコロナ放電が起り、絶縁油6が劣化されることが
懸念されるが、ケーブル自体の劣化を判定するだめの電
圧としては、コロナ放電が起るような高い電圧を印加す
る必要がなく、コロナ開始電圧以下で十分である。また
、本実施例では、沿面部が約−30’C程度の温度でも
精度よく測定ができるので、絶縁油6の凍結が生じない
温度領域において測定が可能である。
When voltage is applied from the high voltage electrode power line 14 to the cable conductor 1 at the end of the cable, reinforcing paper is applied to the barrier layer around which the tin-plated copper wire 6, which is in electrical contact with the metal sheath 7 which is the measurement electrode, is wound. A current flows through the inner surfaces of the insulator 4 and the insulator 8. Further, a current flows through the outer surface of the insulator 8 to the measurement electrode lead wire 15 . The presence of currents flowing through these creeping surfaces can cause large errors or make measurements difficult when measuring the dielectric properties, DC resistance, of the insulator 2. Therefore, these currents are removed by the following method. That is, the leakage current on the outer surface of the insulator 8 flows from the leakage current capture electrode 11 that is in contact with the outer surface of the insulator 8 at a position above the bell mouth 5 to the earth through the leakage current grounding wire 16, and then flows to the earth through the leakage current grounding wire 16. to prevent it from entering. Furthermore, the current flowing into the measurement electrode wire 15 through the creeping surface of the terminal reinforcing paper 4 and the inner creeping surface of the insulator 8 is controlled by flowing liquid nitrogen, for example, into the refrigerant pipe 12 installed on the outer surface of the insulator 8 above the bell mouth 5. Try to reduce this by cooling the area around it. The insulation resistance of the insulating oil and the creeping surface of the solid dielectric increases as the temperature decreases.
The resistance at the interface with the insulator 8 increases by about one order of magnitude every time the temperature decreases by about 25°C. Therefore, if the temperature of the above-mentioned portion falls below a certain temperature, the above-mentioned creeping portion can be considered to be electrically insulated. Here, there is a concern that the insulating oil 6 may freeze during cooling and cause corona discharge, causing deterioration of the insulating oil 6, but the voltage required to judge the deterioration of the cable itself is such that corona discharge occurs. There is no need to apply a high voltage; a voltage below the corona starting voltage is sufficient. Furthermore, in this embodiment, measurement can be performed with high precision even at a temperature of about -30'C on the creeping portion, so measurement can be performed in a temperature range where the insulating oil 6 does not freeze.

なお、測定精度は、端末近傍のケーブル部も冷却される
ため、極めて短かいケーブルにおいては誤差が生じるが
、通常、特性試験に用いられている10m程度以上のケ
ーブルにおいては有効な測定値が得られ、実系統におい
ては、その誤差を全く無視できる。
Please note that the measurement accuracy is affected by the fact that the cable section near the terminal is also cooled, so errors may occur with extremely short cables, but valid measurements can be obtained with cables of approximately 10 m or longer, which are normally used for characteristic tests. In the actual system, the error can be completely ignored.

上記したように、本発明の実施例によれば、実系統のケ
ーブルの誘電特性および直流抵抗を正確に測定すること
ができ、適時ケーブルの劣化の程度を判定することがで
きる。また、試験装置の自動化によりケーブルの劣化の
自動連続監視の可能性もある。
As described above, according to the embodiments of the present invention, it is possible to accurately measure the dielectric characteristics and DC resistance of a cable in an actual system, and it is possible to timely determine the degree of deterioration of the cable. There is also the possibility of automated continuous monitoring of cable deterioration through automation of test equipment.

なお、あらかじめ冷却された絶縁油を碍子8内に存在す
る絶縁油6と入れ替えることにより、端末補強紙4およ
び碍子8の沿面漏れ電流をなくするようにしてもよいこ
とはいうまでもない。
It goes without saying that the creeping current of the terminal reinforcing paper 4 and the insulator 8 may be eliminated by replacing the insulating oil 6 present in the insulator 8 with pre-cooled insulating oil.

以上説明したように、本発明によれば、漏れ電流の影響
をほとんど皆無にできるので、実系統において適時ケー
ブルの劣化の有無を正確に判定することができるという
効果がある。
As explained above, according to the present invention, since the influence of leakage current can be almost completely eliminated, the presence or absence of cable deterioration can be accurately determined in a timely manner in an actual system.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のケーブルの誘電特性および直流抵抗測定方
法の一実施例を説明するだめのケーブル端末部分の断面
図である。 1:ケーブル導体、2:絶縁体、6:絶縁油、4:端末
補強紙、5:ベルマウス、 7:ケーブル金属シース、8:碍子、 9:下部金具、11;碍子外表面漏れ電流捕捉電極、1
2:冷媒管、14:高圧電極課電線、15:測定電極リ
ード線、 16:凋れ電流接地線。
The figure is a sectional view of a terminal portion of a cable for explaining an embodiment of the method for measuring dielectric characteristics and direct current resistance of a cable according to the present invention. 1: Cable conductor, 2: Insulator, 6: Insulating oil, 4: Terminal reinforcement paper, 5: Bell mouth, 7: Cable metal sheath, 8: Insulator, 9: Lower metal fitting, 11: Insulator outer surface leakage current capture electrode ,1
2: Refrigerant pipe, 14: High voltage electrode power line, 15: Measurement electrode lead wire, 16: Fallen current grounding wire.

Claims (1)

【特許請求の範囲】[Claims] 1、 被測定ケーブルの終端の導体を高圧電極、前記ケ
ーブルの金属シースを測定電極とし、さらに前記高圧電
極に電圧を印加したときに前記高圧電極から前記測定電
極に前記ケーブル端部の沿面全通して流入する漏れ電流
を除去するだめの接地された漏れ電流捕捉電極を設けて
前記ケーブルの誘電特性および直流抵抗を測定する測定
方法において、前記ケーブル端部全冷却して該ケーブル
端部の内面を通して前記高圧電極からmJ記測測定電極
流入する漏れ電流を低減するようにしたことを特徴とす
るケーブルの誘電特性および直流抵抗測定方法。
1. The conductor at the end of the cable to be measured is used as a high voltage electrode, the metal sheath of the cable is used as a measurement electrode, and when a voltage is applied to the high voltage electrode, the entire creepage of the end of the cable is passed from the high voltage electrode to the measurement electrode. In the measurement method of measuring the dielectric properties and direct current resistance of the cable by providing a grounded leakage current capturing electrode for removing leakage current flowing into the cable, the cable end is completely cooled and the cable is passed through the inner surface of the cable end. A method for measuring dielectric properties and direct current resistance of a cable, characterized in that leakage current flowing from the high voltage electrode to the mJ measuring electrode is reduced.
JP57177842A 1982-10-08 1982-10-08 Method for measuring dielectric characteristics and dc resistance of cable Pending JPS5967469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177842A JPS5967469A (en) 1982-10-08 1982-10-08 Method for measuring dielectric characteristics and dc resistance of cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177842A JPS5967469A (en) 1982-10-08 1982-10-08 Method for measuring dielectric characteristics and dc resistance of cable

Publications (1)

Publication Number Publication Date
JPS5967469A true JPS5967469A (en) 1984-04-17

Family

ID=16038065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177842A Pending JPS5967469A (en) 1982-10-08 1982-10-08 Method for measuring dielectric characteristics and dc resistance of cable

Country Status (1)

Country Link
JP (1) JPS5967469A (en)

Similar Documents

Publication Publication Date Title
JP3628244B2 (en) Partial discharge detection method
JP4566407B2 (en) A method for diagnosing insulation degradation in underground cables.
KR100730968B1 (en) A method for determining the presence of water in materials
JPS5967469A (en) Method for measuring dielectric characteristics and dc resistance of cable
JPH06289094A (en) Cable shielding layer and method for monitoring abnormality of sheath
EP2315010A1 (en) Diagnostic method for oil-filled electric equipment, diagnostic device for implementing diagnostic method, and oil-filled electric equipment with built-in diagnostic device
JP4374598B2 (en) Feeding cable monitoring device
JP3230237B2 (en) Cable connection
Hongyan Investigation on distribution XLPE cable joint failure modes and detection
Lee et al. Characteristics of high frequency partial discharge for artificially defected extra high voltage accessories
JPH062518U (en) Power cable with tree detector
Arumugam et al. Dielectric and partial discharge investigations on aged medium voltage underground power cables
JPH03255966A (en) Withstanding voltage testing method for inspecting product of circuit board for hybrid integrated circuit
JPH063390A (en) Diagnostic method for deterioration of cable
JPH03172777A (en) Diagnostic method for insulation deterioration of cv cable
JPH038710B2 (en)
Takahashi Localization Methodology of Partial Discharge Source for XLPE Cable System at Its Early Stage Deterioration
JP2628738B2 (en) Power cable test equipment
JPH0119105B2 (en)
Hartshorn et al. Assuring cable reliability
Mori et al. Effects of internal conductor to enclosure ARCS on SF6 gas insulated transmission lines
JPS60225072A (en) Diagnosis of deterioration in insulation for power cable
JPH06331691A (en) Measuring method for partial discharge in power cable and at connection thereof
JP2680511B2 (en) Gas insulated bushing
Bhutada et al. New approach to assess the insulation condition of condenser bushings