JPS5966663A - Heat pump type heating apparatus - Google Patents

Heat pump type heating apparatus

Info

Publication number
JPS5966663A
JPS5966663A JP17811682A JP17811682A JPS5966663A JP S5966663 A JPS5966663 A JP S5966663A JP 17811682 A JP17811682 A JP 17811682A JP 17811682 A JP17811682 A JP 17811682A JP S5966663 A JPS5966663 A JP S5966663A
Authority
JP
Japan
Prior art keywords
gas
gas refrigerant
pressure
compression chamber
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17811682A
Other languages
Japanese (ja)
Other versions
JPH0353532B2 (en
Inventor
岩田 儀美
順一郎 田中
哲夫 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP17811682A priority Critical patent/JPS5966663A/en
Publication of JPS5966663A publication Critical patent/JPS5966663A/en
Publication of JPH0353532B2 publication Critical patent/JPH0353532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ヒートポンプ式暖房装置に関し、特に気液分
離器を備え、蒸発器からのガス冷媒および気液分離器で
分離された中間圧ガス冷媒をそれぞれ圧縮機で圧縮する
ようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type heating device, and more particularly to a heat pump type heating device, which is equipped with a gas-liquid separator, and compresses a gas refrigerant from an evaporator and an intermediate-pressure gas refrigerant separated by the gas-liquid separator using a compressor. Regarding what you choose to do.

従来、このようなヒートポンプ7暖yfr装置6の一つ
として中間圧ガスインジェクションタイプのものかある
。このものは、第1図に示すように、圧縮機(a)と、
凝縮器としての室内熱交換器(b)と、キャピラリチュ
ーブ等よりなる膨張機構(C)、(d−)と、該膨張機
構(Cル(a)の中間に配設された気液分離器(e)と
蒸発器としての室外熱交換器(f)とを備え、圧縮機吐
出ボート(aΦから吐出されたガス冷媒を室外熱交換器
(b)で凝縮したのち膨張機構(C)、 (d)で減圧
し、その間で気液分離器(8)でガス冷媒と液冷媒とに
分離して、中間圧のガス冷媒を上記圧縮機(a)の圧縮
行程途中にインジェクションボート(aJ−ライ/ジエ
クション″′!4一方、液冷媒を室外熱交換器(f)で
気イヒした後上記庄□縮機(a)の吸入ポートia只吸
  □入し、該圧縮機(a)で上記中間圧ガス冷媒と共
に圧縮するというサイクルを繰、b4tことによム上記
中間圧ガス冷媒による冷媒循環量の増大により暖房能力
の向上を図るようにしたものである(実叩ブi49:1
112,52号公報参照)、。
Conventionally, as one of such heat pump 7 heating YFR devices 6, there is an intermediate pressure gas injection type. As shown in Fig. 1, this device includes a compressor (a),
An indoor heat exchanger (b) as a condenser, an expansion mechanism (C), (d-) consisting of a capillary tube, etc., and a gas-liquid separator disposed between the expansion mechanism (C) (a) (e) and an outdoor heat exchanger (f) as an evaporator, and after condensing the gas refrigerant discharged from the compressor discharge boat (aΦ) in the outdoor heat exchanger (b), an expansion mechanism (C), d), the gas-liquid separator (8) separates the gas refrigerant into a gas refrigerant and a liquid refrigerant, and the intermediate-pressure gas refrigerant is transferred to an injection boat (aJ-Liquid) during the compression stroke of the compressor (a). /Jection''!4Meanwhile, after the liquid refrigerant is evaporated in the outdoor heat exchanger (f), it is introduced into the suction port ia of the compressor (a), and the compressor (a) By repeating the cycle of compressing the gas refrigerant together with the pressure gas refrigerant, the heating capacity is improved by increasing the amount of refrigerant circulated by the intermediate pressure gas refrigerant.
112,52)).

、4た、上記圧縮機(a)と、しては通常ローリングピ
ストン形圧縮機が用いられている。該ローリングピスト
ン形圧縮機は、第1図に示すように円筒形シリンダ(a
4)と、該シリンダ(aンに内接しながら偏心回転する
ロータ(aρと、シリンダ(り内周面め一部に出没i在
にかつ哀ブリング(a611に工りロータ(a揶11に
押圧されて設けられ上記口]り(り外周面に常時摺接す
るベーy(a、)と、’ Mへ”(’7り画一のシリン
ダ(a41内面に開口した吸入ボート(すおよび吐出ボ
ート(a、llと、上記シリンダ(aρ側壁に開口した
インジェクションポー) (aJとを備えている。そし
て、ロータ(すの回転に伴いシリンダ(aρとロータ(
aρとベーン−(りとにより形成される作動室(aρ、
(aρを膨張収縮す企と、ともにロータ(り側壁でイン
ジェクションポー’  ト”(a片開閉□することによ
シ、吸入ボート(a仮−らガース冷媒を吸入したのち、
インジェクションボート1、。71.や6エカ7.4オ
カいり、”C? d4Qを圧縮して吐出ポート(りから
吐出するようにしたものである(特開昭54−6162
号公報参照)。
4. As the compressor (a), a rolling piston type compressor is usually used. The rolling piston compressor has a cylindrical cylinder (a) as shown in FIG.
4), a rotor (aρ) that rotates eccentrically while inscribed in the cylinder (a), and a rotor (aρ) that is partially recessed on the inner circumferential surface of the cylinder (a611) and a rotor (a) that is pressed against the rotor (a611). The above-mentioned opening is provided with a bay (a,) that is in constant sliding contact with the outer circumferential surface of the cylinder, and a suction boat (a) and a discharge boat ( a, ll, and the above-mentioned cylinder (injection port opened on the side wall of aρ) (aJ).As the rotor (s) rotates, the cylinder (aρ) and the rotor (
The working chamber (aρ,
(By opening and closing one side of the injection port on the side wall of the rotor), after inhaling the girth refrigerant from the suction boat
Injection boat 1. 71. It has a pressure of 7.4 yen, 6 yen and 7.4 yen, and is made to compress and discharge from the discharge port (Japanese Patent Laid-Open No. 54-6162
(see publication).

