JPS5966118A - Plasma x ray source - Google Patents

Plasma x ray source

Info

Publication number
JPS5966118A
JPS5966118A JP57177278A JP17727882A JPS5966118A JP S5966118 A JPS5966118 A JP S5966118A JP 57177278 A JP57177278 A JP 57177278A JP 17727882 A JP17727882 A JP 17727882A JP S5966118 A JPS5966118 A JP S5966118A
Authority
JP
Japan
Prior art keywords
electrodes
insulator
voltage
electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57177278A
Other languages
Japanese (ja)
Inventor
Susumu Oota
進 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57177278A priority Critical patent/JPS5966118A/en
Publication of JPS5966118A publication Critical patent/JPS5966118A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Abstract

PURPOSE:To improve dielectric strength and to increase the amount of X rays that can be taken out, by providing intermediate electrodes, which have through holes that agree with the through hole of an insulator, at the intermediate part of the insulator, and a means, which applies the voltages that are obtained by dividing a discharge voltage to be applied across electrodes to the intermediate electrodes. CONSTITUTION:Two intermediate electrodes 6 and 7, which have through holes whose center agrees with that of the through hole of an insulator 1, are provided at the intermediate part of the insulator 1, with an interval being provided. Voltages, which are obtained by dividing the voltage across electrodes 2 and 3 by resistors r1-r3, are applied to the intermediate electrodes 6 and 7. A trigger signal T is supplied to one intermediate electrode 6 from a trigger circuit. Since the voltages obtained by dividing the voltage across the electrodes 2 and 3 are applied to the intermediate electrodes 6 and 7, respectively, electric field inclination in a capillary becomes uniform. The part, wherein the electric field is concentrated or becomes unstable, does not exist. Therefore, the dielectric strength between the electrodes 2 and 3 becomes very high in comparison with a device, wherein divided voltages are not applied to intermediate electrodes.

Description

【発明の詳細な説明】 本発明はX線リソグラフィの如きX線利用技術を実施す
るのに適したプラズマX線源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma x-ray source suitable for implementing x-ray based techniques such as x-ray lithography.

X線リソグラフィ等では極めて大きな弾痕を持つX線を
発生する装置が望まれ、この要求に応えるべく第1図に
示すようなプラズマX線源が提案されている。同図にお
いて、1は例えばポリエチレンから成る円筒状絶縁体、
1aは例えば径約11mで長さが20 uである貫通孔
(キャピラリ)、2は例えば炭素で作られた接地電極、
3は同じく炭素で作られた高圧電極、4はやはり炭素で
作られたカソード、R1,R2は抵抗、Cb 、Cdは
コンデンサ、5は高圧電源、eは電子ビーム、PQはプ
ラズマを夫々示しており、少くとも絶縁体1.電極2.
3.及びカソード4は高真空容器中に入れられている。
In X-ray lithography and the like, an apparatus that generates X-rays with extremely large bullet holes is desired, and in order to meet this demand, a plasma X-ray source as shown in FIG. 1 has been proposed. In the figure, 1 is a cylindrical insulator made of polyethylene, for example;
1a is a through hole (capillary) with a diameter of about 11 m and a length of 20 u, 2 is a ground electrode made of carbon, for example,
3 is a high-voltage electrode also made of carbon, 4 is a cathode also made of carbon, R1 and R2 are resistors, Cb and Cd are capacitors, 5 is a high-voltage power supply, e is an electron beam, and PQ is a plasma. and at least an insulator 1. Electrode 2.
3. and cathode 4 are placed in a high vacuum container.

図示装置において、電源5の発生電圧を上昇させること
によってコンデンサCd及びcbは、夫□々充電される
。コンデンサCdの充電電圧が電極3.2間の絶縁耐圧
を越えると、その間には放電が起こる。放電はキャピラ
リ1aの内壁を伝わる沿面放電のかたちをとり、この放
電により絶縁材料が蒸発し、キャピラリ中には炭素、水
素等よりなるプラズマが形成される。それと同時に、高
圧電極3の電位は略々接地電位となるので、カソード4
の先端の電界が強まり、その部分から電子線が発生する
。この電子線は自己ピンチしながら上記プラズマに射突
し、それがプラズマと結合することによりプラズマ及び
イオンのエネルギーが上昇し、プラズマ密度も上昇する
ので、その結果強力なX線がパルス的に放出されるもの
である。
In the illustrated device, capacitors Cd and cb are each charged by increasing the voltage generated by power supply 5. When the charging voltage of the capacitor Cd exceeds the dielectric strength between the electrodes 3.2, discharge occurs between the electrodes 3.2. The discharge takes the form of a creeping discharge that travels along the inner wall of the capillary 1a, and this discharge evaporates the insulating material and forms plasma of carbon, hydrogen, etc. in the capillary. At the same time, the potential of the high voltage electrode 3 becomes approximately the ground potential, so the cathode 4
The electric field at the tip becomes stronger, and an electron beam is generated from that part. This electron beam hits the plasma while self-pinch, and when it combines with the plasma, the energy of the plasma and ions increases, and the plasma density also increases, resulting in the emission of powerful X-rays in a pulsed manner. It is something that will be done.

