JPS596639B2 - Method for producing alcohol using raw sweet seaweed as raw material - Google Patents

Method for producing alcohol using raw sweet seaweed as raw material

Info

Publication number
JPS596639B2
JPS596639B2 JP57020749A JP2074982A JPS596639B2 JP S596639 B2 JPS596639 B2 JP S596639B2 JP 57020749 A JP57020749 A JP 57020749A JP 2074982 A JP2074982 A JP 2074982A JP S596639 B2 JPS596639 B2 JP S596639B2
Authority
JP
Japan
Prior art keywords
mash
amylase
raw
fermentation
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57020749A
Other languages
Japanese (ja)
Other versions
JPS58138385A (en
Inventor
昌一 小西
光男 亀田
剛 岸森
良男 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINENERUGII SOGO KAIHATSU KIKO
Original Assignee
SHINENERUGII SOGO KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINENERUGII SOGO KAIHATSU KIKO filed Critical SHINENERUGII SOGO KAIHATSU KIKO
Priority to JP57020749A priority Critical patent/JPS596639B2/en
Publication of JPS58138385A publication Critical patent/JPS58138385A/en
Publication of JPS596639B2 publication Critical patent/JPS596639B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は、工業化に適した、生甘しょを原料とするアル
コールの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing alcohol using raw cane as a raw material, which is suitable for industrialization.

さらに詳しくいえば、本発明は、生甘しょからアルコー
ルを製造する際に、従来必要とされていた調製もろみの
pH調整を省略することができ、しかも100℃以下と
いう低温における蒸煮て殺菌及び糊化を行いうる新規な
アルコールの製造方法に関するものである。
More specifically, the present invention makes it possible to omit the pH adjustment of the prepared mash, which was conventionally required, when producing alcohol from raw sweet potatoes, and also to sterilize and paste the mash by steaming at a low temperature of 100°C or less. The present invention relates to a novel method for producing alcohol that can be converted into alcohol.

従来、生甘しょからアルコールを製造するには、先ず洗
浄した生甘しょをノ・ンマークラッシャーなどによって
割砕したのち蒸煮機に入れ、水張後かきまぜてジュース
状のスラリーいわゆる調製もろみを製造し、次いでこれ
に酸類を加えてpHを3近辺に調整したのち、加圧状態
下、120℃以上の温度に加熱して蒸煮を行う。
Conventionally, in order to produce alcohol from raw sweet potato, the washed raw sweet potato is first crushed using a no-mark crusher, then placed in a steamer, poured with water, and stirred to produce a juice-like slurry, so-called prepared mash. Next, acids are added to this to adjust the pH to around 3, and then steaming is performed by heating to a temperature of 120° C. or higher under pressure.

この蒸煮は、後の糖化工程において雑菌の繁殖が起らな
いように殺菌するためと、調製もろみのデンプン粒のミ
セル構造を破壊してテンプンを溶出させて糊化し、次の
液化工程におゆるα−アミラーゼによるデンプンのデキ
ストリン化と、糖化工程におけるβ−アミラーゼによる
アミローズ、アミロペクチン及びデキストリンの加水分
解を容易にしてアルコール収率をよくするために行われ
る。
This steaming is used to sterilize bacteria to prevent the growth of bacteria in the subsequent saccharification process, and also to destroy the micellar structure of the starch granules in the prepared mash to elute starch and gelatinize it, allowing it to be used in the next liquefaction process. This process is performed to improve the alcohol yield by facilitating the dextrinization of starch by α-amylase and the hydrolysis of amylose, amylopectin, and dextrin by β-amylase in the saccharification process.

この蒸煮後、80〜90℃に冷却してα−アミラーゼに
よる蒸煮もろみの液化を行ったのち、55℃でβ−アミ
ラーゼによる糖化を行う。
After this steaming, the steamed mash is cooled to 80 to 90°C and liquefied using α-amylase, and then saccharified using β-amylase at 55°C.

次いで30〜33℃に冷却したのち酒母を添加し、この
温度で約4日間保って発酵させ、最後に蒸留してアルコ
ールを得る。
After cooling to 30-33°C, yeast mash is added, kept at this temperature for about 4 days for fermentation, and finally distilled to obtain alcohol.

このように、従来の生甘しょを原料とするアルコールの
製造方法は、工程が長く、蒸煮温度が高い上に、装置に
ついても圧力容器である蒸煮機と発酵槽を別個に必要と
するなど、工業的に実施するには、必ずしも満足しうる
ものとはいえない。
As described above, the conventional method for producing alcohol using raw cane as a raw material requires a long process, a high steaming temperature, and requires separate equipment such as a steamer and a fermenter, which are pressure vessels. This is not necessarily satisfactory for industrial implementation.

