JPS5965602A - Hydraulic drive controller for internal body - Google Patents

Hydraulic drive controller for internal body

Info

Publication number
JPS5965602A
JPS5965602A JP17661282A JP17661282A JPS5965602A JP S5965602 A JPS5965602 A JP S5965602A JP 17661282 A JP17661282 A JP 17661282A JP 17661282 A JP17661282 A JP 17661282A JP S5965602 A JPS5965602 A JP S5965602A
Authority
JP
Japan
Prior art keywords
valve
relief valve
pressure
inertial body
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17661282A
Other languages
Japanese (ja)
Inventor
Michinobu Hirota
道信 広田
Yoichi Komoriya
陽一 小森谷
Haruo Hosono
細野 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP17661282A priority Critical patent/JPS5965602A/en
Publication of JPS5965602A publication Critical patent/JPS5965602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To prevent the occurrence of a rocking back phenomenon in an inertial body, by bringing down the setting pressure of a bypass relief valve to some extent by degrees in time of braking the inertial body, while reducing the braking force automatically and continuously. CONSTITUTION:A solenoid selector valve 22 and a relief valve 23 both are connected to the bent port of a bypass relief valve 21 of a brake valve 5, while the upstream side of the relief valve 23 is connected to a chamber 28 where the pressure receiving area of a differential cylinder 27 is large, then a primary side port of the bypass relief valve 21 is connected to another chamber 29 where the pressure receiving area of the differential cylinder 27 is small, and furthermore a piston 34 of the said cylinder 27 is connected to a spring 35 of the relief valve 23. With this method, in time of braking, the solenoid selector valve 22 is changed to a position B whereby the piston rod 34 goes to the left and the setting pressure of the relief valve 23 is gradually brought down to some extent, so that braking force is reduced automatically and continuously, thus a rocking back phenomenon in an inertial body can be prevented.

Description

【発明の詳細な説明】 本発明は、大型ショベルのような大きい負荷(以下慣性
体という)を液圧で駆動後制動する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for driving and then braking a large load (hereinafter referred to as an inertial body) such as a large excavator using hydraulic pressure.

この種の従来装置の一例を第1図について説明すると、
(1)は液圧源、(2)は流量制御弁、(3)。
An example of this type of conventional device will be explained with reference to FIG.
(1) is a hydraulic pressure source, (2) is a flow control valve, and (3).