しかし、上記従来のものでは1.中間圧ガス冷媒が圧縮
行程直前の作動室(la&ら容入ポート(すを介して室
外熱交換器(f)へ逆流すること、および中間圧ガス冷
媒の圧力よシ高圧の圧縮ガス冷媒が圧縮行程終期の作動
室(a嵯−らインジェクションボニト(りを介して気液
分離器(θ)べ逆流するこ□とを防止するため□に、上
記インジェクションポート(a抄開口期間が制限され、
その結果、中間圧ガス冷媒があらゆる負荷条件のもとて
最適量の全量がインジェクションできず、暖房能力の向
上に限界があシ、多動式冷凍サイクルの目的が充分達成
できないという問題があった。
However, in the conventional method described above, 1. The intermediate-pressure gas refrigerant flows back to the outdoor heat exchanger (f) through the working chamber (la & la capacity port) immediately before the compression stroke, and the compressed gas refrigerant at a pressure higher than that of the intermediate-pressure gas refrigerant is compressed. In order to prevent backflow to the gas-liquid separator (θ) through the working chamber (a) and the injection valve at the end of the stroke, the injection port (a) has a limited opening period.
As a result, the optimal amount of intermediate-pressure gas refrigerant could not be injected under all load conditions, and there was a problem that there was a limit to the improvement of heating capacity and the purpose of the hyperactive refrigeration cycle could not be fully achieved. .

それ故、上記室外熱交換器(f)(蒸発器)がらのガス
冷媒と気液分離器(e)からの中間圧ガス冷媒とを個別
の圧縮機を用いて別々に圧縮すれば、中間圧ガス冷媒の
最適量の全量をインジェクションできるが、個別の圧縮
機を要するため、コストアップとなり、また収納容積が
増大するという不具合が生じる。
Therefore, if the gas refrigerant from the outdoor heat exchanger (f) (evaporator) and the intermediate pressure gas refrigerant from the gas-liquid separator (e) are compressed separately using separate compressors, the intermediate pressure Although it is possible to inject the entire optimal amount of gas refrigerant, a separate compressor is required, which increases costs and causes problems such as an increase in storage volume.

また、中間圧ガス冷媒は、作動室(Q内のガス圧が中間
圧よシ低いときから中間圧に至る壕で、の間に亘ってイ
ンジェクションされるので、インジェクションされたガ
ス冷媒は一旦中間圧以下の圧力まで圧力降下した後再び
中間圧まで圧縮されるため、この圧縮仕事によるロスが
あす、インジェクション運転によるEERの向上は4〜
5チ程度に留まるという欠点があった。
In addition, the intermediate pressure gas refrigerant is injected from the time when the gas pressure in the working chamber (Q is lower than the intermediate pressure) to the intermediate pressure. After the pressure drops to the following pressure, it is compressed again to an intermediate pressure, so the loss due to this compression work is lost, and the EER improvement due to injection operation is 4~
The drawback was that it was only around 5 inches.

一方、中間圧ガスインジェクションをしなす単なる2段
圧縮のものとして従来、実開昭55−1″I’i’09
0号公報、に開示されているように、単一のシリ1ンダ
内にロータと2つのベーン1.とにょシ似段側圧縮室と
高段側圧縮室とを画成し、各古縮室にそれぞれ吸入ボー
トおよび吐出ポートを設け、低段側吐出ボートを高段側
吸入ボートに接続して2段圧縮を行うことにより、圧縮
機の統合化によるコストダウン化およびコンパクト化を
図ったローリングピストン形圧縮機が提案されている。
On the other hand, as a simple two-stage compression type that performs intermediate pressure gas injection,
As disclosed in Japanese Patent No. 0, a rotor and two vanes 1. A high-stage compression chamber and a high-stage compression chamber are defined, each compression chamber is provided with a suction boat and a discharge port, and the low-stage discharge boat is connected to the high-stage suction boat. A rolling piston compressor has been proposed that achieves cost reduction and compactness by integrating the compressor by performing staged compression.