本発明者らは、甘しょからアルコールを製造する際に、
できるだけ工程を簡略化し、かつ省エネルギーの見地か
らできるだけ低い温度の蒸煮により効率よく製品を得る
ことができる方法を開発するために、鋭意研究を重ねた
結果、生甘しょからの調製もろみについて従来必要とさ
れていたpH調整を省略し、また従来120℃以上で行
っていた蒸煮を100℃以下で行った場合、その後に行
われる糖化の際の酵素としてβ−アミラーゼとべクチナ
ーゼ又はセルラーゼとの組合せを用いることにより糖化
効率の低下を抑制しうろことを見出した。
The present inventors, when producing alcohol from sweet potato,
In order to simplify the process as much as possible and to develop a method that can efficiently obtain the product by steaming at the lowest possible temperature from the viewpoint of energy conservation, we have conducted intensive research and found that the mash for preparing raw sweet potato has not been previously required. If the conventional pH adjustment is omitted, and the steaming, which was conventionally carried out at 120°C or higher, is carried out at 100°C or lower, a combination of β-amylase and vectinase or cellulase is used as the enzyme for the subsequent saccharification. We have found that this can suppress the decline in saccharification efficiency.

本発明はこの知見に基づいてなされたものである。The present invention has been made based on this knowledge.

すなわち、、本発明は、生甘しょを原料としてアルコー
ルを製造するに当り、生甘しょからの調製もろみをpH
調整することなくそのまま100℃以下の温度で蒸煮し
て殺菌及び糊化したのち、α−アミラーゼを用いて液化
し、次いでβ−アミラーゼとべクチナーゼ又はセルラー
ゼとの組合せにより糖化し、その生成物をアルコール発
酵させることを特徴とするアルコールの製造方法を提供
するものである。
That is, in producing alcohol using raw sweet potato as a raw material, the present invention adjusts the pH of the mash prepared from raw sweet potato.
After being sterilized and gelatinized by steaming at a temperature below 100°C without any adjustment, the product is liquefied using α-amylase, and then saccharified using a combination of β-amylase and vectinase or cellulase, and the resulting product is converted into alcohol. The present invention provides a method for producing alcohol, which is characterized by fermentation.

従来の生甘しょを原料とするアルコールの製造方法にお
いては、調製もろみのpHを3近辺に調整したのち、蒸
煮機中で120℃以上の温度において加圧状態で蒸煮を
行い、次いで冷却してα一アミラーゼによる液化を行う
が、本発明方法は、前記調製もろみのpHを調整する必
要がなく、その上、比較的低温度、例えば70〜80℃
の温度で蒸煮すなわち殺菌及び糊化、並びにα−アミラ
ーゼによる液化を蒸煮機又は発酵槽中で同時に行うこと
ができるという利点がある。
In the conventional method for producing alcohol using raw sweet potatoes, the pH of the prepared mash is adjusted to around 3, then steamed under pressure in a steamer at a temperature of 120°C or higher, and then cooled. Although liquefaction is carried out using α-amylase, the method of the present invention does not require adjusting the pH of the prepared mash, and is also performed at a relatively low temperature, e.g. 70 to 80°C.
The advantage is that steaming or sterilization and gelatinization and liquefaction with α-amylase can be carried out simultaneously in a steamer or fermenter at a temperature of .

この殺菌、糊化及び液化の操作は30分間程度で十分で
あり、この操作によって調製もろみ中に存在する雑菌は
ほとんど滅菌されて、32℃で培養しても48時間以内
では雑菌の繁殖は認められない。
This sterilization, gelatinization, and liquefaction operation takes about 30 minutes, and most of the bacteria present in the prepared mash are sterilized by this operation, and even if cultured at 32°C, no growth of bacteria is observed within 48 hours. I can't do it.

生甘しょを原料とするアルコールの製造においては、4
8時間経過するまでに約80%のデンプンの糖化が行わ
れるので、この間に雑菌の繁殖がなければ、その後は酵
母の増殖が進んでいるため、雑菌などの繁殖が抑制され
る。
In the production of alcohol using raw cane as raw material, 4.
Approximately 80% of the starch has been saccharified by the time 8 hours have elapsed, so if there is no growth of bacteria during this time, the growth of yeast will continue after that, and the growth of bacteria will be suppressed.