(4)はそれぞれカウンタバランス弁、(5)はブレー
キ弁、(6)は液圧モータ、(7)はブレーキ弁(5)
に内蔵されたバイパス用リリーフ弁(8)のベントポー
トに接続されたベント回路で、電磁切換弁(9)とその
下流にIJ IJ−フ弁(10)を介装している。この
従来装置では、流量制御弁(2)を例えば位置Aにとっ
て液圧源(1)からの作動液を流路(11)を経て液圧
モータ(6)に導き、液圧モータ(6)からの排出液は
流路(121、カウンタバランス弁(4)、流量制御弁
(2)を経てタンク(131に戻し、慣性体(図示せず
)を液圧モータ(6)によシ一方向に駆動せしめている
状態において、その駆動を停止すべく流量制御弁(2)
を中立位置に戻すと、液圧源(1)からの作動液は流量
制御弁(2)からタンク(131に戻るため液圧モータ
(6)を駆動しないが、との液圧モータは慣性体の慣性
力によりポンピングをし、流路ODから吸入したタンク
側作動液を流路(12jへ排出するため、流路(12)
側の液圧は上昇する。一方、流量制御弁(2)を中立位
置に戻すと、カウンタバランス弁(4)はそのパイロッ
ト圧が略タンク圧1で低下しバイパス用IJ IJ−フ
弁(8)の設定圧力より犬となるから、液圧モータ(6
)とカウンタバランス弁(4)との間の液圧がバイパス
用IJ IJ−フ弁(8)の設定圧力に達する古、作動
液がリリーフ弁(8)、チェック弁(14)、流路(1
1)、液圧モータ(6)、流路(121、チェック弁(
15)、リリーフ弁(8)と循環し液圧モータ(6)は
制動されることになる。この場合、ベント回路(7)が
欠如しているものでは、バイパス用IJ IJ−フ弁(
8)が閉じて液圧モータ(6)が停止した時液圧モータ
(6)とカウンタバランス弁(4)との間の液圧はバイ
パス用す1,1−フ弁(8)の設定圧力と略同圧となり
、流路(11)の液圧(略タンク圧)との間に大きい圧
力差が生じる結果、−たん停止しだ液圧モータ(6)は
慣性体を伴って反転し始める(慣性体の揺戻り現象)。
(4) is a counterbalance valve, (5) is a brake valve, (6) is a hydraulic motor, and (7) is a brake valve (5).
The vent circuit is connected to the vent port of the bypass relief valve (8) built into the vent circuit, and includes an electromagnetic switching valve (9) and an IJ-F valve (10) downstream thereof. In this conventional device, the flow control valve (2) is set at position A, for example, and the hydraulic fluid from the hydraulic pressure source (1) is guided to the hydraulic motor (6) via the flow path (11). The discharged liquid is returned to the tank (131) through the flow path (121, counterbalance valve (4), and flow rate control valve (2), and the inertial body (not shown) is driven in one direction by the hydraulic motor (6). The flow control valve (2) is used to stop the drive while it is being driven.
When the hydraulic motor (6) is returned to the neutral position, the hydraulic fluid from the hydraulic pressure source (1) returns from the flow control valve (2) to the tank (131) and does not drive the hydraulic motor (6). In order to pump the tank-side hydraulic fluid sucked in from the flow path OD by the inertia of the flow path (12j),
The hydraulic pressure on the side increases. On the other hand, when the flow control valve (2) is returned to the neutral position, the pilot pressure of the counterbalance valve (4) decreases to approximately tank pressure 1, and becomes lower than the set pressure of the bypass IJ IJ-F valve (8). from the hydraulic motor (6
) and the counterbalance valve (4) reaches the set pressure of the bypass valve (8), the hydraulic fluid flows through the relief valve (8), check valve (14), and flow path ( 1
1), hydraulic motor (6), flow path (121, check valve (
15) and the relief valve (8), and the hydraulic motor (6) is braked. In this case, if the vent circuit (7) is missing, the bypass IJ IJ-F valve (
8) is closed and the hydraulic motor (6) stops, the hydraulic pressure between the hydraulic motor (6) and the counterbalance valve (4) is the set pressure of the bypass valve (8). As a result, a large pressure difference is created between the hydraulic pressure in the flow path (11) (approximately tank pressure), and the hydraulic motor (6) immediately stops and begins to reverse with an inertial body. (Swinging back phenomenon of inertial body).

この点、バイパス用リリーフ弁(8)に図示のようなベ
ント回路(7)を設け、その電磁切換弁(9)が流量制
御弁(2)の中ケ位置復帰で位置Bから位置Aに切換わ
るようにすれば、制動時のバイパス用IJ IJ−フ弁
(8)の設定圧力はIJ IJ−フ弁(10)で与えら
れるだめ、このIJ IJ−フ弁(10)の設定圧力を
直接又は遠隔操作により次第に低減し慣性体停止時点で
十分に設定子力を下げるようにすれば、慣性体揺戻り現
象をなくすことができる。しかし、このリリーフ弁操作
では、慣性体の大きさの判別、制動時間の選択等すべて
操作者の勘にたよるため、バイパス用IJ IJ−フ弁
(8)の設定子力を低くし過きて液圧モータ(6)が危
険速度に達し旋回機構等が暴走したり、逆に高くし過ぎ
て液圧モータ(6)が急停止するために旋回機構等に衝
撃を力える等の問題が生じるため、操作に相当の熟練を
必要としだ。
In this regard, the bypass relief valve (8) is provided with a vent circuit (7) as shown in the figure, and its electromagnetic switching valve (9) switches from position B to position A when the flow control valve (2) returns to the middle position. If the setting pressure of the bypass IJ-F valve (8) during braking is given by the IJ-F valve (10), the set pressure of this IJ-F valve (10) can be directly set. Alternatively, the inertial body swing back phenomenon can be eliminated by gradually reducing it by remote control and sufficiently lowering the setting force when the inertial body stops. However, in operating this relief valve, the determination of the size of the inertial body, selection of braking time, etc. all depend on the operator's intuition. This may cause problems such as the hydraulic motor (6) reaching a dangerous speed and causing the swing mechanism to run out of control, or conversely, increasing the speed too high and causing the hydraulic motor (6) to suddenly stop and applying shock to the swing mechanism. This requires considerable skill to operate.

