JPS5967421A - Level gage - Google Patents

Level gage

Info

Publication number
JPS5967421A
JPS5967421A JP17739082A JP17739082A JPS5967421A JP S5967421 A JPS5967421 A JP S5967421A JP 17739082 A JP17739082 A JP 17739082A JP 17739082 A JP17739082 A JP 17739082A JP S5967421 A JPS5967421 A JP S5967421A
Authority
JP
Japan
Prior art keywords
electric resistance
liquid
mixed liquid
vapor
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17739082A
Other languages
Japanese (ja)
Inventor
Takashi Miyake
崇史 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17739082A priority Critical patent/JPS5967421A/en
Publication of JPS5967421A publication Critical patent/JPS5967421A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices

Abstract

PURPOSE:To improve the accuracy in measurement of a level and to simplify the construction of an apparatus, by comparing the electric resistance values of first, second and third electric resistance wires stretched in liquid-phase and vapor-phase portions and in the direction of the height thereof inside a tank, with one another. CONSTITUTION:When a prescribed small current is made to flow through electric resistance wires 221, 222 and 223, a heat is radiated from each electric resistance wire. The vapor and liquid of a hydrogen isotope show different thermal conductivity as shown in the third table, and the electric resistance wires take electric resistance values in accordance with temperature. Accordingly, the electric resistance value of the electric resistance wire 223 is in accord with the level of a mixed liquid 2. Therefore, by inputting to an arithmetic unit 2 the electric resistance values of the electric resistance wires 221 in the mixed liquid 2 and of the electric resistance wire 222 in the vapor 3 respectively and by substituting said values for the electric resistance values on the mixed liquid 2 side and vapor 3 side of the electric resistance wire 223 for operational processing, it turns possible to calculate the level of the mixed liquid 2 and to take it out as an output signal 26. Thus, the accuracy in measurement can be improved, while the structure of the gage can be simplified.

Description

【発明の詳細な説明】 本発明は水素同位体の混合液体等の液位を測定する液位
針に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid level needle for measuring the liquid level of a mixed liquid of hydrogen isotopes.

タンク内の液体の液位を測定する液位針としてはタンク
底部の圧力と液面上方のタンク内圧力との差を差圧計に
よって検出し、差圧と液体の密度とから液位を求める差
圧式液位計が知られている。しかし、この差圧式液位計
は混合液体のように液体の密度が変化する場合には誤差
を生じるので何らかの手段により液体の密度を知る必要
がある。
A liquid level needle that measures the liquid level in a tank uses a differential pressure gauge to detect the difference between the pressure at the bottom of the tank and the pressure inside the tank above the liquid level, and calculates the liquid level from the differential pressure and the density of the liquid. Pressure type liquid level gauges are known. However, this differential pressure type liquid level gauge produces errors when the density of the liquid changes, such as in the case of mixed liquids, so it is necessary to know the density of the liquid by some means.

例えば、液体水素の液位を測定する場合にも従来から差
圧式の液位針が最もよく使用されているが、水素同位体
の液体の密度が下記第1表に示す如く相互に大きく異な
るので、液体水素の液位針は第1図に示す如く構成され
ている。
For example, when measuring the liquid level of liquid hydrogen, a differential pressure type liquid level needle has conventionally been most commonly used, but since the density of hydrogen isotope liquids differs greatly as shown in Table 1 below, The liquid hydrogen level needle is constructed as shown in FIG.