したがって前記の条件においても調製もろみの殺菌は十
分であるといえる。
Therefore, it can be said that the sterilization of the prepared mash is sufficient even under the above conditions.

また、本発明に用いる調製もろみの糊化については、6
0〜65℃の温度で粘度上昇が急激に起ることから、前
記の70〜80℃の温度においては糊化は十分であり、
さらに液化酵素として用いるα−アミラーゼは75〜8
0℃の温度範囲において、該調製もろみを液化する最高
の力価を有している。
In addition, regarding gelatinization of the prepared mash used in the present invention, 6
Since the viscosity increases rapidly at a temperature of 0 to 65 °C, gelatinization is sufficient at the temperature of 70 to 80 °C,
Furthermore, α-amylase used as a liquefying enzyme is 75-8
It has the highest potency to liquefy the prepared mash in the temperature range of 0°C.

このように、本発明によれば生甘しょを原料とする調製
もろみの殺菌、糊化及び液化の3工程を蒸煮機又は発酵
槽中で同時に行うことができる。
As described above, according to the present invention, the three steps of sterilization, gelatinization, and liquefaction of prepared mash made from raw cane can be performed simultaneously in a steamer or a fermenter.

また、この作業温度が70〜80℃であるので、蒸煮機
を圧力容器とする必要がないという利点がある。
Further, since the working temperature is 70 to 80°C, there is an advantage that the steamer does not need to be a pressure vessel.

しかしながら、70〜80℃といった比較的低い温度に
おける調製もろみの蒸煮では、120℃以上の高温、加
圧蒸煮に比べて発酵歩合が若干低下するのを免れない。
However, when the prepared mash is steamed at a relatively low temperature of 70 to 80°C, the fermentation rate is inevitably slightly lower than when steamed under pressure at a high temperature of 120°C or higher.

これは該調製もろみ中の割砕物の未溶解によるデンプン
の溶出不足によるもので、これを改善するために、他の
本発明方法においては、前記したように該調製もろみの
殺菌、糊化及び液化を70〜80℃といった比較的低い
温度において蒸煮機又は発酵槽中で同時に行ったのち、
冷却して糖化酵素のβ−アミラーゼの他にペクチナーゼ
又はセルラーゼ若し《はセルラーゼを主体とする酵素を
併用して糖化を行うことが必要である。
This is due to insufficient elution of starch due to undissolved crushed material in the prepared mash. are carried out simultaneously in a steamer or fermenter at a relatively low temperature of 70 to 80°C, and then
It is necessary to cool and perform saccharification using pectinase, cellulase, or an enzyme mainly composed of cellulase in addition to the saccharifying enzyme β-amylase.

β−アミラーゼとともに前記の酵素類を併用して糖化を
行うことによって、蒸煮及び液化後のもろみのデンプン
や甘しょの繊維のミセル構造の膨潤が維持されたまま破
壊されるために糖化が促進されて発酵歩合が向上する。
By performing saccharification using β-amylase and the enzymes mentioned above, saccharification is promoted because the micellar structure of the starch and sweet potato fibers in the mash after steaming and liquefaction is destroyed while maintaining their swelling. This improves the fermentation rate.

セルラーゼを主体とする酵素としては、特にヘミセルラ
ーゼとべクチナーゼを補強したものが好適である。
As enzymes mainly composed of cellulase, those supplemented with hemicellulase and bectinase are particularly suitable.

また、この糖化は通常50〜60℃の温度で1〜2時間
行われる。
Moreover, this saccharification is normally performed at a temperature of 50 to 60°C for 1 to 2 hours.

本発明方法において液化酵素として用いるαーアミラー
ゼの製剤としては、例えばターマミノI/6OLやアミ
ラーゼ「アマノJAD−1が、糖化酵素として用いるβ
−アミラーゼの製剤としては、例えばグルクザイムAF
−6が挙げられ、またβーアミラーゼと併用するペクチ
ナーゼの製剤としてはペクチナーゼGLが、セルラーゼ
の製剤としてはセルラーゼTAP4が、ヘミセルラーゼ
とべクチナーゼを補強したセルラーゼを主体とする酵素
の製剤としてはビオセルザイムーACPなどが挙げられ
る。
Examples of α-amylase preparations used as a liquefying enzyme in the method of the present invention include Termamino I/6OL and amylase “Amano JAD-1”, which is used as a saccharifying enzyme.
- As amylase preparations, for example, Gluczyme AF
Pectinase GL is a pectinase preparation used in combination with β-amylase, Cellulase TAP4 is a cellulase preparation, and Biocellzyme ACP is an enzyme preparation mainly composed of cellulase supplemented with hemicellulase and vectinase. can be mentioned.