本発明は、前記の欠点を改善するためになされたもので
、慣性体を連結した液圧モータにブレーキ弁を備える液
圧駆動・制動回路において、ブレーキ弁のバイパス用リ
リーフ弁の一次側ポートを差動シリンダの受圧面積の小
さい室に連通し、バイパス用リリーフ弁のベントポート
は切換弁を介して差動シリンダの受圧面積の大きい室と
いま一つのIJ リーフ弁の一次側ポートとに接続する
と共に、このリリーフ弁の設定圧力を規制するばねを前
記差動シリンダのピストンロッドに接続し、前記切換弁
はその二次側ポートを液圧モータ停止操作信号により前
記ベントポートと連通させる以外は低圧回路に接続して
前記ベントポートをブロックするようにしたことを特徴
とするものである。
The present invention has been made in order to improve the above-mentioned drawbacks, and in a hydraulic drive/brake circuit that includes a brake valve in a hydraulic motor connected to an inertial body, the primary side port of the relief valve for bypassing the brake valve is connected to the brake valve. It communicates with the chamber with a small pressure receiving area of the differential cylinder, and the vent port of the bypass relief valve is connected to the chamber with a large pressure receiving area of the differential cylinder and the primary side port of another IJ leaf valve via a switching valve. At the same time, a spring that regulates the set pressure of this relief valve is connected to the piston rod of the differential cylinder, and the switching valve maintains low pressure except for communicating its secondary port with the vent port in response to a hydraulic motor stop operation signal. The vent port is connected to a circuit to block the vent port.

以下本発明を図面に示す実施例に基いて具体的に説明す
る。第2図において、(1)は液圧源、(2)は流量制
御弁1. (3)、’ (4)はそれぞれカウンタバラ
ンス弁、(5)はブレーキ弁、(6)は液圧モータであ
り、流量制御弁(2)を操作して中立位置から位置A又
は位置Bに切換えて液圧源(1)からの作動液を流路(
11)又は(12)より液圧モータ(6)に導き、液圧
モータ(6)からの排出液は流路(+21、カウンタバ
ランス弁(4)又は流路(11)、カウンタバランス弁
(3)(5) から流量制御弁(2)、戻り流路([6)を経てタンク
(13)に戻す構成は、第1図に示す従来回路と同じで
ある。
The present invention will be specifically described below based on embodiments shown in the drawings. In FIG. 2, (1) is a hydraulic pressure source, (2) is a flow control valve 1. (3), ' (4) are respectively counterbalance valves, (5) is a brake valve, and (6) is a hydraulic motor, which moves from the neutral position to position A or position B by operating the flow control valve (2). Switch the hydraulic fluid from the hydraulic pressure source (1) to the flow path (
11) or (12) to the hydraulic motor (6), and the discharge liquid from the hydraulic motor (6) is directed to the flow path (+21, counterbalance valve (4) or flow path (11), counterbalance valve (3). ) (5), the flow rate control valve (2), the return flow path ([6), and the structure in which the flow is returned to the tank (13) is the same as the conventional circuit shown in FIG.

本実施例においては、ブレーキ弁(5)のバイパス用リ
リーフ弁(21)のベントポートに、電磁切換弁(22
)とその下流にIJ IJ〜フ弁f23)を介装したベ
ント回路(24)を接続すると共に、電磁切換弁(22
)とリリーフ弁(23)とをつ々ぐ通路(25)を通路
(26)により差動シリンダ(27)の受圧面積の大き
い室(28)に接続し、差動シリンダ(2r)の受圧面
積の小さい室(29)はこの室からの流体流れを阻止す
るチェック弁(30)と可変絞り弁(31)とを並設し
てなるスローリターンチェック弁(321を介装した通
路(33)によりバイパス用リリーフ弁(2υの一次側
ポートに連通し、さらに、差動シリンダ(2ηのピスト
ンロッド(34)はリリーフ弁(23)の設定圧力を規
制するばね(35)に接続して、リリーフ弁&3)の設
定圧力をピストンロッド(34)の移動により変えるよ
うにしている。
In this embodiment, the solenoid switching valve (22) is connected to the vent port of the bypass relief valve (21) of the brake valve (5).
) and a vent circuit (24) with an IJ~F valve f23) interposed downstream thereof, and a solenoid switching valve (22
) and the relief valve (23) are connected to a chamber (28) with a large pressure receiving area of the differential cylinder (27) by a passage (26), and the pressure receiving area of the differential cylinder (2r) is The small chamber (29) is connected by a passage (33) interposed with a slow return check valve (321), which is composed of a check valve (30) and a variable throttle valve (31) arranged in parallel to prevent fluid flow from this chamber. The bypass relief valve (2υ communicates with the primary side port, and the differential cylinder (2η) piston rod (34) is connected to the spring (35) that regulates the set pressure of the relief valve (23), and the relief valve &3) is changed by moving the piston rod (34).

