JP4570067B2 - Process for producing β-amylase - Google Patents

Process for producing β-amylase Download PDF

Info

Publication number
JP4570067B2
JP4570067B2 JP2003283715A JP2003283715A JP4570067B2 JP 4570067 B2 JP4570067 B2 JP 4570067B2 JP 2003283715 A JP2003283715 A JP 2003283715A JP 2003283715 A JP2003283715 A JP 2003283715A JP 4570067 B2 JP4570067 B2 JP 4570067B2
Authority
JP
Japan
Prior art keywords
amylase
enzyme
sweet potato
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003283715A
Other languages
Japanese (ja)
Other versions
JP2005046110A (en
Inventor
理 山川
誠 吉元
亨 熊谷
周作 多田
金愛 時村
隼雄 田之上
健一郎 池田
征勝 市来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Fine Chemicals Co Ltd
National Agriculture and Food Research Organization
Original Assignee
Daiwa Fine Chemicals Co Ltd
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Fine Chemicals Co Ltd, National Agriculture and Food Research Organization filed Critical Daiwa Fine Chemicals Co Ltd
Priority to JP2003283715A priority Critical patent/JP4570067B2/en
Publication of JP2005046110A publication Critical patent/JP2005046110A/en
Application granted granted Critical
Publication of JP4570067B2 publication Critical patent/JP4570067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

本発明は、β−アミラーゼの製造方法、及び、そのβ−アミラーゼによりマルトースを製造する技術に関する。β−アミラーゼは、一般的にマルトースの生産や澱粉の老化防止に用いられる。   The present invention relates to a method for producing β-amylase and a technique for producing maltose using the β-amylase. β-amylase is generally used for maltose production and starch aging prevention.

従来、β−アミラーゼは、大豆、小麦、大麦から抽出、精製して製造されるものが工業的に用いられている。これらのβ−アミラーゼのうち、前記大豆由来のものは、酵素活性が高く、耐熱性にも優れることが知られているが、高価である。その上、β−アミラーゼは、大豆油搾汁液の水可溶画分から製造されていたものの、近年、有機溶剤を用いた抽出により大豆油を得る製造方法が主流となり、β−アミラーゼはこの製造工程中で失活することから、β−アミラーゼの製造には適さなくなり、現在では大豆由来のβ−アミラーゼはあまり製造されていないという事情もある。また、前記小麦、大麦由来のものは、原料が豊富に入手できる等の理由から、安価ではあるが、耐熱性が低いために使用用途、条件に大きな制約を受けるという問題点があった。   Conventionally, what is manufactured by extracting and refine | purifying (beta) -amylase from soybean, wheat, and barley is used industrially. Among these β-amylases, those derived from soybean are known to have high enzyme activity and excellent heat resistance, but are expensive. Moreover, although β-amylase has been produced from a water-soluble fraction of soybean oil juice, in recent years, a production method for obtaining soybean oil by extraction using an organic solvent has become the mainstream, and β-amylase is produced by this production process. Since it is inactivated, it is not suitable for the production of β-amylase, and there is a situation that β-amylase derived from soybean is not so much produced at present. In addition, the wheat and barley-derived ones are inexpensive because of the availability of abundant raw materials and the like, but have a problem that they are severely restricted by usage and conditions because of their low heat resistance.

また、マルトースは、澱粉材料に前記β−アミラーゼ等の酵素剤を添加して糖化し、得られた糖化液を精製して製造される。この際の糖化温度は高いほど生産速度が早いが酵素が失活しやすく、酵素反応自体が効率よく行なわれないために、酵素の利用効率が低くなり不経済である。また糖化温度を低くすると酵素は失活しにくくなるが、その酵素反応に要する時間が長くなるとともに、雑菌の繁殖しやすい条件となり作業工程管理が煩雑になりがちで、しかも、酵素反応のための前処理の工程や後処理の工程と処理温度がおおきく異なり、作業工程のみならず、エネルギー効率の面からも不経済であるという問題が発生していた。   Maltose is produced by adding an enzyme agent such as β-amylase to a starch material and saccharifying the resulting saccharified solution. In this case, the higher the saccharification temperature, the faster the production rate, but the enzyme is easily deactivated, and the enzyme reaction itself is not performed efficiently. Lowering the saccharification temperature makes it difficult to inactivate the enzyme, but the time required for the enzyme reaction becomes longer, the conditions for easy propagation of miscellaneous bacteria tend to be complicated, and the work process management tends to be complicated. The processing temperature differs greatly from the pre-processing step and the post-processing step, and there is a problem that it is not economical not only from the work step but also from the viewpoint of energy efficiency.