これらの酵素の使用量は、液化酵素として用いるα−ア
ミラーゼの場合、通常全糖に対して0,01〜0.1%
,糖化酵素として用いるβ−アミラーゼの場合は通常全
糖に対して0.05〜0.5係の範囲で用いられる。
In the case of α-amylase used as a liquefying enzyme, the amount of these enzymes used is usually 0.01 to 0.1% based on the total sugar.
In the case of β-amylase used as a saccharifying enzyme, it is usually used in an amount of 0.05 to 0.5 relative to the total sugar.

またβ−アミラーゼと併用されるペクチナーゼやセルナ
ーゼなどの場合は、通常β−アミラーゼに対して10〜
100係の範囲で用いられる。
In addition, in the case of pectinase or cellnase used in combination with β-amylase, it is usually
Used in the range of 100.

本発明方法は、調製もろみの蒸煮及び液化を70〜80
℃の温度で同一槽中において同時に行うことにより、蒸
煮機と発酵槽を兼用することができてもろみの移動が不
要となり、その上蒸煮機を圧力容器にする必要がない、
従来法に比べて蒸気の使用量が少ない、さらに蒸煮工程
と液化工程の間の冷却操作が必要なく、また蒸煮前に調
製もろみのpHを調整する必要がないために作業能率が
向上するなど、従来法に比べて優れた利点を有する6次
に参考例及び実施例によって本発明をさらに詳細に説明
する。
The method of the present invention involves boiling and liquefying the prepared mash for 70 to 80 minutes.
By carrying out the fermentation at the same temperature in the same tank at a temperature of °C, it is possible to use both the steamer and the fermenter, eliminating the need to move the mash, and also eliminating the need to use the steamer as a pressure vessel.
Compared to conventional methods, this method uses less steam, does not require cooling operations between the steaming process and the liquefaction process, and does not require adjusting the pH of the prepared mash before steaming, improving work efficiency. The present invention will now be described in further detail with reference to the sixth reference example and examples, which have superior advantages over conventional methods.

参考例 1 市販の生甘しょを裁断し、水と混合してミキサーで微細
に砕いて全糖約15係の調製もろみを調製し、無殺菌(
加熱なし)、80℃、30分及び132℃、60分の各
条件で前記調製もろみを処理したのち、細菌用肉汁寒天
培地及び酵母用こうじ汁寒天培地を用いて32℃で平面
培養を行い、24時間、48時間、72時経過後のコロ
ニー数を調べ、各条件における殺菌の度合を比較した。
Reference example 1 Cut commercially available raw sweet potato, mix it with water and crush it finely with a mixer to prepare prepared moromi with a total sugar content of about 15 parts, and make it unpasteurized (
After processing the prepared mash under the following conditions: (without heating), 80 ° C. for 30 minutes, and 132 ° C. for 60 minutes, planar culture was performed at 32 ° C. using a broth agar medium for bacteria and a koji juice agar medium for yeast. The number of colonies was examined after 24 hours, 48 hours, and 72 hours, and the degree of sterilization under each condition was compared.

その結果を第1表に示す。The results are shown in Table 1.

第1表から判るように、80℃、30分の条件では48
時間経過しても雑菌の繁殖がな《、72時間経過後よう
やくコロニーが発生している。
As can be seen from Table 1, under the conditions of 80℃ and 30 minutes, 48
Bacteria did not propagate even after a period of time had passed, and colonies finally appeared after 72 hours had passed.

甘しょを原料とするアルコール製造においては、48時
間経過するまでに約80%のデンプンの糖化が行われる
ので、この間に雑菌の繁殖がなげれば、その後は酵母の
増殖が進んでいるため雑菌などの繁殖が抑制される。
In the production of alcohol using sweet potato as a raw material, approximately 80% of the starch is saccharified within 48 hours, so if the growth of bacteria stops during this time, the growth of yeast will continue and the bacteria will disappear. The reproduction of etc. is suppressed.

したがって前記条件においても調製もろみの殺菌は十分
であるといえる。
Therefore, it can be said that the sterilization of the prepared mash is sufficient even under the above conditions.

参考例 2 参考例1と同様にして全糖約15係及び20%の調製も
ろみを作り、各温度における粘度を回転粘度計を用いて
測定し、調製もろみの糊化について調べた。
Reference Example 2 Prepared mash having a total sugar content of approximately 15% and 20% was prepared in the same manner as in Reference Example 1, and the viscosity at each temperature was measured using a rotational viscometer to examine gelatinization of the prepared mash.