しかして、電磁切換弁(2乃は、流量制御弁(2)が位
置A又は位置Bをとるとき、即ち、液圧モー(6) タ(6)駆動中id位置Aをとって二次側ポートをタン
ク(13)に連通ずると共に、バイパス用IJ IJ−
フ弁(21)のベントポートをブロックし、流量制御弁
(2)が中立位置をとると、その液圧モータ停止J−操
作信号によりソレノイド(3G)が励磁されて位置Bを
とり二次側ポートをベントポートに連通せしめ、所定時
間経過後消磁され再び位置Aをとる設定である。
Therefore, when the flow rate control valve (2) takes position A or position B, that is, when the electromagnetic switching valve (2) takes the id position A while the hydraulic motor (6) is driving, the secondary side In addition to communicating the port with the tank (13), bypass IJ IJ-
When the vent port of the flow control valve (21) is blocked and the flow control valve (2) assumes the neutral position, the solenoid (3G) is energized by the hydraulic motor stop J-operation signal and assumes position B, and the secondary side The port is connected to the vent port, and after a predetermined period of time, it is demagnetized and returns to position A.

尚、差動シリンダ(27)の受圧面積の比は慣性体の慣
性力に基づく衝撃圧力の大きさ及び衝撃エネルギを吸収
するバイパス用リリーフ弁(21)のバイパス流量から
適正値を選定しておく。
In addition, the ratio of the pressure receiving area of the differential cylinder (27) is selected as an appropriate value based on the magnitude of the impact pressure based on the inertial force of the inertial body and the bypass flow rate of the bypass relief valve (21) that absorbs the impact energy. .