そのため、大豆、小麦、大麦由来のβ−アミラーゼの代替となるβ−アミラーゼの製造方法が求められている。   Therefore, there is a demand for a method for producing β-amylase that is an alternative to β-amylase derived from soybean, wheat, and barley.

そこで、豊富な原材料を安価に入手可能なカンショに含まれるβ−アミラーゼの利用が検討されているが、サツマイモ(甘藷、以下、カンショと称する)から得られる酵素にはα−アミラーゼが含まれ、精製が困難である等の理由から、工業的に利用可能な水準に達していないという現状にある。 Therefore, the use of β-amylase contained in sweet potatoes that can be obtained from abundant raw materials has been studied, but the enzyme obtained from sweet potato (sweet potato, hereinafter referred to as sweet potato) contains α-amylase, Due to the difficulty of refining, it is in the current situation that it does not reach the industrially usable level.

従って、本発明の目的は、上記実情に鑑み、酵素活性が高く、耐熱性が高いβ−アミラーゼを得るとともに、そのβ−アミラーゼにより、高品質なマルトースを効率よく得る技術を提供することにある。   Therefore, in view of the above circumstances, an object of the present invention is to provide a technology for obtaining β-amylase having high enzyme activity and high heat resistance and efficiently obtaining high-quality maltose by the β-amylase. .

本発明者らは、カンショに含まれる酵素中のβ−アミラーゼについて鋭意研究した結果、このβ−アミラーゼは、比較的耐熱性が高いことがわかった。また、前記酵素は、特定の条件を選択することによって、含有するα−アミラーゼを選択的に失活させることができ、純度の高いβ−アミラーゼを得ることが出来る事を見出した。本発明は、上記新知見に基づきなされたものであって、上記目的を達成するための本発明のβ−アミラーゼの製造方法の特徴構成は、
カンショの搾汁液をpH3.9〜4.0に調整した酸性処理液を得るpH調整工程、
前記酸性処理液を59〜61℃で、35〜45秒加熱処理する加熱工程、
加熱処理された液を中和処理する中和処理工程、
を順に行なう点にある。
As a result of intensive studies on β-amylase in the enzyme contained in sweet potato, the present inventors have found that this β-amylase has relatively high heat resistance. Moreover, it has been found that the enzyme can selectively inactivate the α-amylase contained by selecting specific conditions, and a highly pure β-amylase can be obtained. The present invention has been made on the basis of the above-mentioned new findings, and the characteristic configuration of the method for producing β-amylase of the present invention for achieving the above object is as follows:
A pH adjusting step for obtaining an acidic treatment liquid obtained by adjusting the squeezed citrus juice to pH 3.9 to 4.0,
A heating step of heat treating the acidic treatment liquid at 59 to 61 ° C. for 35 to 45 seconds;
A neutralization treatment step for neutralizing the heat-treated liquid,
The point is to perform in order.

尚、前記カンショが九州140号、サニーレッドから選ばれる少なくとも一種を主成分とすることが好ましい。   The sweet potato is preferably composed mainly of at least one selected from Kyushu No. 140 and Sunny Red.

また、本発明のマルトースの製造方法は、カンショ由来のβ−アミラーゼを含有する酵素製剤を澱粉質原料に混合して澱粉から糖への転化反応をさせる事を特徴とする。 In addition, the method for producing maltose of the present invention is characterized in that an enzyme preparation containing β-amylase derived from sweet potato is mixed with a starch raw material to cause a conversion reaction from starch to sugar .

〔作用効果〕
つまり、カンショ由来の酵素中にはα−アミラーゼ、β−アミラーゼが含まれ、そのβ−アミラーゼについて鋭意研究の結果、カンショ由来のβ−アミラーゼは、現在汎用されている小麦、大麦由来のβ−アミラーゼに比べきわめて耐熱性に優れる。
[Function and effect]
In other words, α-amylase and β-amylase are included in the enzyme derived from potato, and as a result of earnest research on the β-amylase, β-amylase derived from potato is currently widely used in β-derived from wheat and barley. Excellent heat resistance compared to amylase.

従って、耐熱性の高いβ−アミラーゼを用いて糖の転化反応等を行なうと、その反応に必要な熱処理の際に、酵素活性が低下するような問題が起きにくくなるとともに、従来よりも高温条件下で反応を行なえることになるから、反応速度を上昇させられ、短時間で反応を終了でき、前記反応による生成物の生産性を向上させられる。また、通常このような反応を行なう場合には、天然有機物由来の反応ということになるから、雑菌の混入繁殖防止等に留意する必要があるが、雑菌の繁殖しにくい高温条件を選択することによって、このような衛生管理を容易にすることが出来、生成物の品質の向上、生産管理の省力化を図ることができる利点がある。   Therefore, when a sugar conversion reaction or the like is performed using β-amylase having high heat resistance, problems such as a decrease in enzyme activity are less likely to occur during the heat treatment necessary for the reaction, and the temperature is higher than that in the past. Since the reaction can be performed at a lower temperature, the reaction rate can be increased, the reaction can be completed in a short time, and the productivity of the product by the reaction can be improved. In addition, when such a reaction is usually performed, it is a reaction derived from a natural organic matter, so it is necessary to pay attention to prevention of contamination and propagation of various germs, but by selecting a high temperature condition in which the germs are difficult to propagate. Such hygiene management can be facilitated, and there is an advantage that the quality of the product can be improved and the labor of production management can be saved.