本発明は、かかる点に鑑み、上記のような複数の圧縮室
を有するローリングピストン形またはスライディングベ
ーン形圧縮機を中間圧ガスインジェクションタイプのヒ
ートポンプ式暖房装置に利用することに着目してなされ
たもので、気液分離器からの中間圧ガス冷媒と、蒸発器
からのガス冷媒とをそれぞれ1つの圧縮機における別為
の圧縮室で圧縮することにより、コストアップや収、納
容積の増大を招くことなく、中間、圧ガス冷媒を圧縮機
に中間圧吸入する期間を長くして最適量の全量を吸入□
できるようにして、暖房能力を高めるとともに中間圧ガ
ス冷媒を中間圧から吐出圧までダイレクトに圧縮して圧
縮仕事ロスをなくし、よってEll 、E、 Rを大巾
に向上し得るよう、にすることを目的とするものである
In view of this, the present invention was made by focusing on the use of a rolling piston type or sliding vane type compressor having a plurality of compression chambers as described above in an intermediate pressure gas injection type heat pump type heating device. By compressing the intermediate-pressure gas refrigerant from the gas-liquid separator and the gas refrigerant from the evaporator in separate compression chambers in one compressor, costs increase and storage capacity increases. The optimum amount of refrigerant is drawn into the compressor by prolonging the period during which intermediate-pressure gas refrigerant is drawn into the compressor at intermediate pressure.□
To increase heating capacity and eliminate compression work loss by directly compressing intermediate pressure gas refrigerant from intermediate pressure to discharge pressure, thereby greatly improving Ell, E, and R. The purpose is to

この目的を達成するため、本発明の構成は、口−リング
ピストン形またはスライディングベー・ン形圧縮機と、
凝縮器と、2つ以−ヒの膨張機構および該膨張機構の各
中間部に配設された1つ以にの気液分離器と、蒸発器と
を備え、上記蒸発器からのガス冷媒および上記気液分離
器で分離された中間圧ガス冷媒をそれぞれ上記圧縮機で
圧縮するようにしたヒートポンプ式暖房装置であって、
上記圧縮機のシリンダに配設された複数のベーンにより
、シリンダとロータとの間の空間を各々吸入ボー1−と
吐出ボートと金有するメイン圧縮室および1つ以上のザ
ブ圧縮室に画成し、該メイン圧縮室の吸入ボートをに記
蒸発器に接続する一方、ザブ圧縮室の吸入ボートを各々
対応する気液分離器に接続し、上記メインおよびサブ圧
縮室の各吐出ボートを集合して凝縮器に接続したもので
、そのことにより、蒸発器からのガス冷媒をメイン圧縮
室で所定吐出圧に圧縮する一方、気液分離器からの中間
圧ガス冷媒をサブ圧縮室で同じく所定吐出圧に圧縮する
ように1−だものである。
To achieve this objective, the configuration of the invention comprises a mouth-ring piston type or sliding vane type compressor;
It comprises a condenser, two or more expansion mechanisms, one or more gas-liquid separators disposed at respective intermediate portions of the expansion mechanisms, and an evaporator, the gas refrigerant from the evaporators and A heat pump heating device in which the intermediate pressure gas refrigerant separated by the gas-liquid separator is compressed by the compressor,
A plurality of vanes arranged in the cylinder of the compressor define a space between the cylinder and the rotor into a main compression chamber and one or more sub compression chambers each having a suction boat, a discharge boat, and a metal. , the suction boat of the main compression chamber is connected to the evaporator, the suction boats of the sub compression chambers are each connected to the corresponding gas-liquid separators, and the discharge boats of the main and sub compression chambers are assembled. This is connected to the condenser, thereby compressing the gas refrigerant from the evaporator to a predetermined discharge pressure in the main compression chamber, while compressing the intermediate pressure gas refrigerant from the gas-liquid separator to the same predetermined discharge pressure in the sub-compression chamber. It is 1- so that it can be compressed into .

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明をヒートポンプ式暖房装置にjj&用し
た場合の第1実施例を示し、(1)d迦−リングピスト
ン形圧縮機、(2)は四路切換弁、(3)は暖房運転時
凝縮器として機能し、冷房運転時蒸発器として機能する
室内熱交換器、+4)、 (5)j−”よび(〔4)は
キャピラリチューブ等よりなる第1.第2および第3膨
張機溝、+7L (8id、該膨張1幾i’i4[4)
+ (5)+ +6)の各中間…6に配設さtzだ高圧
側および低圧側気液分離器、(9)は暖房運転時蒸発器
として機能し、冷房運転時、凝縮器として機能する室外
熱交換器であり、それぞれ冷媒用通路としての連絡用配
管(10)〜(19)により接続されている。
Figure 2 shows a first embodiment in which the present invention is applied to a heat pump type heating system, in which (1) a d-ring piston type compressor, (2) a four-way switching valve, and (3) a heating system. Indoor heat exchanger that functions as a condenser during operation and as an evaporator during cooling operation; Machine groove, +7L (8id, expansion 1 i'i4 [4)
+ High-pressure side and low-pressure side gas-liquid separators are installed in each middle of (5) + +6)...6, and (9) functions as an evaporator during heating operation, and functions as a condenser during cooling operation. These are outdoor heat exchangers, and are connected to each other by communication pipes (10) to (19) as refrigerant passages.