斯かる提案装置において、キャピラリ中の電位分布は電
極2,3の電位によって与えられているが、その間の距
離が20 ms程度と短く空間電荷等の影響により不安
定になり易いため、その絶縁耐圧が低くなってしまうこ
とは避けられない。そのため放電が低い電圧で開始され
てしまい、X線量を増すことは不可能であった。
In this proposed device, the potential distribution in the capillary is given by the potentials of electrodes 2 and 3, but because the distance between them is short, about 20 ms, it is easy to become unstable due to the effects of space charges, etc., so the dielectric strength of the capillary is It is inevitable that the Therefore, discharge started at a low voltage, making it impossible to increase the X-ray dose.

本発明はこの点に鑑みてなされたものであり、絶縁体の
中間に該絶縁体の貫通孔と一致した貫通孔を有する中間
電極を介在せしめ、更に該中間電極に電極2.3間に印
加される放電電圧を分圧した電圧を印加する手段を設番
ノることにより、絶縁耐圧全向上させ取出し得るX線量
を増すことを可能としている。以下、図面を用いて本発
明を詳述づる。
The present invention has been made in view of this point, and an intermediate electrode having a through hole that matches the through hole of the insulator is interposed between the insulators, and an electric voltage is applied between the electrodes 2 and 3 to the intermediate electrode. By providing a means for applying a voltage obtained by dividing the discharge voltage, it is possible to completely improve the dielectric strength voltage and increase the amount of X-rays that can be taken out. Hereinafter, the present invention will be explained in detail using the drawings.

第2図は本発明の一実施例の構成を示す断面図であり、
第1図の提案装置と異なるのは、絶縁体の中間に該絶縁
体の貫通孔と芯が一致した貫通孔を有する2つの中間電
極6.7を距離をおいて介在させ、各中間電極に電極2
.3間の電圧を抵抗’1+rz+r3によって分圧した
電圧を印加すると共に、一方の中間電極6に図示しない
トリガ回路からトリガ信号Tを供給するようにした点で
ある。
FIG. 2 is a sectional view showing the configuration of an embodiment of the present invention,
What is different from the proposed device shown in FIG. 1 is that two intermediate electrodes 6 and 7 having a through hole whose core coincides with the through hole of the insulator are interposed at a distance between each intermediate electrode. Electrode 2
.. 3 is applied by dividing the voltage between them by the resistors '1+rz+r3, and at the same time, a trigger signal T is supplied to one intermediate electrode 6 from a trigger circuit (not shown).

斯かる構成となせば、中間電極6,7に電極2゜3間の
電圧を分圧した電圧が夫々印加されているため、キャピ
ラリ内の電界傾斜は一様になり、電界が集中したり不安
定になる様な部分が存在しなくなる。従って電極2.3
間の絶縁耐圧は、中間電極に分圧した電圧が印加されな
い第1図の装置に比べ極めて高くなる。その結果本実施
例では、電極2.3間に印加出来る電圧を高めることが
出来1.その高い印加電圧に基づく多量のX線を取出ず
ことが可能どなる。本発明者の実験によれば、真空圧力
が1O−2Paにおいて第1図の装置では放電電圧が平
均的42KVであったが、本実施例では60KV以上に
向上したことが確認されている。
With such a configuration, the voltage obtained by dividing the voltage between the electrodes 2 and 3 is applied to the intermediate electrodes 6 and 7, respectively, so that the electric field gradient inside the capillary becomes uniform, and the electric field is neither concentrated nor uneven. There is no longer any part that would be stable. Therefore electrode 2.3
The dielectric strength between the two electrodes is extremely high compared to the device shown in FIG. 1 in which no divided voltage is applied to the intermediate electrodes. As a result, in this embodiment, the voltage that can be applied between the electrodes 2 and 3 can be increased.1. Due to the high applied voltage, it is possible to extract a large amount of X-rays. According to experiments conducted by the present inventors, it has been confirmed that while the discharge voltage in the apparatus shown in FIG. 1 was 42 KV on average at a vacuum pressure of 10-2 Pa, it was increased to 60 KV or more in this example.