その結果を第1図に示す。第1図から明らかなように、
60〜65℃から粘度が急激に上昇しており、したがっ
てこの温度からもろみの糊化が起ることが分る。
The results are shown in FIG. As is clear from Figure 1,
The viscosity increases rapidly from 60 to 65°C, which indicates that gelatinization of the mash occurs from this temperature.

参考例 3 参考例1と同様にして全糖約15係の調製もろみを調製
し、液化酵素のα−アミラーゼを添加し、各温度におけ
る液化力をBlbe Value 法によって測定し
た。
Reference Example 3 A mash having a total sugar content of approximately 15% was prepared in the same manner as in Reference Example 1, a liquefaction enzyme α-amylase was added, and the liquefaction power at each temperature was measured by the Blbe Value method.

なお、α−アミラーゼとしてターマミル60L(実線)
及びアミラーゼ「アマノ」AD−1(破線)の2種類を
用い、それぞれについて液化力を測定した。
In addition, Termamil 60L (solid line) is used as α-amylase.
and amylase "Amano" AD-1 (broken line), and the liquefaction power of each was measured.

その結果を第2図に示す。第2図から明らかなように、
両アミラーゼともに75〜80℃の温度において最高力
価を有している。
The results are shown in FIG. As is clear from Figure 2,
Both amylases have maximum titers at temperatures of 75-80°C.

実施例 1 市販の生甘しょ8901を細断し、地下水900mlと
混合してミキサーで微細に砕いて全糖約15係の調製も
ろみを調製した。
Example 1 Commercially available raw sweet potato 8901 was shredded, mixed with 900 ml of ground water, and finely ground with a mixer to prepare a prepared mash having a total sugar content of about 15 parts.

この調製もろみ300mlをマイセル発酵管を取付けて
ある500772l三角フラスコに採り、α−アミラー
ゼ製剤のターマミル60L7.2μt(全糖に対して0
.02係)を添加し、75〜80℃で20分間蒸煮及び
液化を行った。
Transfer 300ml of this prepared mash to a 500772L Erlenmeyer flask equipped with a Mycel fermentation tube, and add 7.2μt of Termamil 60L, an α-amylase preparation (0% to total sugar).
.. 02) was added and steamed and liquefied at 75 to 80°C for 20 minutes.

次いで55℃まで冷却し、糖化酵素であるβ−アミラー
ゼ製剤のグルク.ザイムAF−6を実験AIでは43.
51n?(全糖に対して0.1%)、実験A2では87
■(全糖に対して0.2’%)加えて55℃で60分間
糖化を行ったのち、32℃まで冷却してサツカ凸ミセス
セルビシー発研1号酵母15712gを添加して発酵さ
せアルコールを製造した。
Next, it was cooled to 55°C, and a glucose solution of β-amylase, which is a saccharifying enzyme, was cooled to 55°C. In experimental AI, Zyme AF-6 was 43.
51n? (0.1% based on total sugar), 87 in experiment A2
■ (0.2'% based on total sugar) and saccharified at 55℃ for 60 minutes, cooled to 32℃, added 15,712g of Satsuka debo Mrs. Servicy Hakken No. 1 yeast and fermented it to make alcohol. was manufactured.

なお、比較のため、前記調製もろみ3007117!!
を132℃で60分間加圧蒸煮したのち、グルクザイム
AF−6の添加量を26.17n?(全糖に対して0.
06%)とする以外は、A1実験と同様に液化、糖化及
び発酵を行ってアルコールを製造した(実験A.3)。
For comparison, the prepared mash 3007117! !
After pressure steaming at 132°C for 60 minutes, the amount of gluczyme AF-6 added was 26.17n? (0.0% based on total sugar.
Alcohol was produced by liquefaction, saccharification, and fermentation in the same manner as in Experiment A1, except that the alcohol was liquefied (Experiment A.3).

また、前記調製もろみ300mlを蒸煮や液化を行わず
に、32℃でグルクザイムAF−6130.1772!
/(全糖に対して0.3係)と実験羨1で用いた酒母1
5mlを添加して発酵させアルコールを製造した(実験
A4)。
In addition, 300 ml of the prepared mash was heated at 32°C without steaming or liquefying Gluczyme AF-6130.1772.
/ (0.3 ratio to total sugar) and Sake mash 1 used in Experiment 1
5 ml was added and fermented to produce alcohol (Experiment A4).

これらの実験の作業条件を第2表に、その結果を第3表
に示す。
The working conditions of these experiments are shown in Table 2, and the results are shown in Table 3.