また、e2[11,I’21)rIiそれぞれ上記k 
7& 分1’fI器(7]、 +8)のガス部と後述す
る圧縮機tl+のザブ圧縮室(27)、 U8)の吸入
ボー1− (2′7a)、 (2f3a)とをそれぞれ
接続するガス・fノジエクション管、(20a)、 (
21a)id該各ガスインジエクンヨン管(2o)、(
21)の途中にそれぞれ介設され、暖房運転時に開作動
する電磁弁である。
In addition, e2[11, I'21)rIi each above k
Connect the gas section of the 7 & minute 1'fI device (7], +8) to the suction bow 1- (2'7a), (2f3a) of the sub compression chamber (27), U8) of the compressor tl+, which will be described later. Gas/f nozzle tube, (20a), (
21a) ID each gas injector tube (2o), (
21), each of which is a solenoid valve that is installed in the middle of the air conditioner and opens during heating operation.

上記ローリングピストン形圧縮機(1)は、円筒形シリ
ンダ(22)と、該シリンダ(22)に内接しなから偏
心回転する0−タ(z3)と、シリンダ(22)内周面
に出没自在にかつスプリング(24+、 (24L (
24)によりロータ(2,’3)側に押圧されて設けら
れ上記ロータ(23)外周面に常時摺接する3枚のベー
ン(25)+ 12$ + (25)とを備え、該各ベ
ーン125)+ (25) + j25) Kより、シ
リンダ(四とロータ(23)との間の空間はメイン圧縮
室(26)と高圧側および低比側の2つのザブ圧縮機1
27)、 (28)とに画成されている。さらに、」−
配合圧縮室f26)、 (27L 128)にfd、シ
リンダ(22)内周面に開[二]する吸入ボート(26
a、)、 (2’7a、)。
The rolling piston type compressor (1) has a cylindrical cylinder (22), an 0-taper (z3) which is inscribed in the cylinder (22) and rotates eccentrically, and which can freely protrude and retract from the inner peripheral surface of the cylinder (22). Nikatsu Spring (24+, (24L (
24), and is provided with three vanes (25) + 12$ + (25) that are pressed against the rotor (2,'3) side and are always in sliding contact with the outer peripheral surface of the rotor (23), and each vane 125 ) + (25) + j25) From K, the space between the cylinder (4) and the rotor (23) is the main compression chamber (26) and the two sub compressors 1 on the high pressure side and low ratio side.
27) and (28). Furthermore,”−
The blending compression chamber f26), fd in (27L 128), and the suction boat (26) which opens on the inner peripheral surface of the cylinder (22).
a,), (2'7a,).

(28a)と、吐出ボート(26b)、  (2’7b
)、  (28b)トを有L、該各吐出ボー)(26b
)、 (27b)、 (28b)にはそ−Itそれシリ
ンダ(22)外)11Sから各圧縮室(26)、(27
)、 (28)へのガス冷媒の逆流を阻1−.するり一
ド弁(26c)、 (2’7c)、 (28c)か配設
されている。そして、上記メイン圧縮室(26)の吸入
ボー)(26a)は連絡用配管(19)により四路切換
弁(2)を介して蒸発器(冷房運転時の室内熱交換器(
3)もしくは暖房運転時の室外熱交換器(9))に接続
されている一方、各サブ圧縮機(27)、シ8)の吸入
ボート(27a)、 (28a)はそれぞれガスインジ
ェクション管(2o)。
(28a), discharge boat (26b), (2'7b
), (28b) and each discharge board) (26b
), (27b), (28b) are connected to each compression chamber (26), (27b) from the cylinder (22) outside) 11S.
), (28) prevents the backflow of gas refrigerant to 1-. Sliding valves (26c), (2'7c), and (28c) are installed. The suction bow (26a) of the main compression chamber (26) is connected to the evaporator (indoor heat exchanger (during cooling operation)
3) or an outdoor heat exchanger (9)) during heating operation, while the suction boats (27a) and (28a) of each sub-compressor (27) and si8) are connected to gas injection pipes (2o ).

(21)を介してメj応する気液分離器+7L (8+
に接続されている。¥1:た、上記メインおよびザブ圧
縮室12fi)。
Gas-liquid separator +7L (8+
It is connected to the. ¥1: The above main and sub compression chamber 12fi).

t27L 128+の各吐出ボー)(26b)、 (2
7b)、 (28b)はそれぞれ集合用配管(29)、
(13[f)、 +31+を介して連絡用配管(10)
に集合されて凝縮器(暖房運転時の室内熱交換器(3)
もしく(は冷房運転時の室外熱交換器(9))に接続さ
れている。
t27L 128+ each discharge bow) (26b), (2
7b) and (28b) are the collection pipe (29), respectively.
(13 [f), connecting pipe (10) via +31+
The condenser (indoor heat exchanger during heating operation (3)
Alternatively, it is connected to the outdoor heat exchanger (9) during cooling operation.

而して、冷暖房運転時、ロータ(23)か破線矢印方向
に回転するにしたがい、各圧縮室I213)1t27)
、+28)を膨張ぜしめて該圧縮室(26+、 t27
L (28+に各吸入ボート(26a)、 (2″7a
)、 (28a)から蒸発器(冷房運転時の室内熱交換
器(3)も1〜くCよ暖房運転時の室外熱交換器(9)
)からのガス冷媒および気液分離器+7)、 (8)で
分離された中間圧ガス冷媒をそれぞれ吸入しく吸入行程
)、さらに該ロータ123)か回動l〜て各圧縮室(2
G)・(27)、 12N−収縮I7て該各圧縮室12
[3)、 (27)、 (,28)のガス冷媒を圧縮し
、吐出ボート(26b)、 (27b)、 (28b)
から吐出(圧縮行程)するように構成されている。
Therefore, during heating and cooling operation, as the rotor (23) rotates in the direction of the dashed arrow, each compression chamber I213)1t27)
, +28) to expand the compression chamber (26+, t27).
L (28+ each suction boat (26a), (2″7a)
), (28a) to the evaporator (the indoor heat exchanger (3) during cooling operation is also connected to the outdoor heat exchanger (9) during heating operation)
) and the intermediate-pressure gas refrigerant separated by the gas-liquid separator +7) and (8), respectively.
G)・(27), 12N-contraction I7 and each compression chamber 12
[3), (27), (, 28) gas refrigerant is compressed and discharged from the boat (26b), (27b), (28b)
It is configured to discharge from (compression stroke).