また、カンショ由来のβ−アミラーゼは澱粉から糖への転化反応に対する反応活性も高く、このβ−アミラーゼを用いてマルトース生産を行なえば、澱粉から糖への転化率が80%を超えることが後述の実験例より明らかになっており、特にマルトースの製造に有用であることがわかった。このようにしてマルトースを得ると、上述のように、衛生面で品質が高いものを生産性高く得ることが出来る。   In addition, β-amylase derived from sweet potato has a high reaction activity for the conversion reaction from starch to sugar. If maltose production is carried out using this β-amylase, the conversion rate from starch to sugar exceeds 80%. From the experimental examples, it was found that this was particularly useful for the production of maltose. When maltose is obtained in this manner, a product with high quality in terms of hygiene can be obtained with high productivity as described above.

さらに、上述のマルトース製造方法で得られたマルトースシラップは、従来のマルトースシラップに比べ、糖の転化率が極めて高く、シラップとして高品質であり、しかも、衛生面でも品質がきわめて高い。また、安価な原料で効率よく生産できるために製品を安価に供給するのにも役立つ。   Furthermore, the maltose syrup obtained by the above-described maltose production method has an extremely high sugar conversion rate as compared with the conventional maltose syrup, is high quality as a syrup, and is extremely high in hygiene. It is also useful for supplying products at low cost because they can be produced efficiently with inexpensive raw materials.

また、上述の酵素は、後述の実験例から明らかなように、特定の条件を選択することにより、前記α−アミラーゼのみを選択的に失活させることができる。そのため、純度の高いβ−アミラーゼを得ることができそのβ−アミラーゼに基づく糖の転化反応等を選択的に行うことが出来るようになった。   Moreover, the above-mentioned enzyme can selectively inactivate only the said alpha-amylase by selecting specific conditions so that it may become clear from the below-mentioned experiment example. Therefore, highly purified β-amylase can be obtained, and a sugar conversion reaction based on the β-amylase can be selectively performed.

また、さらに得られた実験事実として、種々のカンショをスクリーニングしたところ、九州140号、サニーレッドが、特に酵素含量の高いカンショであることがわかりβ−アミラーゼの製造の原料として適していることがわかった。   As a further experimental fact, when various sweet potatoes were screened, it was found that Kyushu No. 140 and Sunny Red are sweet potatoes with a particularly high enzyme content and are suitable as raw materials for the production of β-amylase. all right.

また、カンショ由来のα−アミラーゼは、貯蔵中に活性が上昇するため、収穫後速やかに加工することが望ましいことがわかった。   Moreover, since the activity of the α-amylase derived from sweet potato increases during storage, it was found that it is desirable to process it immediately after harvesting.

さらに、カンショ由来のβ−アミラーゼは精製されるほど酵素反応の選択性が高くなるものの、活性が低下することがわかり、カンショ粉末を過度に精製することなく、そのまま酵素製剤として用いると、マルトース製造などの用途で好適に用いられることも明らかになった。   Furthermore, although the sweet potato-derived β-amylase is highly purified, the selectivity of the enzyme reaction is increased, but the activity is found to decrease. If the sweet potato powder is used as an enzyme preparation without excessive purification, maltose production is possible. It has also been found that it can be suitably used for such applications.

尚、前記pH調整工程では、カンショの搾汁液をpH3.9〜4.0に調整することが好ましく、後述の実験例よりpH3.9未満だとβ−アミラーゼが失活するおそれがあって好ましく無い。   In the pH adjustment step, it is preferable to adjust the squeezed potato juice to pH 3.9 to 4.0. If the pH is less than 3.9 from the experimental examples described below, β-amylase may be inactivated. No.

また、加熱工程は、59〜61℃で、35〜45秒加熱処理することが好ましく、59℃以下だとα−アミラーゼの失活が十分でない。また、61℃以上による加熱だと、β−アミラーゼの失活のおそれがあって好ましくない。   Moreover, it is preferable to heat-process at 59-61 degreeC for 35 to 45 second, and when it is 59 degrees C or less, the inactivation of (alpha) -amylase is not enough. Further, heating at 61 ° C. or higher is not preferable because there is a risk of inactivation of β-amylase.