なお、同一条件において4No実験を行い、その平均値
を用いた。
Note that 4 No experiments were conducted under the same conditions, and the average value was used.

これらの表から明らかなように、調製もろみのpHを調
整することなしに、75〜80℃という比較的低温度で
もろみの殺菌が可能であり、もろみの殺菌、糖化及び液
化の3工程を同一槽で同時に行いうる。
As is clear from these tables, it is possible to sterilize the mash at a relatively low temperature of 75 to 80°C without adjusting the pH of the mash, and the three steps of sterilization, saccharification, and liquefaction of the mash are the same. Can be done simultaneously in the tank.

実施例 2 実施例1と同様にして生甘しょを原料とする調製もろみ
を調製し、このもろみ300mlをマイセル発酵管を取
付けてある500772l三角フラスコに採り、ターマ
ミル60Lを加えて75〜80℃で蒸煮及び液化を行っ
たのち、55℃に冷却しグルクザイムAF−1及び他の
酵素を併用して糖化を行い、次いで32℃でサツカロミ
セスセルビシー酵母の酒母を添加して発酵させアルコー
ルを製造した。
Example 2 Prepare mash using raw cane as raw material in the same manner as in Example 1. 300 ml of this mash was placed in a 500772L Erlenmeyer flask equipped with a Mycel fermentation tube, 60L of Terma Mill was added, and the mixture was heated at 75 to 80°C. After steaming and liquefaction, it is cooled to 55°C and saccharified using gluczyme AF-1 and other enzymes, and then fermented at 32°C with the addition of Saccharomyces cervicii yeast mother to produce alcohol. did.

なお、比較のために、132℃で加圧蒸煮したのち、7
5〜80℃で液化を行い、次いでグルクザイムAF−1
のみを用いて55℃で糖化を行ったのち、32℃で発酵
させる場合、及び75〜80℃で殺菌、糊化、液化を同
時に行ったのち、グルクザイムAF−6のみを用いて5
5℃で糖化を行い、次いで32℃で発酵させる場合につ
いても実験を行った。
For comparison, after pressure steaming at 132℃,
Liquefaction is carried out at 5-80°C, and then gluczyme AF-1
When saccharification is carried out at 55°C using only Gluczyme AF-6 and then fermentation is carried out at 32°C, or after simultaneous sterilization, gelatinization and liquefaction at 75-80°C, 55°C is carried out using only Gluczyme AF-6.
Experiments were also conducted in which saccharification was performed at 5°C and then fermentation was performed at 32°C.

これらの実験の作業条件を第4表に、その結果を第5表
に示す。
The working conditions of these experiments are shown in Table 4, and the results are shown in Table 5.

なお、同一条件において2No実験を行い、その平均値
を用いた。
Note that 2 No experiments were conducted under the same conditions, and the average value was used.

第5表から明らかなように、75〜80℃で蒸煮と液化
を同時に行う場合、糖化酵素のβ−アミラーゼとべクチ
ナーゼやセルラーゼを併用して糖化を行うことによって
、β−アミラーゼのみを用いて糖化を行うのに比べて発
酵歩合が高《なる。
As is clear from Table 5, when steaming and liquefaction are carried out simultaneously at 75 to 80°C, saccharification is performed using a combination of the saccharifying enzymes β-amylase, bectinase, and cellulase, while saccharification is performed using only β-amylase. The fermentation rate is higher than when

特にペクチナーゼ(ペクチナーゼGL)を併用する場合
と、ヘミセルラーゼとべクチナーゼを補強したセルラー
ゼを主体とする酵素(ビオセルザイムACP)を併用す
る場合、無併用に比べて発酵歩合が約2係上昇し、13
2℃で加圧蒸煮する場合と同程度の発酵歩合となる。
In particular, when pectinase (Pectinase GL) is used in combination, and when an enzyme mainly composed of cellulase supplemented with hemicellulase and pectinase (Biocellzyme ACP) is used in combination, the fermentation rate increases by approximately 2 factors compared to when no combination is used.
The fermentation rate is about the same as in the case of pressure steaming at 2°C.

実施例 3 市販農林2号の生甘しょ16.i7を細断し、地下水と
混合してミキサーで微細に砕いたのち、内容積40tの
ステンレス製の発酵槽中に仕込み、全容量が約271に
なるようにさらに地下水を加えた。
Example 3 Commercially available Norin No. 2 raw sweet potato 16. After shredding i7, mixing it with groundwater and pulverizing it finely with a mixer, it was placed in a stainless steel fermenter with an internal volume of 40 tons, and groundwater was further added so that the total volume was about 271 tons.