次に、上記第1実施例の作動について説明するに、暖房
運転時、四路切換弁(2)を実線の如く切換えて、冷媒
を矢印の如く流通せしめ、室外熱交換器(9)(蒸発器
)からの低温ガス冷媒はメイン圧縮室(26)の吸入ポ
ート(26a)からメイン圧縮室(2G)に吸入された
後、該メイン圧縮室(26)で所楚圧に圧縮されて吐出
ポート(26b)から吐出される。一方、高圧’+uu
気液分離器(7)および低圧側気液分離器(8)からの
中間圧ガス冷媒はそれぞれ対応する高圧側および低圧側
のサブ圧□縮室(2′7)、咽の吸入ポート(2”a)
、 (2Eia)か゛ら各サブ圧縮室伐乃、し8)内に
中間圧吸入され児後、該各サブ圧縮室(27):(四で
メイン圧i室(2G)の吐出圧とほぼ同圧になる壕で圧
縮されて吐出ボート’(27b)。
Next, to explain the operation of the first embodiment, during heating operation, the four-way switching valve (2) is switched as shown by the solid line to allow the refrigerant to flow as shown by the arrow, and the outdoor heat exchanger (9) (evaporation The low-temperature gas refrigerant from the main compression chamber (26) is sucked into the main compression chamber (2G) from the suction port (26a) of the main compression chamber (26), and then compressed to a predetermined pressure in the main compression chamber (26) and sent to the discharge port. (26b). On the other hand, high pressure '+uu
The intermediate pressure gas refrigerant from the gas-liquid separator (7) and the low-pressure side gas-liquid separator (8) is transferred to the corresponding high-pressure side and low-pressure side sub-compression chambers (2'7) and throat suction ports (2'7), respectively. ”a)
(2Eia) After the intermediate pressure is sucked into each sub-compression chamber (27), the pressure is approximately the same as the discharge pressure of the main pressure chamber (2G). It is compressed in a trench and discharged into a boat' (27b).

(2’81))から吐出される。ついで、各吐出ボート
(26b)。
(2'81)). Then each discharge boat (26b).

(2’71))、 (28b)から吐出された吐出ガス
は、連絡用配管(10)内で集合され、室内熱交換器(
3)(凝縮器)で冷却液化され、第1膨□張機構(4)
で膨張して高圧側気液分離器(7)に送られ、該高圧側
気液分離器(7)で高圧設定の中間圧ガス冷媒と液冷媒
に分離される。
(2'71)), (28b) is collected in the communication pipe (10), and the indoor heat exchanger (
3) It is cooled and liquefied in the (condenser), and the first expansion mechanism (4)
The refrigerant is expanded and sent to the high-pressure side gas-liquid separator (7), where it is separated into an intermediate-pressure gas refrigerant set at a high pressure and a liquid refrigerant.

そして、該中間圧ガス冷媒は高圧側サブ圧縮室(27)
に中間圧吸入される一方で、液冷媒は第2膨張機構(5
)で膨張して低圧側気液分離器(8)に送られ、該低圧
1flJ気液亦離器(8)で低圧設定の中間圧ガス冷媒
と液冷媒に亦離されるみそして、該中間圧ガス冷媒は□
低圧側ザブ圧縮室(2siに中間圧吸入される一方ヤ、
液冷媒は第3膨:□張機構(6)でさらに膨張して室外
熱交換器′(9)に送ら゛れ、該室外熱交換器(9)(
蒸発器)で気化されるという中間圧ガス冷媒の2段吸入
、圧縮による冷媒循環量を増大させた暖房運転を行う。
The intermediate pressure gas refrigerant is then placed in the high pressure side sub compression chamber (27).
While the liquid refrigerant is sucked into the second expansion mechanism (5
) and sent to the low-pressure gas-liquid separator (8), where it is separated into an intermediate-pressure gas refrigerant set at a low pressure and a liquid refrigerant. Gas refrigerant is □
Low pressure side sub compression chamber (while intermediate pressure is sucked into 2si,
The liquid refrigerant is further expanded by the third expansion mechanism (6) and sent to the outdoor heat exchanger (9).
Heating operation is performed by increasing the amount of refrigerant circulation through two-stage suction and compression of intermediate-pressure gas refrigerant that is vaporized in the evaporator.

一方J冷房運転時、四路切換弁(2・)を破線の如く切
換えて冷媒を暖房運転時とは逆の方向に□流通昼しめて
冷房運転を行う。
On the other hand, during J cooling operation, the four-way selector valve (2) is switched as shown by the broken line to flow the refrigerant in the opposite direction to that during heating operation, thereby performing cooling operation.