更に、第1図の装置においては電極2.3間の放電は真
空中の沿面放電であることから、放電開始電圧に10〜
30%のばらつきを示す。この放電電圧のばらつきは、
最終出力であるX線発生量のばらつきをもたらしている
。その点本実施例では、中間電極6にトリガ信号を印加
出来るようにしであるため、コンデンサCdが沿面放電
の開始されμい成る一定電圧に充電された時、トリガ信
号−「を印加すれば、該信号によってキャピラリ内の電
界は急激な変化を示し、それにより電fi2゜3間の主
放電が起動される。従って放電を常に一定電圧で開始さ
せることが出来るため、発生するX線量は毎回一定とな
る。
Furthermore, in the device shown in Figure 1, since the discharge between the electrodes 2 and 3 is a creeping discharge in a vacuum, the discharge starting voltage is
It shows a variation of 30%. This variation in discharge voltage is
This results in variations in the amount of X-rays generated, which is the final output. On this point, in this embodiment, since the trigger signal can be applied to the intermediate electrode 6, when the capacitor Cd starts creeping discharge and is charged to a constant voltage of μ, if the trigger signal - is applied, Due to this signal, the electric field inside the capillary shows a sudden change, which starts the main discharge between the electric fi2 and 3. Therefore, since the discharge can always be started at a constant voltage, the amount of X-rays generated is constant every time. becomes.

更に、本発明は絶縁体の消耗の面でも極めて有利である
。第1図の装置では、コンデンサCd。
Furthermore, the present invention is extremely advantageous in terms of insulation consumption. In the device of FIG. 1, capacitor Cd.

cbを夫々100nF、放電電圧を40KVとした場合
、放電1回当りのキャピラリの消耗による内径の増大は
約10−に達する。つまり、約1゜0回の放電によって
キャピラリの内径は1111mから2 msになってし
まうことになり、より大きな電気エネルギーを注入し、
より多量のX線を取出そうとする場合にはこの消耗は一
層増人するので、問題はより深刻である。
When each cb is 100 nF and the discharge voltage is 40 KV, the increase in the inner diameter due to consumption of the capillary per discharge reaches approximately 10-. In other words, the inner diameter of the capillary will change from 1111 m to 2 ms by about 1°0 discharges, and larger electrical energy will be injected.
The problem becomes even more serious when attempting to extract a larger amount of X-rays, as this consumption increases even further.

その点、本実施例ではコンデンサCd 、Cbの容量、
放電電圧、キャピラリの形状を第1図のと同一とした場
合、絶縁体の消耗は1/2以下となっだ。特に、内径が
2 mmを越える段階では、その消耗速度は一層低下す
る。例えば、貫通孔の内径が3mmに到達J°るまでの
放電回数は、第1図の装置において約200回、本実施
例では500回以上であった。この様にキャピラリの消
耗が低減される理由は、中間電極部分の消耗が絶縁体の
消耗よりも少いことから、中間電極による遮蔽効果であ
ると考えられる。
In this regard, in this embodiment, the capacitances of capacitors Cd and Cb are
When the discharge voltage and capillary shape are the same as in Figure 1, the consumption of the insulator is less than 1/2. In particular, when the inner diameter exceeds 2 mm, the rate of wear is further reduced. For example, the number of discharges required until the inner diameter of the through hole reached 3 mm was approximately 200 times in the apparatus shown in FIG. 1, and over 500 times in this example. The reason why the consumption of the capillary is reduced in this way is considered to be the shielding effect of the intermediate electrode, since the consumption of the intermediate electrode portion is less than that of the insulator.

第3図はこの遮蔽効果を積極的に利用した他の実施例の
構成を示し、本実施例では、絶縁体の貫通孔の内径を電
極に開けられた貫通孔の内径よりも最初から大きくしで
ある。そのため、キャピラリの消耗は使用開始の当初か
ら極めて少くなり、放電ごとのX線発生量の変動は低減
され、しかもキャピラリの寿命も延ばすことが出来る。
FIG. 3 shows the configuration of another embodiment that actively utilizes this shielding effect. In this embodiment, the inner diameter of the through hole in the insulator is made larger from the beginning than the inner diameter of the through hole drilled in the electrode. It is. Therefore, the consumption of the capillary is extremely reduced from the beginning of use, the fluctuation in the amount of X-rays generated for each discharge is reduced, and the life of the capillary can be extended.

ところで、キャピラリの限度を越える消耗、或いは絶縁
体への導電性電極材の付着による絶縁性の低下は、共に
装置の寿命を決定する。第4図はその点を考慮した他の
実施例の構成を示す。本実施例では絶縁体1及び中間電
極6.7をパツキンPを介して電極2.3の間に挟持し
、該電極2゜3を絶縁物製のボルトB、及びナラh N
で結合することにより、放電に関与する部分を分解・組
立可能な構造としており、カソード4は電極3に取付け
られている。従って、変形又は絶縁性の低下の著しい部
分のみを交換することが可能となり、装置の寿命を更に
延ばすことが出来る。
Incidentally, consumption of the capillary beyond its limit or deterioration of insulation due to adhesion of conductive electrode material to the insulator both determine the lifespan of the device. FIG. 4 shows the configuration of another embodiment that takes this point into consideration. In this embodiment, the insulator 1 and the intermediate electrode 6.7 are sandwiched between the electrodes 2.3 via the packing P, and the electrodes 2.3 are connected to the insulating bolts B and the nuts N
The cathode 4 is attached to the electrode 3, so that the parts involved in discharge can be disassembled and reassembled. Therefore, it is possible to replace only the portions that are significantly deformed or have significantly deteriorated insulation properties, and the life of the device can be further extended.

尚、本実施例では真空範囲は、キャピラリを含む極く狭
い部分に限定されるので、構造が簡単になり、価格面で
も有利である。又、絶縁体の外側の領域は、耐圧向上の
ため、SFg等の絶縁ガス雰囲気としても良い。
In this embodiment, the vacuum range is limited to a very narrow area including the capillary, so the structure is simple and it is advantageous in terms of cost. Further, the area outside the insulator may be filled with an insulating gas atmosphere such as SFg to improve the withstand voltage.

尚、本発明は上述した実施例に限定されることなく幾多
の変形が可能である。例えば、上述した実施例では絶縁
体としてポリエチレン、電極材として高導電炭素を夫々
用いたが、絶縁体としてアルミナ磁器、電極材としてア
ルミニウムを用いても良く、要するに絶縁体と導電体の
組み合わせであれば、材質は問わない。電極材に高導電
炭素、絶縁体に低導電炭素(例えばダイヤモンドfiI
造成いは結晶性の良い炭素)を用いることも可能であり
、この場合には、純粋な炭素分子のみがキャピラリ中で
プラズマを形成することになり、プラズマから取出され
るX線の発生効率を向上させることが可能となる。その
理由は、絶縁体がポリエチレンである場合には、炭素と
水素の発生比率は略1:2となり、この水素成分がプラ
ズマ・エネルギーを吸収したり、或いは発生したX線を
吸収したりして、X線の発生効率を限定してしまうのに
対し、その様な吸収がなくなるからである。
Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, in the above embodiment, polyethylene was used as the insulator and highly conductive carbon was used as the electrode material, but alumina porcelain may be used as the insulator and aluminum may be used as the electrode material.In short, any combination of an insulator and a conductor may be used. However, the material does not matter. Highly conductive carbon for the electrode material and low conductive carbon for the insulator (e.g. diamond fiI)
It is also possible to use carbon with good crystallinity, in which case only pure carbon molecules will form plasma in the capillary, reducing the generation efficiency of X-rays extracted from the plasma. It becomes possible to improve the performance. The reason is that when the insulator is polyethylene, the ratio of carbon to hydrogen generation is approximately 1:2, and this hydrogen component absorbs plasma energy or the generated X-rays. This is because such absorption is eliminated, while limiting the efficiency of X-ray generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は提案装置の4i造を示す断面図、第2図乃至第
4図は夫々本発明の一実施例の構造を示す断面図である
。 1:絶縁体、2:接地電極、3.:高圧電極、6.7:
中間電極、rt、rz、r3:分圧抵抗T:トリガ信号
FIG. 1 is a sectional view showing a 4i structure of the proposed device, and FIGS. 2 to 4 are sectional views showing the structure of an embodiment of the present invention. 1: Insulator, 2: Ground electrode, 3. :High voltage electrode, 6.7:
Intermediate electrode, rt, rz, r3: voltage dividing resistor T: trigger signal.

Claims (1)

【特許請求の範囲】 1、貫通孔を有する絶縁体と、該絶縁体を挾んで対向す
る一対の電極と、該電極間に放電電圧を印加する手段と
、前記電極の対向方向に沿った位置において前記電極に
対向するように配置されたカソードと、該カソードと前
記電極対のうち、より−遠方に位置する電極との間に放
電電圧を印加する手段とを右するプラズマX線源におい
て、前記絶縁体の中間に中間電極を介在せしめ、該中間
電極に前記電極間に印加される放電電圧を分圧した電圧
を印加する手段を設けたことを特徴とするプラズマX線
源。 2、前記中間電極にトリガ電圧を印加する手段を備えた
特許請求の範囲第1項記載のプラズマX線源。 3、前記絶縁体の貫通孔の内径を前記中間電極の貫通孔
の内径よりも大きくした特許請求の範囲第1項又は第2
項記載のプラズマX線源。 4、電極材料として高導電炭素を、絶縁体拐料として低
導電炭素を用いる特許請求の範囲第1項又は第3’ll
のいずれかに記載のプラズマX線源。
[Claims] 1. An insulator having a through hole, a pair of electrodes facing each other with the insulator in between, means for applying a discharge voltage between the electrodes, and positions of the electrodes along the opposing direction. A plasma X-ray source comprising: a cathode disposed to face the electrode; and means for applying a discharge voltage between the cathode and an electrode located further away from the electrode pair; A plasma X-ray source, characterized in that an intermediate electrode is interposed between the insulators, and means for applying a divided voltage of the discharge voltage applied between the electrodes to the intermediate electrode. 2. The plasma X-ray source according to claim 1, further comprising means for applying a trigger voltage to the intermediate electrode. 3. Claim 1 or 2, wherein the inner diameter of the through hole in the insulator is larger than the inner diameter of the through hole in the intermediate electrode.
Plasma X-ray source as described in section. 4. Claim 1 or 3'll using high conductivity carbon as an electrode material and low conductivity carbon as an insulating material
The plasma X-ray source according to any one of the above.
JP57177278A 1982-10-08 1982-10-08 Plasma x ray source Pending JPS5966118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177278A JPS5966118A (en) 1982-10-08 1982-10-08 Plasma x ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177278A JPS5966118A (en) 1982-10-08 1982-10-08 Plasma x ray source

Publications (1)

Publication Number Publication Date
JPS5966118A true JPS5966118A (en) 1984-04-14

Family

ID=16028245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177278A Pending JPS5966118A (en) 1982-10-08 1982-10-08 Plasma x ray source

Country Status (1)

Country Link
JP (1) JPS5966118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109884A (en) * 2011-11-18 2013-06-06 Canon Inc Radiation tube and radiation generating apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109884A (en) * 2011-11-18 2013-06-06 Canon Inc Radiation tube and radiation generating apparatus using the same

Similar Documents

Publication Publication Date Title
JPS61105883A (en) Laterally excited super gas laser and driving thereof
US5438587A (en) Preionizer for laser assembly
US5075592A (en) Gas discharge switch
Jedynak Vacuum insulation of high voltages utilizing dielectric coated electrodes
Van Atta et al. A new design for a high-voltage discharge tube
US2501882A (en) High-voltage high-vacuum acceleration tube
JPH0697594B2 (en) Electron beam control switch
US2820142A (en) Charged-particle accelerator
EP0095311B1 (en) Ion source apparatus
Hackam et al. Electrical breakdown of a point‐plane gap in high vacuum and with variation of pressure in the range 10− 7− 10− 2 Torr of air, nitrogen, helium, sulphur hexafluoride, and argon
JPS5966118A (en) Plasma x ray source
JPH0213900A (en) Sealed high beam flux neutron tube
US3614440A (en) Gas ionizer devoid of coaxial electrodes
JPS5966119A (en) Plasma x ray source
DE19945758A1 (en) Gas discharge lamp
JP2988764B2 (en) Accelerator tube of DC voltage accelerator
Nazarov et al. A source of high-density pulsed electron beams with energies up to 40 keV
US3973158A (en) Device comprising an ion source in which the ions are accelerated in a direction perpendicular to a magnetic field of high intensity
US4788691A (en) Method for the operation of a gas laser and a gas laser operated in accord therewith
US3198968A (en) Thermoelectric conversion process and apparatus
JPS58161234A (en) Field emission type charged particle generator
US2430482A (en) Gaseous electric lamp
Makabe et al. Relationship between field emission current characteristic and electrical breakdown in vacuum
JPS61135041A (en) Low pressure arc discharge lamp with increased voltage
Urai et al. High-repetition-rate operation of the wire ion plasma source using a novel method