次いでターマミル60Lを0.75ml添加し、75〜
80℃で30分間蒸煮及び液化を行ったのち、55℃ま
で冷却してグルクザイムAF−6、又はグルクザイムA
F−6とべクチナーゼGL,又はグルクザイムAF−6
とビオセルザイムACPを添加し、55℃で60分間糖
化を行った。
Next, 0.75 ml of Terma Mill 60 L was added, and 75~
After steaming and liquefying at 80°C for 30 minutes, it was cooled to 55°C to produce Gluczyme AF-6 or Gluczyme A.
F-6 and vectinase GL, or gluczyme AF-6
and Biocellzyme ACP were added, and saccharification was performed at 55°C for 60 minutes.

次いで32℃まで冷却してサツカロミセスセルビシー酵
母の酒母2500mlを添加して32℃で発酵させアル
コールを製造した。
Next, the mixture was cooled to 32°C, 2500 ml of Saccharomyces cervicii yeast mash was added, and fermentation was carried out at 32°C to produce alcohol.

発酵は112時間行い、各経過時間毎に発酵液を分析し
て発酵歩合、糖消費率を求めた。
Fermentation was carried out for 112 hours, and the fermented liquid was analyzed at each elapsed time to determine the fermentation ratio and sugar consumption rate.

第6表に谷酵素の使用量及び蒸煮もろみ及び糖化液の分
析値を、第7〜9表に各経過時間における発酵液の分析
値及び発酵歩合、糖消費率を示す。
Table 6 shows the amount of Tani enzyme used and the analysis values of the steamed mash and saccharified liquid, and Tables 7 to 9 show the analysis values of the fermentation liquid, fermentation ratio, and sugar consumption rate at each elapsed time.

実施例 4 工場周辺の農家から入荷した生甘しょ50tをハンマー
クラッシャーで15wrrL角以下に割砕し内容積50
klの蒸煮機2本に仕込み全容量40klになるように
さらに地下水を加える。
Example 4 50 tons of raw sweet potatoes received from farmers around the factory were crushed into pieces of 15 wrrL or less using a hammer crusher, and the internal volume was 50.
Fill two kl steamers and add groundwater until the total capacity is 40 kl.

次いでかきまぜながら生蒸気を入れ75〜80℃まで上
昇させ80℃でターマミル60Lを30k7添加し30
分間蒸煮及び液化を行ったのち100kl発酵槽へもろ
みを輸送し55℃まで冷却してグルクザイムAF−6又
はグルクザイムAF−6とべクテナーゼGLを添加し5
5℃で60分間糖化を行った。
Next, add live steam while stirring, raise the temperature to 75-80℃, and at 80℃ add 30k7 of Terma Mill 60L to 30℃.
After steaming and liquefying for 5 minutes, the mash was transported to a 100kl fermenter, cooled to 55°C, and gluczyme AF-6 or gluczyme AF-6 and Bectenase GL were added.
Saccharification was performed at 5°C for 60 minutes.

次いで32℃まで冷却してサツカロミセスセルビシー酵
母の酒母4.5〜9.0klを添加して32〜35℃で
発酵させアルコールを製造した。
Next, the mixture was cooled to 32° C., 4.5 to 9.0 kl of Saccharomyces cervicii yeast mother was added, and fermentation was carried out at 32 to 35° C. to produce alcohol.

発酵時間は119〜150時間行い各経過時間毎に発酵
液を分析して発酵歩合糖消費を求めた。
The fermentation time was 119 to 150 hours, and the fermentation liquid was analyzed at each elapsed time to determine the fermentation ratio and sugar consumption.

第10表に各酵素の使用量及び蒸煮もろみの分析値を第
11表及び第12表に各経過時間におゆ・る発酵液の分
析値及び発酵歩合、糖消費率を示す。
Table 10 shows the amount of each enzyme used and the analysis value of the steamed mash, and Tables 11 and 12 show the analysis value, fermentation ratio, and sugar consumption rate of the fermented liquid boiled at each elapsed time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は参考例2における調製もろみの粘度と温度との
関係を表わしたグラフ、第2図は参考例3における調製
もろみに対するα−アミラーゼの液化力と温度との関係
を表わしたグラフである。
Figure 1 is a graph showing the relationship between the viscosity and temperature of the prepared mash in Reference Example 2, and Figure 2 is a graph showing the relationship between the liquefaction power of α-amylase and temperature for the prepared mash in Reference Example 3. .