次に、本実施例の作用につき説明する。いま、流量制御
弁(2)を中立位置から位置Bにとると、液圧源(1)
からの作動液は流路C,37)、流量制御弁(2)、流
u(1’ll、カウンタバランス弁(4)のチェック弁
(1ηを経て液圧モータ(6)に流入し、との液圧モー
タからの排出液は流路(I ]) 、カウンタバランス
弁(3)、流量制御弁(2)、戻沙流路(1(Qを経て
タンク(13Jに戻り、慣性体は液圧モータ(6)によ
り一方向に駆動せしめられ、液圧モータ(6)、カウン
タバランス弁(3)間に制動液圧がたつ。この制動液圧
はチェック弁(38J 、スローリターンチェック弁(
321のチェック弁(30)を経て差動シリンダ(27
)の室(29)に作用し、一方、室(28)は位置Aを
とる電磁切換弁(2(2)を介してタンク(13)に連
通ずるから、ピストン(絢は押されて右行程端に位置し
、リリーフ弁(淘の設定圧力を最大にセットする。この
慣性体駆動時においては、バイパス用IJ IJ−〕弁
(21)の設定圧力は、ベントポートがブロックされて
いるので自身の設定圧力であり、流路(12)のポンプ
液圧をパイロット圧にとるカウンタバランス弁(3)の
設定圧力より十分に高い。ここで、液圧モータ(6)の
駆動を停止すべく流量制御弁(2)を中立位置にとると
、電磁切換弁(22)は切換信号(流量制御弁(2)の
液圧モータ停止操作信号)により位置Bをとり、バイパ
ス用リリーフ弁(21)のベントポー1・をリリーフ弁
+231と差動シリンダ(27)の室(28)に連通す
る結果、バイパス用IJ IJ−フ弁(2υの設定圧力
はリリーフ弁(23)により与えられ、このリリーフ弁
(23)の設定圧力は、ピストン(39)の前後に流路
(12)の液圧をうけて受圧面積差に基づき左行するピ
ストンロッド(34)により逓減される。従って1バイ
パス用リリーフ弁(21)の設定圧力はピストンロッド
(34)の左行と共に低減することと々る。
Next, the operation of this embodiment will be explained. Now, when the flow control valve (2) is moved from the neutral position to position B, the hydraulic pressure source (1)
The hydraulic fluid flows into the hydraulic motor (6) through the flow path C (37), the flow rate control valve (2), the flow u (1'll), the check valve (1η) of the counterbalance valve (4), and The liquid discharged from the hydraulic motor goes through the flow path (I), the counterbalance valve (3), the flow control valve (2), and the return flow path (1 (Q) and returns to the tank (13J). It is driven in one direction by the motor (6), and brake fluid pressure is applied between the hydraulic motor (6) and the counterbalance valve (3).This brake fluid pressure is applied to the check valve (38J) and the slow return check valve (
The differential cylinder (27) passes through the check valve (30) of 321.
), and on the other hand, the chamber (28) communicates with the tank (13) via the electromagnetic switching valve (2 (2)) which assumes position A. Located at the end, set the set pressure of the relief valve to the maximum.When this inertial body is driven, the set pressure of the bypass IJ IJ-] valve (21) is set to the maximum because the vent port is blocked. The set pressure is sufficiently higher than the set pressure of the counterbalance valve (3) that takes the pump hydraulic pressure in the flow path (12) as the pilot pressure.Here, in order to stop driving the hydraulic motor (6), the flow rate When the control valve (2) is placed in the neutral position, the electromagnetic switching valve (22) takes position B by the switching signal (hydraulic motor stop operation signal of the flow rate control valve (2)), and the bypass relief valve (21) is switched to position B. As a result of communicating the vent port 1 with the relief valve +231 and the chamber (28) of the differential cylinder (27), the setting pressure of the bypass IJ IJ-F valve (2υ) is given by the relief valve (23), and this relief valve ( The set pressure of 23) is gradually reduced by the piston rod (34) which receives the hydraulic pressure of the flow path (12) before and after the piston (39) and moves to the left based on the difference in pressure receiving area.Therefore, the 1-bypass relief valve ( The set pressure 21) decreases as the piston rod (34) moves to the left.

一方、流量制御弁(2)が中立位置をとると、液圧源(
1)からの作動液は流量制御弁(2)を経てタンク(1
3jに戻り液圧モータ(6)をw靭+Lなく々るが、こ
の液圧モータは慣性体の慣性力によりポンピングをし、
流路(12)から吸入したタンク側作動液を流路(11
)に吐出するので、流路(lυの液圧は」−昇する。こ
の場合、カウンタバランス弁(3)はそのパイロット圧
が略タンク圧まで低下するからバイパス用IJ IJ−
フ弁(21)の設定圧力より高くなり、そのため液圧モ
ータ(6)、カウンタバラレス弁(3)間の液圧がIJ
 IJ−フ弁(21)の設定圧力に達すると、作動液は
チェック弁G81、IJリリーフ弁2+1、チェック弁
(4(ハ 液圧モータ(6)、チェック弁(38) 、
リリーフ弁(21)を彷壌し、液圧モータ(6)の負荷
圧とバイパス用すIJ−フ弁(2I)の設定圧力との圧
力差で(9) 液圧モータ(6)をスリップさせ、装置の衝撃を防市し
つつ慣性体を制動する。この制動時、バイパス用リリー
フ弁(21)の設定圧力は前述したようにピストンロッ
ド(34)の左行と共に、即ち時間の経過と共に逓減す
るが、この設定圧力の逓減速度、つまり液圧モータ(6
)の減速時間はスローリターンチェック弁(3zの可変
絞り弁(31)の開宴を調整することにより任意に変え
ることができる。
On the other hand, when the flow control valve (2) assumes the neutral position, the hydraulic pressure source (
The hydraulic fluid from 1) passes through the flow control valve (2) to the tank (1).
Returning to step 3j, the hydraulic motor (6) is damaged by wt + L, but this hydraulic motor pumps by the inertial force of the inertial body.
The tank-side hydraulic fluid sucked from the flow path (12) is transferred to the flow path (11).
), the liquid pressure in the flow path (lυ) increases.In this case, the pilot pressure of the counterbalance valve (3) decreases to approximately the tank pressure, so the bypass IJ IJ-
The pressure becomes higher than the set pressure of the valve (21), and therefore the hydraulic pressure between the hydraulic motor (6) and the counter variable valve (3) becomes IJ.
When the set pressure of the IJ relief valve (21) is reached, the hydraulic fluid flows through the check valve G81, the IJ relief valve 2+1, the check valve (4 (c), the hydraulic motor (6), the check valve (38),
The relief valve (21) is moved and the pressure difference between the load pressure of the hydraulic motor (6) and the set pressure of the bypass IJ valve (2I) causes the hydraulic motor (6) to slip (9). , brakes the inertial body while preventing the impact of the device. During this braking, the set pressure of the bypass relief valve (21) gradually decreases with the left movement of the piston rod (34), that is, with the passage of time, as described above. 6
) can be arbitrarily changed by adjusting the opening of the slow return check valve (3z variable throttle valve (31)).