したがらて、暖房運転時、□高圧側と低圧側とに□よる
中間圧ガ:ス冷媒の2段吸入、圧縮によるため、冷媒循
環量を増大させて暖房能力の向上を図ることができる。
Therefore, during heating operation, the intermediate pressure gas refrigerant is sucked in and compressed in two stages by the high pressure side and the low pressure side, so the amount of refrigerant circulation can be increased and the heating capacity can be improved.

しかも、高圧側および低圧側気液分離器[7)、 (8
)からの中間圧ガス冷媒は、それぞれ室外熱交換器(9
)(蒸祭器)からの低温ガス冷媒を圧縮するメイン圧縮
室(2匂とは別に設けられた中間圧ガス冷媒専用の高圧
側および低圧側サブ圧縮室(27)’、ρ句に中間圧吸
入されて圧縮されるので、各サブ圧縮室(2力。
Moreover, the high-pressure side and low-pressure side gas-liquid separators [7], (8
), the intermediate pressure gas refrigerant from each outdoor heat exchanger (9
) (steamer) (steamer) (main compression chamber for compressing low-temperature gas refrigerant from the steamer) (high-pressure side and low-pressure side sub-compression chambers (27) for intermediate-pressure gas refrigerant, which are provided separately from the 2-gas refrigerant, intermediate-pressure suction in ρ) Each sub-compression chamber (2 forces) is compressed.

怒の吸入ポート(鐙2L)、 (28a)の開口位置は
配慮する必要がなく、その分制約が減って中間圧ガス冷
媒−の吸入期間を長く設定でき、その結果、中間圧ガス
冷媒はあらゆる負荷条件のもとて最適量の全量が吸入可
能となって、インジェクション効果が一層高まシ、よっ
て暖房能力を大巾に向上でき、多動式冷凍サイクルの持
つ能力を充分発揮させることができる。
There is no need to consider the opening position of the suction port (stirrup 2L), (28a), which reduces restrictions and allows the suction period of the intermediate pressure gas refrigerant to be set longer.As a result, the intermediate pressure gas refrigerant The optimal amount can be inhaled under the load conditions, which further enhances the injection effect.Therefore, the heating capacity can be greatly improved, and the ability of the hyperactive refrigeration cycle can be fully demonstrated. .

また、各血液分離器(7)、 (81からの中間圧ガス
冷媒は、メイン圧縮室(26)とは別個の、吸入時にほ
ぼ対応する中間圧に保:たれている各サブ圧縮室(27
j 。
In addition, the intermediate pressure gas refrigerant from each blood separator (7), (81) is maintained at an intermediate pressure approximately corresponding to the time of inhalation in each sub compression chamber (27), which is separate from the main compression chamber (26).
j.

h8)m中間圧吸入時れるので、中間圧吸入時の圧力□
降下がなく、吸入後ダイレクトに中間圧から吐出圧まで
圧縮でき、よって圧縮仕事ロスがなく圧縮効率を高める
ことができ、インジェクション運転によ□るHEHの向
上f:8〜10%程度にまで引き上げることができる。
h8) Since m occurs when inhaling intermediate pressure, the pressure when inhaling intermediate pressure □
There is no drop, and compression can be performed from intermediate pressure to discharge pressure directly after suction.Therefore, there is no compression work loss, and compression efficiency can be increased, increasing HEH by injection operation f: about 8 to 10%. be able to.

加えて、上記蒸発器からのガス冷媒お”よび各気液分離
器(7)、 [81からめ中間圧ガス冷媒の圧縮癲1台
の圧縮機+1)で行うので、個別の圧縮機を使用すンパ
クト化を図ることができる。
In addition, since the gas refrigerant from the evaporator and each gas-liquid separator (7) are used to compress the intermediate-pressure gas refrigerant from 81 (1 compressor + 1), it is not necessary to use separate compressors. It is possible to achieve compactness.

尚、上記第1実施fj−cは圧縮機としてry  IJ
ングピストン形のものを用いたか、スライディングベー
ン形のものを用訊でもよく、同様の作用効果が得られる
In addition, the above first implementation fj-c uses ry IJ as a compressor.
The same effect can be obtained by using a sliding piston type or a sliding vane type.

さらに、第3図は本発明の第2実施例を示し、上記第1
′実施例では圧縮機(1)内にサブ圧縮室を2室設けて
中間圧ガス冷媒の2段吸入、圧縮としたことに代え、気
液分離器を1個とし、圧縮機(1)′内に1′つのメイ
ン圧縮室(26)’と1つのサブ圧縮室(2η′とを設
けて中間圧ガス冷媒の1段吸入、圧縮による暖房運転を
行うように構□成したものであり、上記第7実施例と同
様の□作用効果を奏し得るものである。 − □以上説明したように、本発偏によれば、コ一つ以上の
気液分離器とを備えた中間圧ガスインジェクションタイ
プの□と]トボング式−房装置におけるローリング−ス
トン形またはスライディング疋−ン形圧縮機のシリンダ
とロータとの間の空間を複数のベーンにより、メイン圧
縮室および1つ以上のザブ圧縮室に画成し、蒸発器から
のガス冷媒をメイン圧縮室で、気液分離器からの中間圧
ガス冷媒をザブ圧縮室でそれぞれ別々に圧縮するように
したので、コストダウン化およびコンパクト化を図りな
から、中間圧ガス冷媒を圧縮機に中間圧吸入する期間を
長くして最適量の全量が吸入可能となり、暖房能力を向
上することができる。しかも、中間圧ガス冷媒を吸入後
ダイレクトに中間1]にから吐出圧丑で圧縮して圧縮効
率を高めることができる。よってヒートポンプ式暖房装
置のE E RO犬「1コな改善を図ることができるも
のである。
Furthermore, FIG. 3 shows a second embodiment of the present invention, and FIG.
'In the embodiment, two sub-compression chambers were provided in the compressor (1) to provide two-stage suction and compression of the intermediate pressure gas refrigerant, and one gas-liquid separator was used in the compressor (1).' It is configured to have one main compression chamber (26)' and one sub-compression chamber (2η') inside to perform heating operation by first-stage suction and compression of intermediate-pressure gas refrigerant, The same □ operation and effect as in the seventh embodiment can be achieved. - □As explained above, according to the present invention, an intermediate pressure gas injection system equipped with one or more gas-liquid separators is provided. [Type □] Tobong type - The space between the cylinder and rotor of a rolling stone type or sliding stone type compressor in a chamber device is divided into a main compression chamber and one or more sub compression chambers by means of a plurality of vanes. The gas refrigerant from the evaporator is compressed separately in the main compression chamber, and the intermediate pressure gas refrigerant from the gas-liquid separator is compressed separately in the sub compression chamber, resulting in cost reduction and compactness. Therefore, by lengthening the period during which the intermediate pressure gas refrigerant is sucked into the compressor, the entire optimal amount can be sucked, and heating capacity can be improved.Furthermore, after the intermediate pressure gas refrigerant is sucked, the intermediate pressure gas refrigerant can be directly sucked into the compressor. ] It is possible to increase the compression efficiency by compressing with a discharge pressure.Therefore, it is possible to make one improvement in heat pump type heating equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の中間圧ガスインジェクションタイプのヒ
ートポンプ式暖房装置を示す全体構成図であり、第2図
および第3図は本発明の実施例を示し、第2図は第1実
施例の全体構成図、第3図は第2実施例の全体構成図で
ある。 +1)、 +1)’・・圧縮機、(3)・・室内熱交換
器、(4)・・第1膨張機構、(5)・・第2膨張機構
、(6)・・第3膨張機構、(7)・高圧側気液分離器
、(8)・・低圧側気液分離器、      1□ (9)・室外熱交換器、(四・・シリンダN (23)
・・ロータ、      1(25) 1.< −y、
(26L (’26)・1.、イア、。1.イ、(26
a)−1いカ   −ポート、(26b)・・吐出ボー
ト、127L +27)’・・サブ圧縮室、(27a)
・・吸入ボート、(2’7b)、、吐出ポート、(28
)−・サブ圧縮室、(28a、)・・吸入ボート、(2
8b)・・吐出ポート、(29)、 (3(〕)、 +
31+・・集合用配管。
Fig. 1 is an overall configuration diagram showing a conventional intermediate pressure gas injection type heat pump type heating device, Figs. 2 and 3 show embodiments of the present invention, and Fig. 2 shows the entire structure of the first embodiment. The block diagram, FIG. 3, is an overall block diagram of the second embodiment. +1), +1)'...Compressor, (3)...Indoor heat exchanger, (4)...First expansion mechanism, (5)...Second expansion mechanism, (6)...Third expansion mechanism , (7)・High-pressure side gas-liquid separator, (8)・・low-pressure side gas-liquid separator, 1□ (9)・Outdoor heat exchanger, (4・・Cylinder N (23)
...Rotor, 1 (25) 1. <-y,
(26L ('26)・1.,ia,.1.i,(26
a) -1 car port, (26b)...Discharge boat, 127L +27)'...Sub compression chamber, (27a)
・Suction boat, (2'7b), Discharge port, (28
)--Sub compression chamber, (28a,)... Suction boat, (2
8b)...Discharge port, (29), (3()), +
31+...Collection piping.

Claims (1)