さらに、前記β−アミラーゼを用いた澱粉から糖への転化反応を行う場合には、65℃〜70℃で22〜26時間の処理を行うことが好ましく65℃以下だと上述の衛生管理上の問題があり、転化反応に要する時間が長くなって、反応効率が低下するという問題がある。一方、70℃以上だとβ−アミラーゼの活性が低下しやすく、酵素の耐久性が低くなるため、やはり、反応効率の低下につながる。特に上述の条件下で転化反応を行えば、澱粉からマルトースへの転化率が80%以上の特に高品質なマルトースシラップが効率よく得られるので好ましいといえる。   Furthermore, when the conversion reaction from starch to sugar using β-amylase is performed, it is preferable to perform the treatment at 65 ° C. to 70 ° C. for 22 to 26 hours. There is a problem, there is a problem that the time required for the conversion reaction becomes long and the reaction efficiency is lowered. On the other hand, when the temperature is 70 ° C. or higher, the activity of β-amylase tends to decrease, and the durability of the enzyme decreases. In particular, it is preferable to carry out the conversion reaction under the above-mentioned conditions since a particularly high-quality maltose syrup having a conversion rate from starch to maltose of 80% or more can be obtained efficiently.

以下に本発明の実施の形態を説明する。
<β−アミラーゼ>
カンショ(九州140号)の塊根搾汁液を得るとともに、この搾汁液に塩酸を添加してpH3.9〜4.0に調整する(pH調整工程)。この工程には、前記搾汁液を80mL/分、前記塩酸を4mL/分で連続的にミキサーに供給して、約1分50秒混合する連続的な処理を適用することが出来た。
Embodiments of the present invention will be described below.
<Β-amylase>
While obtaining tuberous root juice of sweet potato (Kyushu No. 140), hydrochloric acid is added to this juice and adjusted to pH 3.9 to 4.0 (pH adjustment step). In this step, it was possible to apply a continuous process in which the squeezed liquid was continuously supplied to the mixer at 80 mL / min and the hydrochloric acid was continuously supplied at 4 mL / min and mixed for about 1 minute 50 seconds.

次に、得られた酸性処理液を60℃で、約40秒加熱処理する(加熱工程)。ここで、加熱には加熱プレートを用いれば、連続的に加熱工程が行なえる。   Next, the obtained acidic treatment liquid is heated at 60 ° C. for about 40 seconds (heating step). Here, if a heating plate is used for heating, a heating process can be performed continuously.

このような処理により、前記搾汁液に含まれていたα−アミラーゼは失活し、β−アミラーゼを選択的に含有するものとなる。   By such treatment, α-amylase contained in the juice is inactivated, and β-amylase is selectively contained.

さらに、加熱処理された加熱処理液は、中和用のアンモニア水を用いて中和処理する(中和処理工程)。この工程には、前記加熱処理液を80mL/分、前記アンモニアを80mL/分で連続的にミキサーに供給して、約1分50秒混合する連続的な処理を適用することが出来た。この中和処理により得られた処理液はpH6.0〜6.2程度に中和される。   Furthermore, the heat-treated heat-treated liquid is neutralized using ammonia water for neutralization (neutralization treatment step). In this step, it was possible to apply a continuous treatment in which the heat treatment liquid was continuously supplied to the mixer at 80 mL / min and the ammonia was supplied at 80 mL / min and mixed for about 1 minute 50 seconds. The treatment liquid obtained by this neutralization treatment is neutralized to about pH 6.0 to 6.2.

このようにして得られたカンショ水抽出液は、冷水を用いた冷却プレートを用いて常温に冷却した後凍結乾燥して、粉末状のβ−アミラーゼ製剤に加工される。   The citrus water extract thus obtained is cooled to room temperature using a cooling plate using cold water, freeze-dried, and processed into a powdery β-amylase preparation.

このような処理により得られたこのβ−アミラーゼ製剤は、5233U/gDSのβ−アミラーゼ、ほぼ0U/gDSのα−アミラーゼを含有し、β−アミラーゼ活性が高く他の酵素活性の低い、高品質なβ−アミラーゼ製剤となっていることがわかった。   This β-amylase preparation obtained by such treatment contains 5233 U / gDS β-amylase, almost 0 U / gDS α-amylase, and has high β-amylase activity and low other enzyme activity. It turned out that it became the (beta) -amylase preparation which is the right.