従って、可変絞り弁01)を予め慣性体の慣性力に応じ
た所定開度に選定しておくことにより、適切な制動作用
が自動的に得られ、慣性体の停止と共にIJ IJ−フ
弁(2すの設定圧力も十分に低くなって慣性体の揺戻り
現象は起らない。
Therefore, by setting the variable throttle valve 01) to a predetermined opening according to the inertial force of the inertial body, an appropriate braking action can be automatically obtained, and when the inertial body stops, the IJ IJ-F valve ( The set pressure of the second stage is also sufficiently low so that the phenomenon of swinging back of the inertial body does not occur.

第6図に示すいま一つの実施例は、第2図のラインコン
トロール方式に対シソースコントロール方式とした一例
で、カウンタバランス弁が々く、流量制御弁(41)は
中立位置において、アクチー、エータポートをブロック
すると共に、可変容量形ポンプ(42)の吐出流路(4
3)を戻り流路(44)に連通し、又、ブースト用ポン
プ(佃により回路に作(10) 動源を補給している。その他の構成は第2図に示すもの
と同じであるから、第2図に示す部分と区別するため対
応部分は同符号に′を付している。この実施例も流量制
御弁(41)を位置A又は位置Bから中立位置にとって
慣性体を制動するとき、ポンピングをする液圧モータ(
d)からの排出液はブレーキ非削)のバイパス用リリー
フ弁(2’+)と液圧モータ(d)とを結ぶ回路を循環
し、バイパス用IJ IJ−フ弁(21)の設定圧力は
差動ンリ/ダ(2カのピストンロッド(3′4)の左行
と共に逓減するため、第2図に示すものと同様の制動作
用及び効果が得られる。
Another embodiment shown in FIG. 6 is an example in which a source control method is used in addition to the line control method shown in FIG. The discharge flow path (4) of the variable displacement pump (42) is blocked.
3) is connected to the return flow path (44), and the boost pump (Tsukuda) is used to supply the power source to the circuit (10).Other configurations are the same as those shown in Figure 2. , in order to distinguish them from the parts shown in Fig. 2, corresponding parts are given the same reference numerals with a ``' added to them. In this embodiment as well, when the flow control valve (41) is moved from position A or position B to the neutral position and the inertial body is braked. , hydraulic motor for pumping (
The discharged fluid from d) circulates through the circuit connecting the bypass relief valve (2'+) of the brake (not cut) and the hydraulic motor (d), and the set pressure of the bypass IJ IJ-fu valve (21) is Since the differential pressure gradually decreases as the two piston rods (3'4) move to the left, the same braking action and effect as shown in FIG. 2 can be obtained.

以上説明したように本発明においては、慣性体制動時の
制動力を自動的に且つ連続的に低減し得るようにしてい
るので、慣性体の揺戻り現象を防止でき、又、制動操作
が頗る簡易となる。しかも制動力低減速度を任意に選定
できるため、慣性体のiit性力に応じた制動により衝
撃力のない円滑な制動作業が得られる優れた効果を有す
る。
As explained above, in the present invention, the braking force when the inertial body moves can be automatically and continuously reduced, so it is possible to prevent the swinging back phenomenon of the inertial body, and the braking operation is easy. It becomes simple. In addition, since the braking force reduction speed can be arbitrarily selected, there is an excellent effect that smooth braking work without impact force can be obtained by braking according to the iit force of the inertial body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の油圧回路図、第2図及び第6図はそ
れぞれ本発明の実施例を示す油圧回路図である。 21.21・・・バイパス用リリーフ弁、22゜リング
、32.ろ2・・・スローリターンチェック特許出願人
  川崎重工業株式会社 代理人 弁理士太田謙三 第 ′i 図 第2図
FIG. 1 is a hydraulic circuit diagram of a conventional device, and FIGS. 2 and 6 are hydraulic circuit diagrams each showing an embodiment of the present invention. 21.21... Bypass relief valve, 22° ring, 32. ro 2...Slow return check Patent applicant Kawasaki Heavy Industries Co., Ltd. agent Patent attorney Kenzo Ota Figure 2