Claims (1)

【特許請求の範囲】 1 生甘し上を原料としてアルコールを製造するに当り
、生甘しょからの調製もろみをpH調整することなく、
そのまま100℃以下の温度で蒸煮して殺菌及び糊化し
たのち、α−アミラーゼを用いて液化し、次いでβ−ア
ミラーゼとべクチナーゼ又はセルラーゼとの組合せによ
り糖化し、その生成物をアルコール発酵させることを特
徴とするアルコールの製造方法。 2 調製もろみの殺菌、糊化及び液化の処理並びに糖化
、発酵を、同一反応容器中で行う特許請求の範囲第1項
記載の方法。
[Claims] 1. In producing alcohol using raw sweet potato as a raw material, without adjusting the pH of the mash prepared from raw sweet potato,
After sterilizing and gelatinizing the product by steaming it at a temperature below 100°C, it is liquefied using α-amylase, then saccharified using a combination of β-amylase and bectinase or cellulase, and the resulting product is subjected to alcohol fermentation. Characteristic alcohol production method. 2. The method according to claim 1, wherein the sterilization, gelatinization, and liquefaction treatments, as well as the saccharification and fermentation of the prepared mash are performed in the same reaction vessel.
JP57020749A 1982-02-12 1982-02-12 Method for producing alcohol using raw sweet seaweed as raw material Expired JPS596639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020749A JPS596639B2 (en) 1982-02-12 1982-02-12 Method for producing alcohol using raw sweet seaweed as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020749A JPS596639B2 (en) 1982-02-12 1982-02-12 Method for producing alcohol using raw sweet seaweed as raw material

Publications (2)

Publication Number Publication Date
JPS58138385A JPS58138385A (en) 1983-08-17
JPS596639B2 true JPS596639B2 (en) 1984-02-13

Family

ID=12035832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020749A Expired JPS596639B2 (en) 1982-02-12 1982-02-12 Method for producing alcohol using raw sweet seaweed as raw material

Country Status (1)

Country Link
JP (1) JPS596639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182542U (en) * 1984-05-14 1985-12-04 三菱自動車工業株式会社 torsional damper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763346B2 (en) * 2005-05-27 2011-08-31 名古屋コンテナー株式会社 Method for producing flammable liquid from garbage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182542U (en) * 1984-05-14 1985-12-04 三菱自動車工業株式会社 torsional damper

Also Published As

Publication number Publication date
JPS58138385A (en) 1983-08-17

Similar Documents

Publication Publication Date Title
US4092434A (en) Preparation of alcohol or alcoholic beverages
US8772001B2 (en) Alcohol product processes
Kelsall et al. Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation
US20060292677A1 (en) Use of corn with low gelatinization temperature for production of fermentation-based products
JPH0260317B2 (en)
JP4113252B2 (en) Method for producing liquid koji with enhanced plant fiber-dissolving enzyme, liquid koji obtained by the method and use thereof
CN110257209A (en) A method of utilizing composite biological enzyme preparation brewing liquid rice wine
Tong et al. Whole maize flour and isolated maize starch for production of citric acid by Aspergillus niger: A review
US4528198A (en) Preparation of low calorie beer with malt extract free of yeast lethal factors
US5053231A (en) Process for preparing an alcoholic product
CN101307278B (en) Production process of draft rice wine
CN100471942C (en) Technical method for producing distillate spirits through enzyme method of liquid saccharified rejuvenation cultivation by using rice as raw material
WO2008120233A1 (en) A process for the preparation of ethanol from starch
CN102260717A (en) Method for producing citric acid by fermentation
JPS596639B2 (en) Method for producing alcohol using raw sweet seaweed as raw material
JP2010017116A (en) Method of manufacturing organic acid using malted rice
JP3084396B2 (en) A method for producing alcoholic beverages using unsteamed raw materials
JP4570067B2 (en) Process for producing β-amylase
Tong Improving saccharification process by pre-swelling of normal maize starch granules for production of sugar and fermented chemicals
KR20180089047A (en) Manufacturing method of grain syrup using rice
RU2202606C2 (en) Method for preparing vegetable raw to microbiological conversion
TWI274757B (en) Method for the production of high-purity isomalto-oligosaccharide
WO2023114987A1 (en) Production of clean starch hydrolysates
JP2011078366A (en) Method for producing liquid malt enhanced in starch-degrading enzyme activity and in edible fiber-degrading enzyme activity
CN110184150A (en) A kind of brewing method of the low enzyme pretreatment of dilute salt