尚、ここで、U/gDSとは、それぞれの固形分重量に対する酵素の活性量を示す単位である。また、βアミラーゼの活性を示すUは、過剰のα‐グルコシダーゼ存在下において、p−ニトロフェニルマルトペンタオシド(終濃度0.238%)にpH 5.8、40℃で作用するとき、反応初期の1分間に1μmolのp−ニトロフェノールを遊離するのに必要な酵素量を1Uとする。また、α−アミラーゼの活性Uは、0.27 mlの基質溶液(10 mmol/L塩化ナトリウム、2mmol/L塩化カルシウム、アミロースアズール5.4 mg 含有20 mmol/L リン酸ナトリウム緩衝液 (pH 5.8))に酵素液0.03 mlを添加し、40。Cで10分間反応させ、0.2mlの18%酢酸溶液を加えて反応を終了させ、遠心後上清に遊離してきた可溶性色素の595 nmの吸光度を2.5上昇させるに必要な酵素量をαーアミラーゼの1Uとした。   In addition, U / gDS is a unit which shows the activity amount of the enzyme with respect to each solid content weight here. U, which shows the activity of β-amylase, reacts with p-nitrophenyl maltopentaoside (final concentration 0.238%) at pH 5.8 and 40 ° C. in the presence of excess α-glucosidase. The amount of enzyme required to release 1 μmol of p-nitrophenol in the first minute is defined as 1 U. The activity U of α-amylase was 0.27 ml of a substrate solution (10 mmol / L sodium chloride, 2 mmol / L calcium chloride, amylose azure 5.4 mg containing 20 mmol / L sodium phosphate buffer (pH 5 8)) is added with 0.03 ml of enzyme solution and 40. The reaction is terminated for 10 minutes at C, 0.2 ml of 18% acetic acid solution is added to terminate the reaction, and the amount of enzyme required to increase the absorbance at 595 nm of the soluble dye released to the supernatant after centrifugation is increased by 2.5. 1 U of α-amylase was used.

尚、市販酵素製剤等に含有されるβ−アミラーゼ量は表1のようになっており、前記β−アミラーゼ製剤は高濃度のβ−アミラーゼを含有していると言えることがわかる。   The amount of β-amylase contained in commercially available enzyme preparations and the like is as shown in Table 1, and it can be understood that the β-amylase preparation contains a high concentration of β-amylase.

Figure 0004570067
Figure 0004570067

<マルトースシラップ>
37%コーンスターチ乳を水酸化カルシウムによりpH5.5に調整したものに、市販の耐酸耐熱α−アミラーゼ(大和化成社製クライスターゼY7)を混和して、95℃にて50分間混和させた。これにより、前記コーンスターチ乳が液化した液化液が得られる。前記液化液を130℃で10分間保持し、酵素を失活させるとともにDE2.0に調整した前処理液を得る。
<Maltose syrup>
A 37% corn starch milk adjusted to pH 5.5 with calcium hydroxide was mixed with a commercially available acid-resistant heat-resistant α-amylase (Chrytase Y7 manufactured by Daiwa Kasei Co., Ltd.) and mixed at 95 ° C. for 50 minutes. Thereby, the liquefied liquid which the said corn starch milk liquefied is obtained. The liquefied liquid is held at 130 ° C. for 10 minutes to inactivate the enzyme and obtain a pretreatment liquid adjusted to DE 2.0.

前記前処理液を65℃〜70℃に冷却させ、16U/gDSの前記β−アミラーゼ、1U/gDSの耐熱性プルラナーゼ(大和化成社製クライスターゼPL45)及び水を混合し、コーンスターチ濃度35%で糖化反応を行った。   The pretreatment liquid is cooled to 65 ° C. to 70 ° C., and 16 U / gDS of β-amylase, 1 U / gDS of heat-resistant pullulanase (Chrystase PL45 manufactured by Daiwa Kasei Co., Ltd.) and water are mixed, and the corn starch concentration is 35%. A saccharification reaction was performed.

65℃〜70℃で24時間澱粉から糖への転化反応を行うと、表2記載の組成となり、G2に該当するマルトース生成率が80%を超える高品質なマルトースシラップが得られることがわかった。また、この反応において雑菌汚染に起因するpH低下など衛生面に関する問題は認められなかった。   When the conversion reaction from starch to sugar was performed at 65 ° C. to 70 ° C. for 24 hours, it was found that the composition shown in Table 2 was obtained, and a high-quality maltose syrup having a maltose production rate corresponding to G2 exceeding 80% was obtained. . In this reaction, no problems related to hygiene such as a decrease in pH due to contamination with various bacteria were observed.