【特許請求の範囲】[Claims] (1)  ローリングピストン形またはスライディング
ベーン形圧縮機(1)と、凝縮器(3)と、2つ以上の
膨張機構f4)、 f5)・・および該膨張機構t4)
、 f51・の各中間部に配設された1つ以上の気液分
離器(7)・・と、蒸発器(9)とを備え、上記蒸発器
(9)からのガス冷媒および上記気液分離器(7)・・
で分離さhた中間圧ガス冷媒をそれぞれ」二記圧縮磯(
1)で圧縮するようにし/ζζヒートポジ1暖房装置で
あって、上aα圧縮機(])のシリンダ(22)に配設
された複数のベーンf25)、f25)・・により、シ
リンダ(22)とロータ(23)との間の空間を各々吸
入ポート(26a)。 (2’l’a)−・と吐出ポート(26b)、 (2’
7b)、、とを有するメイン圧縮室(2G)および1つ
以上のザブ圧縮室(27)・に画威し、該メイン圧縮室
(26)の吸入ボート(26a)を上記蒸発器(9)に
接続する一方、サブ圧縮室(27)・・の吸入ボー)(
2’7a)・・を各々対応する気液分離器(7)・・に
接続し、上記メインおよびサブ圧縮室(26+、 (2
7+・・の各吐出ボー1− (26b)、 (2’i’
b)・・全集合して凝縮器(3)に接続したことを特徴
とするヒートポンプ式暖房装置。
(1) A rolling piston type or sliding vane type compressor (1), a condenser (3), two or more expansion mechanisms f4), f5)... and the expansion mechanism t4)
, one or more gas-liquid separators (7) disposed in each intermediate part of the evaporator (9), the gas refrigerant from the evaporator (9) and the gas-liquid Separator (7)...
The intermediate pressure gas refrigerant separated by
1)/ζζ Heat Posi 1 heating device, the cylinder (22) is and the rotor (23) respectively as suction ports (26a). (2'l'a)-- and discharge port (26b), (2'
7b), and one or more sub compression chambers (27), and the suction boat (26a) of the main compression chamber (26) is connected to the evaporator (9). On the other hand, the suction bow of the sub-compression chamber (27)...
2'7a)... are connected to the corresponding gas-liquid separators (7)..., and the main and sub compression chambers (26+, (2
Each discharge bow 1- (26b), (2'i'
b)...A heat pump type heating device characterized in that the entire set is connected to a condenser (3).
JP17811682A 1982-10-08 1982-10-08 Heat pump type heating apparatus Granted JPS5966663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17811682A JPS5966663A (en) 1982-10-08 1982-10-08 Heat pump type heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17811682A JPS5966663A (en) 1982-10-08 1982-10-08 Heat pump type heating apparatus

Publications (2)

Publication Number Publication Date
JPS5966663A true JPS5966663A (en) 1984-04-16
JPH0353532B2 JPH0353532B2 (en) 1991-08-15

Family

ID=16042933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17811682A Granted JPS5966663A (en) 1982-10-08 1982-10-08 Heat pump type heating apparatus

Country Status (1)

Country Link
JP (1) JPS5966663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004993A1 (en) * 2010-07-08 2012-01-12 パナソニック株式会社 Rotary compressor and refrigeration cycle device
WO2012004992A1 (en) * 2010-07-08 2012-01-12 パナソニック株式会社 Rotary compressor and refrigeration cycle device
WO2013061606A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Rotary compressor and refrigeration cycle device
CN105736379A (en) * 2014-12-12 2016-07-06 青岛海尔空调器有限总公司 Separate compression cavity and compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5824664B2 (en) * 2010-11-17 2015-11-25 パナソニックIpマネジメント株式会社 Rotary compressor and refrigeration cycle apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004993A1 (en) * 2010-07-08 2012-01-12 パナソニック株式会社 Rotary compressor and refrigeration cycle device
WO2012004992A1 (en) * 2010-07-08 2012-01-12 パナソニック株式会社 Rotary compressor and refrigeration cycle device
CN102575674A (en) * 2010-07-08 2012-07-11 松下电器产业株式会社 Rotary compressor and refrigeration cycle device
CN102597523A (en) * 2010-07-08 2012-07-18 松下电器产业株式会社 Rotary compressor and refrigeration cycle device
US8985985B2 (en) 2010-07-08 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor and refrigeration cycle apparatus
US8985984B2 (en) 2010-07-08 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor and refrigeration cycle apparatus
EP2592278A4 (en) * 2010-07-08 2015-08-12 Panasonic Corp Rotary compressor and refrigeration cycle device
CN102575674B (en) * 2010-07-08 2015-09-02 松下电器产业株式会社 Rotary compressor and refrigerating circulatory device
WO2013061606A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Rotary compressor and refrigeration cycle device
CN105736379A (en) * 2014-12-12 2016-07-06 青岛海尔空调器有限总公司 Separate compression cavity and compressor

Also Published As

Publication number Publication date
JPH0353532B2 (en) 1991-08-15

Similar Documents

Publication Publication Date Title
JP4569708B2 (en) Refrigeration equipment
US7225635B2 (en) Refrigerant cycle apparatus
US20100043475A1 (en) Co2 refrigerant system with booster circuit
JP5698160B2 (en) Air conditioner
KR101212681B1 (en) air conditioner
CN106595105B (en) Air regulator
WO2007063798A1 (en) Freezing apparatus
CN106568225B (en) Compressor and refrigerating plant who has it
JPH02230995A (en) Compressor for heat pump and operating method thereof
CN108931021B (en) Heat pump system and air conditioner with same
JPS5966663A (en) Heat pump type heating apparatus
JP2007263390A (en) Refrigerating cycle device
JP5127849B2 (en) Refrigeration cycle equipment
JP2001056157A (en) Refrigerating device
CN107228070A (en) Compressor and the refrigeration system with it
CN107202444A (en) Refrigeration system
CN111486609B (en) Air conditioning system and control method
JP5338231B2 (en) Two-stage compressor
CN208803997U (en) Pump is trapped using the ultralow temperature steam of scroll compressor
GB2438794A (en) Refrigeration plant for transcritical operation with an economiser
JP2615496B2 (en) Two-stage compression refrigeration cycle
CN111894855B (en) Rotary compressor, heat pump system and air conditioning system
JPS6230693Y2 (en)
JP2019039569A (en) Refrigeration circuit
JPH0730962B2 (en) Two-stage compression refrigeration cycle