Claims (1)

【特許請求の範囲】[Claims] 慣性体を連結した液圧モータにブレーキ弁を備える液圧
駆動・制動回路において、ブレーキ弁のバイパス用IJ
 IJ−フ弁の一次側ボートを差動シリンダの受圧面積
の小さい室に連通し、バイパス用リリーフ弁のベントポ
ートは切換弁を介して差動シリンダの受圧面積の大きい
室といま一つのIJ IJ−フ弁の一次側ポートとに接
続すると共に、このリリーフ弁の設定圧力を規制するば
ねを前記差動シリンダのピストンロッドに接続し、前記
切換弁はその二次側ポートを液圧モータ停止操作信号に
より前記ベントポートと連通させる以外は低圧回路に接
続して前記ベントポートをブロックするようにしたこと
を特徴とする慣性体液圧駆動制御装置。
In a hydraulic drive/braking circuit that includes a brake valve in a hydraulic motor connected to an inertial body, an IJ for bypassing the brake valve is used.
The primary boat of the IJ valve is connected to the chamber with a small pressure receiving area of the differential cylinder, and the vent port of the bypass relief valve is connected to the chamber with a large pressure receiving area of the differential cylinder via a switching valve. - A spring that regulates the set pressure of the relief valve is connected to the primary side port of the relief valve, and a spring that regulates the set pressure of the relief valve is connected to the piston rod of the differential cylinder; An inertial body hydraulic drive control device, characterized in that the vent port is blocked by being connected to a low pressure circuit except when communicated with the vent port by a signal.
JP17661282A 1982-10-07 1982-10-07 Hydraulic drive controller for internal body Pending JPS5965602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17661282A JPS5965602A (en) 1982-10-07 1982-10-07 Hydraulic drive controller for internal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17661282A JPS5965602A (en) 1982-10-07 1982-10-07 Hydraulic drive controller for internal body

Publications (1)

Publication Number Publication Date
JPS5965602A true JPS5965602A (en) 1984-04-13

Family

ID=16016607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17661282A Pending JPS5965602A (en) 1982-10-07 1982-10-07 Hydraulic drive controller for internal body

Country Status (1)

Country Link
JP (1) JPS5965602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634401U (en) * 1986-06-27 1988-01-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634401U (en) * 1986-06-27 1988-01-12

Similar Documents

Publication Publication Date Title
US5636516A (en) Swing hydraulic circuit in construction machine
US4383412A (en) Multiple pump load sensing system
US4531369A (en) Flushing valve system in closed circuit hydrostatic power transmission
US3911942A (en) Compensated multifunction hydraulic system
JP2001349426A (en) Capacity control device for hydraulic pump, and brake control device of hydraulic motor
US5884984A (en) Hydraulic braking apparatus having two safety valves
CA1068998A (en) Fail safe fluid power device
JPH0882289A (en) Displacement control device of variable displacement hydraulic pump
JPS5965602A (en) Hydraulic drive controller for internal body
JPS63106404A (en) Hydraulic device for driving inertial body
JPS5919122Y2 (en) hydraulic drive circuit
JP3669757B2 (en) Swing inertia body hydraulic drive
JPH0423124B2 (en)
JPH08189501A (en) Hydraulic motor driving circuit
JPS6354639B2 (en)
JPS6311492B2 (en)
JPH02296935A (en) Hydraulic circuit of hydraulic shovel
JPH0337642B2 (en)
JPH0210322Y2 (en)
JPH0444121B2 (en)
JPS6378930A (en) Oil-pressure traveling circuit for oil-pressure shovel
JP2605795B2 (en) Pilot operating fluid circuit
JP2880365B2 (en) Hydraulic motor drive circuit
JPS60250132A (en) Oil pressure control circuit for construction vehicle
JP3117036B2 (en) Fluid brake device