Figure 0004570067
Figure 0004570067

以下に、上述の実施の形態で用いた製造条件を選定し、効果を確認するために行った実験例を示す。
<カンショの選抜>
種々のカンショの塊根搾汁液に含まれるβ−アミラーゼ活性を調べたところ、図1に示すようになり、サニーレッド、九州140号などのカンショがβ−アミラーゼ製造に好適であることがわかった。
Below, the experiment example performed in order to select the manufacturing conditions used by the above-mentioned embodiment and confirm an effect is shown.
<Selection of sweet potato>
Examination of β-amylase activity contained in various potato tuber juices revealed that it was as shown in FIG. 1 and that potatoes such as Sunny Red and Kyushu No. 140 were suitable for β-amylase production.

尚、β−アミラーゼ活性は、96穴のマイクロプレートに20μLの搾汁液及び、20μLの合成基質p−ニトロフェニル−α−[D]マルトペンタオシド(5mmol/L)と2Uのαグルコシダーゼを加え、1分間撹拌した後、40℃で10分間恒温で酵素反応させ、0.2mLのトリズマ塩基を添加して反応を終了させた後、吸光度の測定により評価した。   The β-amylase activity was obtained by adding 20 μL of juice, 20 μL of synthetic substrate p-nitrophenyl-α- [D] maltopentaoside (5 mmol / L) and 2 U of α-glucosidase to a 96-well microplate. After stirring for 1 minute, the enzyme reaction was performed at 40 ° C. for 10 minutes at a constant temperature, and 0.2 mL of trizma base was added to terminate the reaction, and then evaluated by measuring absorbance.

このような活性測定法によれば、多品種のカンショを少ない基質量で迅速かつ簡便に評価できる。   According to such an activity measurement method, a variety of sweet potatoes can be evaluated quickly and easily with a small base mass.

さらに、前記カンショ塊根を貯蔵する場合、カンショ中のα−アミラーゼは経日的に活性が向上する(図2(a))のに対して、β−アミラーゼはほとんど活性が変化しない(図2(b))ために、カンショは収穫後直ちに加工するほど、β−アミラーゼ比率の高い酵素が抽出できることがわかる。   Furthermore, when storing the sweet potato tuber, the activity of α-amylase in sweet potato improves with time (FIG. 2 (a)), whereas the activity of β-amylase hardly changes (FIG. 2 ( b)) Therefore, it can be seen that the higher the β-amylase ratio is extracted, the more the sweet potato is processed immediately after harvesting.

尚、この実施例では12〜15℃の冷暗所にてカンショを貯蔵している。
<β−アミラーゼの耐熱性>
種々のβ−アミラーゼ製剤の耐熱性を調べたところ図3のようになった。
また、九州140号のβ−アミラーゼについて精製度合いの異なる酵素製剤について耐熱性を調べたところ、図4に示すようになった。
In this embodiment, sweet potatoes are stored in a cool dark place at 12 to 15 ° C.
<Thermal resistance of β-amylase>
When the heat resistance of various β-amylase preparations was examined, it was as shown in FIG.
Moreover, when the heat resistance was investigated about the enzyme formulation from which the refinement | purification degree differs about (beta) -amylase of Kyushu 140, it came to show in FIG.

図3より、カンショ由来のβ−アミラーゼ製剤は、大豆由来酵素製剤には及ばないものの、小麦フスマに比べて高い耐熱性を示すことがわかり、マルトース製造時の高温処理に対して高い耐性を示すことがわかった。また、図4より、酵素製剤の精製度が上がるにつれ、耐熱性が低下することがわかり、カンショ搾汁液には、β−アミラーゼの耐熱性を向上させる他の物質が含まれていることが予想される。従って、前記カンショ由来のβ−アミラーゼを高温で使用する目的で精製する場合、過度の精製は好ましくなく、むしろ、カンショ水抽出液をそのまま酵素製剤として用いることが望ましい場合があることがわかる。   From FIG. 3, it can be seen that the β-amylase preparation derived from sweet potato exhibits higher heat resistance than wheat bran, although it does not reach the enzyme preparation derived from soybean, and shows high resistance to high-temperature treatment during maltose production. I understood it. In addition, it can be seen from FIG. 4 that the heat resistance decreases as the degree of purification of the enzyme preparation increases, and the sweet potato juice is expected to contain other substances that improve the heat resistance of β-amylase. Is done. Therefore, when purifying the potato-derived β-amylase for the purpose of using it at a high temperature, it is understood that excessive purification is not preferable, and it may be desirable to use the citrus water extract as it is as an enzyme preparation.

尚、耐熱性は、各酵素製剤等の40℃における活性を100とし、昇温して20分保持した後の酵素活性(残存活性)を相対値で示してある。   In addition, heat resistance shows the enzyme activity (residual activity) after heating up and hold | maintaining for 20 minutes by setting the activity in 40 degreeC of each enzyme formulation etc. to 100 as a relative value.