第1図中1は水素同位体深冷蒸留塔の再沸器であり、と
の再沸器1内には水素同位体の混合液体2が収容され、
その上方には該混合液体2と平衡状聾にある蒸気3が存
在し、前記混合液体2内にはヒータ4が設置されている
。この再沸器1の上部の蒸気3中及び底部の混合液体2
中には夫々検出配管5.6が挿入されておυ、これら検
出配管5.6は差圧変換器7に接続されている。また、
前記再沸器I底部の混合液体2中にはサンプリング配管
8が挿入されており、このサンプリング配管8は組成検
出器9に接続され、この組成検出器9からは排出管10
が延出している。四に、前記差圧変換器7及び組成検出
器9は演算器lIと電気的に接続されている。
In FIG. 1, 1 is a reboiler of a hydrogen isotope cryogenic distillation column, and a mixed liquid 2 of hydrogen isotopes is stored in the reboiler 1.
Above the vapor 3 exists in equilibrium with the mixed liquid 2, and a heater 4 is installed within the mixed liquid 2. The vapor 3 at the top of this reboiler 1 and the mixed liquid 2 at the bottom
Detection pipes 5.6 are inserted into each of the detection pipes 5.6, and these detection pipes 5.6 are connected to a differential pressure converter 7. Also,
A sampling pipe 8 is inserted into the mixed liquid 2 at the bottom of the reboiler I, and this sampling pipe 8 is connected to a composition detector 9, from which a discharge pipe 10 is connected.
is extending. Fourth, the differential pressure converter 7 and composition detector 9 are electrically connected to the computing unit II.

上記液位計の作用全説明する。蒸気3の密度は混合液体
2の密度と比較して十分に小さいので無視することがで
き、検出配管5.6に接続された差圧検出器7によって
検出される差圧は、検出配管6から液面棟でに存在する
混合液体2による圧力を示す。この差圧と混合液体2の
密度とから混合液体2の液位を知ることができるが、上
述[7たように水素同位体の液体密度はそれぞれ異なる
ので、混合液体2の密度を知る必9があり、そのために
は混合液体2の組成を知る必要がある。このため、サン
プリング配管8より混合液体2の一部を抜き出して組成
検出器9によって混合液体2の組成を測定する。差圧変
換器7の信号と組成検出器9の信号はそれぞれ演算器I
Iに送られて演算が行われ、液位信号12として取り出
される。凍た、組成検出器9で組成が測定されたサンプ
ルは排出管IOから排出される。
The operation of the above liquid level gauge will be fully explained. The density of the vapor 3 is sufficiently small compared to the density of the mixed liquid 2 and can be ignored, and the differential pressure detected by the differential pressure detector 7 connected to the detection pipe 5.6 is It shows the pressure due to the mixed liquid 2 existing at the liquid level building. The liquid level of the mixed liquid 2 can be determined from this pressure difference and the density of the mixed liquid 2, but as mentioned above [7], since the liquid density of each hydrogen isotope is different, it is necessary to know the density of the mixed liquid 2. For this purpose, it is necessary to know the composition of the mixed liquid 2. For this reason, a portion of the mixed liquid 2 is extracted from the sampling pipe 8 and the composition of the mixed liquid 2 is measured by the composition detector 9. The signal of the differential pressure converter 7 and the signal of the composition detector 9 are respectively input to the arithmetic unit I.
The signal is sent to I, where calculations are performed, and the signal is taken out as a liquid level signal 12. The frozen sample whose composition has been measured by the composition detector 9 is discharged from the discharge pipe IO.

上述した差圧式の液位計には以下のような欠点がある。The differential pressure type liquid level gauge described above has the following drawbacks.

(1)  水素同位体の組成検出には通常ガスクロマト
グラフィーが用いられるが、ザンプル投入から組成検出
までに数十秒を要するため、時間遅れが生じる。
(1) Gas chromatography is usually used to detect the composition of hydrogen isotopes, but it takes several tens of seconds from the time the sample is introduced to the time the composition is detected, resulting in a time delay.

(2)組成検出のために取り出したサンプルは放射性の
トリチウムσ)を含み、そのまま廃棄することができな
いため後処理が必要となる。
(2) Samples taken for composition detection contain radioactive tritium σ) and cannot be disposed of as is, requiring post-treatment.

(3)  差圧1mAq当りの各水素同位体の液柱は下
記第2表のように大きく異なる。
(3) The liquid column of each hydrogen isotope per 1 mAq differential pressure varies greatly as shown in Table 2 below.

第2表 一方、検出配管5.6からの熱浸入によって水素蒸気の
気泡が発生し、l[4合液体2中に出てくるため液位の
変動を生じ、差圧に誤差を生じる。これらのことを考慮
すると、液位の計4(11梢]Wはかなり悪くなる。こ
うした計測精度の悪化を防止するためには再沸器1にお
ける混合液体2のホールドアラフD晴を多くしておく必
要があるが、これは内−沸器1内において放射性で高f
ilTi々トリチウム(1r)の借を増加させることに
つながり、好オしくない。
Table 2 On the other hand, hydrogen vapor bubbles are generated due to heat intrusion from the detection pipe 5.6 and come out into the combined liquid 2, causing fluctuations in the liquid level and causing errors in the differential pressure. Taking these things into consideration, the total liquid level 4 (11 treetops) W becomes considerably worse.In order to prevent such deterioration of measurement accuracy, increase the hold rough D of the mixed liquid 2 in the reboiler 1. However, this is radioactive and high f in the inner boiler 1.
This is undesirable because it leads to an increase in the amount of tritium (1r).

(4)上述した差圧式の液位側ではサンプリング配管8
及び組成検出器9等の付随的な機器が必要となシ、慣器
(、Vt成が複雑となる。
(4) On the liquid level side of the differential pressure type mentioned above, the sampling pipe 8
Additionally, additional equipment such as a composition detector 9 is required, and the inertial vessel (Vt configuration) becomes complicated.

本発明は上記欠点を解消するためになされたものであυ
、液体の密度を測定する必要をなくし、簡便な機器借成
で即時液位を測定することができ、排液の後処理等の問
題が牛じない高精度の液位計を提供し2ようとするもの
である。
The present invention has been made to eliminate the above drawbacks.
We provide a high-precision liquid level meter that eliminates the need to measure the density of liquid, can measure the liquid level instantly with simple borrowed equipment, and eliminates problems such as post-treatment of wastewater. That is.

以下、本発明の実Jj7i例を第2図及び第3図を参照
して説明する。
Hereinafter, an actual Jj7i example of the present invention will be explained with reference to FIGS. 2 and 3.

(・・4中1は水素同位体深冷蒸留塔の再沸器であシ、
この再沸器1内には水素同位体の混合液体2が収容され
、その上方には該混合液体2と平衡状態にある蒸気3が
存在し、前記混合液体2内にはヒータ4が股部−されて
いる。才だ、再沸器1内の底部近傍の常に混合液体2で
満たされる位置には、外部から2本の支持軸211,2
1.。
(...1 out of 4 is the reboiler of the hydrogen isotope cryogenic distillation column,
This reboiler 1 contains a mixed liquid 2 of hydrogen isotopes, above which steam 3 exists in equilibrium with the mixed liquid 2, and within the mixed liquid 2 a heater 4 is installed. − has been done. In a position near the bottom of the reboiler 1 that is always filled with the mixed liquid 2, two support shafts 211, 2 are installed from the outside.
1. .

が挿置され、かつこれら支持l1IllI211,21
1間には液相部比較検出端となる第1の電気抵抗線22
1が張架されている。同様に、再沸器1内の常に蒸気3
と接する位置には外部から2本となる第2の電気抵抗線
22□が張架されている。更に、再沸器1内の前記第1
及び第2の雷。
are inserted, and these supports l1IllI211, 21
1, there is a first electric resistance wire 22 which serves as a liquid phase comparison detection end.
1 is hung. Similarly, the constant steam 3 in the reboiler 1
Two second electric resistance wires 22□ are stretched from the outside at the positions where they are in contact with. Furthermore, the first
and second lightning.

気抵抗線22Il +222にはさまれ、測定しようと
する混合液体2の液面が変動する高さ方向の範囲には外
部から2本の支持軸213,213が挿置され、かつこ
れら支持$1121s  + 213間には主検出端と
なる第3の電気抵抗線223が張架されている。これら
第1 、 ?汀2及び第30屯気抵抗線221  + 
22z  e 223は第3図に示す如く、支持軸21
1  +211 +222  +222 1223  
+ 223内に埋設されたり−P線23ヌ・・・を介し
てそれぞれ検出器241 。
Two support shafts 213, 213 are inserted from the outside in the range in the height direction where the liquid level of the mixed liquid 2 to be measured fluctuates between the air resistance wires 22Il +222, and these supports $1121s A third electrical resistance wire 223 serving as a main detection end is stretched between +213 and 213. The first of these? 2nd and 30th resistance line 221 +
22z e 223 is the support shaft 21 as shown in FIG.
1 +211 +222 +222 1223
The detectors 241 are embedded in the +223 and -P lines 23, respectively.

242+243に接続されている。上述した第3図図示
の各検出端の先端部分の構造は熱線風速計と同様な(1
り造であるが、主イ・外出端となる第3の電気抵抗線2
23を支持する2本の支持軸213.213間の距離は
液面の変動範囲をカバーする心安があるため熱線風速計
よりもかなり長い。史に、前記検出器241 t242
+243は演豹、器25と接続されている。
It is connected to 242+243. The structure of the tip of each detection end shown in FIG. 3 described above is similar to that of a hot wire anemometer (1
The third electrical resistance wire 2, which is made of steel, is the main and external end.
The distance between the two support shafts 213 and 213 that support the anemometer 23 is considerably longer than that of a hot wire anemometer in order to ensure that the range of fluctuations in the liquid level is covered. Historically, the detector 241 t242
+243 is connected to the deductive device 25.

子連した液位計の作用を説明する。Explain the function of a liquid level gauge connected to a child.

第1.第2及び第30′・1イ1気抵抗線221 。1st. 2nd and 30' 1st resistance line 221.

22□ 、223にはそれぞれ微小な一定電流が流され
、この11tがしによる微小屯田を検出器241゜”2
 +243によって6川定できるようになっている。こ
うした一定の微小に流が第1乃至第3の電気抵抗線22
1.222 .223を流れるとジュール熱が発生し、
各電気抵抗線から熱が放散される。ところで、水素同位
体の蒸気と液体とでは下記第3表圧示す如く熱伝導度が
異なり、液体は蒸気の約5倍の熱伝導度をイラする。
A small constant current is passed through 22□ and 223, and the small electric current caused by this 11t is detected by the detector 241゜"2.
With +243, six rivers can be determined. This constant minute current flows through the first to third electrical resistance wires 22.
1.222. When flowing through 223, Joule heat is generated,
Heat is dissipated from each electrical resistance wire. By the way, the thermal conductivity of hydrogen isotope vapor and liquid is different as shown in the third surface pressure below, and the thermal conductivity of liquid is about five times that of vapor.

第  3  表 したがって、電気抵抗線の周囲が蒸気であるか液体であ
るかによって電気抵抗線の中1位長さ当りの放散熱量が
異なり、電気抵抗線の蒸気相にある部分と液相にある部
分とでは温1にが異なる。
Table 3 Therefore, the amount of heat dissipated per medium length of the electrical resistance wire differs depending on whether the surrounding area of the electrical resistance wire is vapor or liquid. Temperature 1 differs depending on the part.

この結果、電気抵抗線は温度に応じた電気抵抗匝をとる
ようになる。このような第1乃至第3の電気抵抗線22
1 .222 p22sの電気抵抗値は電圧としてそれ
ぞれ検出器24 +  e 24z +243で測定さ
れる。このうち、第3の電気抵抗線22Bの電気抵抗値
は混合液体2に接している部分の電気抵抗値と蒸気3に
接している部分の−lj気抵抗値との和となり、混合液
体2の液位に応じた値となる。したがって、液相部比較
検出端となる第1の電気抵抗線22!の単位長さ当りの
電気抵抗値及び蒸気相部比較検出端となる第2の電気抵
抗線222の単位長さ当りの電気抵抗値をそれぞれ演算
器25に入力し、該演算器25で主検出端となる第3の
′電気抵抗線223の混合液体2側及び蒸気3側の単位
長さ当りの’C1j気抵抗値として代入して演算処理す
れば、混合液体2の組成にかかわりなく混合液体2の液
位を′)′?出することができ、出力信号26として取
り出すことができる。
As a result, the electrical resistance wire takes on an electrical resistance value depending on the temperature. Such first to third electric resistance wires 22
1. The electrical resistance values of 222 p22s are measured as voltages by detectors 24 + e 24z + 243, respectively. Among these, the electrical resistance value of the third electrical resistance wire 22B is the sum of the electrical resistance value of the part in contact with the mixed liquid 2 and the -lj resistance value of the part in contact with the vapor 3, and The value depends on the liquid level. Therefore, the first electric resistance wire 22 serves as the liquid phase comparison detection end! The electrical resistance value per unit length and the electrical resistance value per unit length of the second electrical resistance wire 222 serving as the vapor phase comparison detection end are respectively input to the computing unit 25, and the computing unit 25 performs the main detection. By substituting and calculating the 'C1j resistance value per unit length on the mixed liquid 2 side and the vapor 3 side of the third electrical resistance wire 223, which is the end, the mixed liquid will be calculated regardless of the composition of the mixed liquid 2. What is the liquid level of 2′)′? It can be output as an output signal 26.

しかして、上記液位言1によれば、混合液体2の組成を
r++1]定う゛る必要がなく、即時液位を1ll11
定することができ、また、I・リチウム刊出液の後処理
のような問題も生じない。また、混合液体20ホールド
アツプfAk多くしなくても微小な液位及化を精密に測
定することができる。更に、水素同位体の組成検出用の
機器が不要となるので、様器(h成が1萌略化される。
According to the liquid level statement 1 above, there is no need to determine the composition of the mixed liquid 2 by r++1], and the instantaneous liquid level is 1ll11.
Furthermore, problems such as post-treatment of the I.lithium publication solution do not occur. Further, minute changes in the liquid level can be precisely measured without increasing the hold-up fAk of the mixed liquid 20. Furthermore, since a device for detecting the composition of hydrogen isotopes is not required, the number of hydrogen isotopes is reduced to one.

なお、上記実施例では各電気抵抗線に一定電流を流し、
電圧を検出したが、これに限らず、一定屯圧を印加して
准流値を検出するようにしてもよい。
In addition, in the above example, a constant current is passed through each electrical resistance wire,
Although the voltage is detected, the current value is not limited to this, and the quasi-current value may be detected by applying a constant pressure.

まだ、本発明の液位計は水素同位体の液体の液位測定に
限らず、他の液体の液位測定にも同様に用いることがで
き、特に、混合液体のように液体の密度が変化する場合
に有益である。
However, the liquid level meter of the present invention can be used not only for measuring the liquid level of hydrogen isotope liquids, but also for measuring the liquid level of other liquids, especially when the density of the liquid changes, such as mixed liquids. This is useful if you want to

以上詳述した如く、本発明によれば、簡便な機器構成で
即時液位を測定することができ、排液の後処理等の問題
が生じない配′6精度の液位計を提供できるものである
As described in detail above, according to the present invention, it is possible to provide a liquid level meter that can measure the liquid level immediately with a simple device configuration, and has a precision of 6.5 mm without causing problems such as post-treatment of drained liquid. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の差圧式の液位計を示す構成図、第2図は
本発明の実施例における液位計を示すrli;成図、第
3図は本発明の実施例における液位計の検出端の先端部
を一部断面で示す正面図である。 1・・・再沸器、2・・・水素同位体の混合液体、3・
・・蒸気、4・・・ヒータ、21t  +212 +2
13・・・支持軸、221 ・・・l′lt lの電気
抵抗線、222・・・第2の電気抵抗線、223・・・
iH’l: 3のIiが気抵抗線、23・・・リー ド
線、241  r 242  、243・・・検出器、
25・・・演−Ft ’を計、26・・・液位信号。
Figure 1 is a configuration diagram showing a conventional differential pressure type level gauge, Figure 2 is a diagram showing a level gauge in an embodiment of the present invention; FIG. 3 is a front view, partially in cross section, of the tip of the detection end of FIG. 1... Reboiler, 2... Hydrogen isotope mixed liquid, 3.
...Steam, 4...Heater, 21t +212 +2
13... Support shaft, 221... l'lt l electrical resistance wire, 222... Second electrical resistance wire, 223...
iH'l: 3 Ii is air resistance wire, 23... lead wire, 241 r 242, 243... detector,
25...Measurement of performance-Ft', 26...Liquid level signal.

Claims (1)

【特許請求の範囲】[Claims] タンク内の液相部に張架される第1の電気抵抗線と、タ
ンク内の気相部に張架される第2のat電気抵抗線、こ
れら第1及び第2の電気抵抗線間の高さ方向に張架され
る第3の電気抵抗線とからなり、前記第1.第2及び第
3の電気抵抗線の電気抵抗値を比較して液体の液位を算
出するようにしたことを特徴とする液位針。
A first electric resistance wire stretched over the liquid phase part in the tank, a second AT electric resistance wire stretched over the gas phase part in the tank, and between these first and second electric resistance wires. a third electric resistance wire stretched in the height direction; A liquid level needle characterized in that the liquid level of the liquid is calculated by comparing the electric resistance values of the second and third electric resistance wires.
JP17739082A 1982-10-08 1982-10-08 Level gage Pending JPS5967421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17739082A JPS5967421A (en) 1982-10-08 1982-10-08 Level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17739082A JPS5967421A (en) 1982-10-08 1982-10-08 Level gage

Publications (1)

Publication Number Publication Date
JPS5967421A true JPS5967421A (en) 1984-04-17

Family

ID=16030098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17739082A Pending JPS5967421A (en) 1982-10-08 1982-10-08 Level gage

Country Status (1)

Country Link
JP (1) JPS5967421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178002A (en) * 2016-12-27 2019-08-27 株式会社富士金 Liquid level meter, the gasifier and liquid level checking method for having the liquid level meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178002A (en) * 2016-12-27 2019-08-27 株式会社富士金 Liquid level meter, the gasifier and liquid level checking method for having the liquid level meter

Similar Documents

Publication Publication Date Title
US4144754A (en) Multiphase fluid flow meter
JPH0713575B2 (en) Mass flow measuring device
JPS6093315A (en) Heat-sensitive measuring system of liquid level
RU2286544C2 (en) Measuring transformer of vortex-type flow
US20080289410A1 (en) Thermal Mass Flow Meter
US3015232A (en) Flow cell
EP2985597B1 (en) Steam wetness measurement device
US4475387A (en) High temperature mass flowmeter
US3323362A (en) Positive displacement flowmeter
JPS5967421A (en) Level gage
Gill et al. Rapid Response Flow Microcalorimeter
US3435678A (en) Apparatus for flow monitoring
GB2079465A (en) Measure of true density
Hayes Instrumentation for liquid sodium in nuclear reactors
JP2002328016A (en) Thickness gauge for multi-point measurement
US3618685A (en) Temperature compensated electrobalance
US3228245A (en) Liquid quantity gage
JPH11125547A (en) Method for measuring flow rate of each fluid of multiphase fluid, and flowmeter for multiphase fluid
JPH02205797A (en) Reactor core flow measuring device
SU1037762A1 (en) Sensing element for estimating gas concentration in gas-liquid flow
JPS61283831A (en) Electrostatic capacity type level gauge
JPS60210753A (en) Method and apparatus for measuring average void ratio of flowline of gas-liquid two-phase stream
US3369401A (en) Temperature-gradient-insensitive resistance-type liquid metal level detector
USRE27246E (en) Electroniciliquid measuring system
SU1068807A1 (en) Flowmeter