さらに、上述の実施の形態において用いたβ−アミラーゼを種々の温度条件でマルトース製造に用いたところ、図5のようになった。図5より大麦由来のβ−アミラーゼを用いた場合には、58℃の反応条件において澱粉のマルトース生成率80%程度の高い反応性を示すが、反応温度を上げるに従って、急激に生成率が減少し、65℃では37%しか示さなくなるのに対して、カンショ由来のβ−アミラーゼは、65℃の高温域まで80%以上の高い生成率を維持しており、耐熱性に優れることがわかった。   Furthermore, when the β-amylase used in the above-described embodiment was used for maltose production under various temperature conditions, it was as shown in FIG. FIG. 5 shows that when barley-derived β-amylase is used, starch has a high maltose production rate of about 80% under the reaction conditions of 58 ° C., but the production rate decreases rapidly as the reaction temperature is increased. However, only 37% was exhibited at 65 ° C, whereas β-amylase derived from sweet potato maintained a high production rate of 80% or higher up to a high temperature range of 65 ° C, and was found to have excellent heat resistance. .

尚、図5における試験は、前記実施の形態におけるマルトースシラップの製造条件において、反応時間を48時間として行ったものである。
<α−アミラーゼの失活> 前記カンショ搾汁液の原液を種々の酸性条件下で110秒間撹拌し、40秒間熱処理した後アンモニア水を添加してpH6.0〜6.2に中和した酵素残存活性は、表3のようになった。
In addition, the test in FIG. 5 was performed by making reaction time into 48 hours on the manufacturing conditions of the maltose syrup in the said embodiment.
<Inactivation of α-Amylase> The stock solution of the sweet potato juice was stirred for 110 seconds under various acidic conditions, heat-treated for 40 seconds and then neutralized to pH 6.0 to 6.2 by adding aqueous ammonia. The activity was as shown in Table 3.

Figure 0004570067
Figure 0004570067

この結果から、カンショからβ−アミラーゼを抽出する際には搾汁液のpHを3.9〜4.0に調整して撹拌後、約60℃で40秒間保持する熱処理を行うことが好ましいことがわかる。
<別実施の形態>
β−アミラーゼの製造には、前記カンショ搾汁液に代えて、カンショ粉末、粉末からの抽出液、濃縮液等を用いてもよく、さらには、カンショ加工廃液であっても構わない。尚、カンショ加工廃液からβ−アミラーゼを抽出することとすれば、廃棄物の低減及び、資源の有効利用につながるために特に好ましい。
From this result, when β-amylase is extracted from sweet potato, it is preferable to adjust the pH of the juice to 3.9 to 4.0 and perform a heat treatment that is maintained at about 60 ° C. for 40 seconds after stirring. Recognize.
<Another embodiment>
For the production of β-amylase, instead of the sweet potato juice, sweet potato powder, a liquid extract from the powder, a concentrated liquid, or the like may be used. Note that it is particularly preferable to extract β-amylase from sweet potato processing waste liquid because it leads to reduction of waste and effective use of resources.

また、マルトースシラップの製造についても同様に、種々の澱粉材料を適用できる。   Similarly, various starch materials can be applied to the production of maltose syrup.

カンショ品種間でのβ−アミラーゼ活性の相違を示す図The figure which shows the difference of (beta) -amylase activity between sweet potato varieties カンショの貯蔵中におけるアミラーゼ活性の経日変化を示す図Figure showing daily changes in amylase activity during storage of sweet potato 原材料の種類間でのβ−アミラーゼの耐熱性の相違を示す図Diagram showing the difference in heat resistance of β-amylase between the types of raw materials 精製度の相違によるβ−アミラーゼの耐熱性の相違を示す図The figure which shows the difference in the heat resistance of (beta) -amylase by the difference in a refinement | purification degree β−アミラーゼの相違によるマルトース生成率の相違を示す図The figure which shows the difference in the maltose production rate by the difference in β-amylase

Claims (3)

サツマイモの搾汁液をpH3.9〜4.0に調整した酸性処理液を得るpH調整工程、
前記酸性処理液を59〜61℃で、35〜45秒加熱処理する加熱工程、
加熱処理された液を中和処理する中和処理工程、
を順に行なうβ−アミラーゼの製造方法。
A pH adjusting step for obtaining an acidic treatment liquid obtained by adjusting the squeezed liquid of sweet potato to pH 3.9 to 4.0,
A heating step of heat treating the acidic treatment liquid at 59 to 61 ° C. for 35 to 45 seconds;
A neutralization treatment step for neutralizing the heat-treated liquid,
A method for producing β-amylase, which is sequentially performed.
前記サツマイモが九州140号、サニーレッドから選ばれる少なくとも一種を主成分とする請求項1に記載のβ−アミラーゼの製造方法。 The method for producing β-amylase according to claim 1, wherein the sweet potato is mainly composed of at least one selected from Kyushu No. 140 and Sunny Red. 請求項1または2に記載のβ−アミラーゼの製造方法により製造されたβ−アミラーゼを含有する酵素製剤を澱粉質原料に混合して澱粉から糖への転化反応をさせるマルトースの製造方法。 A method for producing maltose, wherein an enzyme preparation containing β-amylase produced by the method for producing β-amylase according to claim 1 or 2 is mixed with a starch raw material to cause a conversion reaction from starch to sugar.
JP2003283715A 2003-07-31 2003-07-31 Process for producing β-amylase Expired - Fee Related JP4570067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283715A JP4570067B2 (en) 2003-07-31 2003-07-31 Process for producing β-amylase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283715A JP4570067B2 (en) 2003-07-31 2003-07-31 Process for producing β-amylase

Publications (2)

Publication Number Publication Date
JP2005046110A JP2005046110A (en) 2005-02-24
JP4570067B2 true JP4570067B2 (en) 2010-10-27

Family

ID=34268510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283715A Expired - Fee Related JP4570067B2 (en) 2003-07-31 2003-07-31 Process for producing β-amylase

Country Status (1)

Country Link
JP (1) JP4570067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199651A1 (en) 2013-06-13 2014-12-18 加賀谷 光夫 Sweet potato syrup and process for producing sweet potato syrup

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154553A (en) * 2016-04-03 2016-09-01 加賀谷 光夫 Potato syrup composition
JP6388460B1 (en) * 2017-04-24 2018-09-12 保雄 内田 Method for producing a beverage by saccharifying cereals
KR102015104B1 (en) * 2017-11-24 2019-08-29 (주)에스비푸드 A composition containing beta-amylase for producing maltose syrup and a producing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197757A (en) * 1992-02-07 1994-07-19 Natl Food Res Inst Method for separating beta-amylase
JPH07107974A (en) * 1993-10-13 1995-04-25 Showa Sangyo Co Ltd Production of soybean beta-amylase preparation
JPH10271992A (en) * 1997-02-21 1998-10-13 Cerestar Holding Bv Purified alpha-amylase stable to acid and obtained from fungi

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197757A (en) * 1992-02-07 1994-07-19 Natl Food Res Inst Method for separating beta-amylase
JPH07107974A (en) * 1993-10-13 1995-04-25 Showa Sangyo Co Ltd Production of soybean beta-amylase preparation
JPH10271992A (en) * 1997-02-21 1998-10-13 Cerestar Holding Bv Purified alpha-amylase stable to acid and obtained from fungi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199651A1 (en) 2013-06-13 2014-12-18 加賀谷 光夫 Sweet potato syrup and process for producing sweet potato syrup

Also Published As

Publication number Publication date
JP2005046110A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US20090117630A1 (en) Fermentation product processes
JPS6185198A (en) Saccharification of raw starch
HUE026621T2 (en) Mashing process
JP5828589B2 (en) Industrial production method of branched glucan having cyclic structure
CN105339494A (en) Pullulanase chimeras and polynucleotides encoding same
Lehmann et al. Production and physicochemical characterization of resistant starch type III derived from pea starch
TW200804428A (en) Production of crystalline short chain amylose
CN104540394A (en) Thermostable asparaginase variants and polynucleotides encoding same
CN108949861A (en) A method of preparing slow peptic dextrin
EP0141602B1 (en) Starch hydrolyzates and preparation thereof
WO2007010979A1 (en) Process for production of liquid koji
JP4570067B2 (en) Process for producing β-amylase
JP2009269843A (en) Isomaloligosaccharide and food or drink using the same
CN105209629A (en) Process for hydrolysis of starch
US20220408766A1 (en) Method for annealing pea starch
CN106173735A (en) A kind of production technology of Novel grain fermented beverage
JP3356238B2 (en) Mirin production method
TW200845918A (en) Production of resistant starch product having tailored degree of polymerization
JP2009112211A (en) Sparkling alcoholic beverage and method for producing the same
JPH0471466A (en) Production of water-soluble food fiber
JP3616926B2 (en) Potato paste recipe
US5525154A (en) Method for the hydrolysis of starchy materials by sweetpotato endogenous amylases
JP3076908B1 (en) Sweet drink
KR101444876B1 (en) Anti-leaching agent comprising cyclodextrin glucanotransferase and method for producing grain processed food using cyclodextrin glucanotransferase
US7037537B2 (en) Efficient process of obtaining high contents of bound-phenolic acid rich dietary fibre by activating in situ amylases through step-wise increase in temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees