JPS5964748A - High abrasion resistant and highly tough cold working tool steel - Google Patents

High abrasion resistant and highly tough cold working tool steel

Info

Publication number
JPS5964748A
JPS5964748A JP17054582A JP17054582A JPS5964748A JP S5964748 A JPS5964748 A JP S5964748A JP 17054582 A JP17054582 A JP 17054582A JP 17054582 A JP17054582 A JP 17054582A JP S5964748 A JPS5964748 A JP S5964748A
Authority
JP
Japan
Prior art keywords
steel
less
toughness
tool steel
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17054582A
Other languages
Japanese (ja)
Other versions
JPS6210293B2 (en
Inventor
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP17054582A priority Critical patent/JPS5964748A/en
Publication of JPS5964748A publication Critical patent/JPS5964748A/en
Publication of JPS6210293B2 publication Critical patent/JPS6210293B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an iron base high C, high Cr, high Fe type martensite cold working tool steel that is excellent in abrasion resistance and high in toughness, by incorporating C, Cr, V, Mo, Si and Mn in a prescribed proportion. CONSTITUTION:The high abrasion resistant and highly tough cold working tool steel consists of 2.0-4.0wt% C, 7.0-17.1wt% Cr, 6.0-14.0wt% V, 0.5-3.0wt% Mo, 2.0wt% or less Mn and the balance of Fe and impurities. This tool steel possesses advantages like a conventional high Cr type material as well as the conventional high V type material. That is, by adding 5% or more V to a high C and high Cr material, the Cr type carbide that crystallizes when it is cast is allowed to crystallize as particles, and as a result the toughness is greatly improved. Further, the carbon and the carbide forming elements are suitably kept balanced on the one hand to improve the abrasion resistance greatly and on the other hand to minimize the lowering of the toughness.

Description

【発明の詳細な説明】 本発明は、耐摩耗性にすぐれ、且つ高靭性を有する鉄基
高C高Cr高V系のマルテンサイト硬化型冷間工具鋼に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a martensitic hardening type cold work tool steel having an iron base, high C, high Cr, and high V, which has excellent wear resistance and high toughness.

冷間工具鋼の中でも耐摩耗性を必要とされる用途には従
来から5KD1,5ICJ)11等の高C゛、高C’r
鋼が主として使用されているが、これでも耐摩耗性に関
して十分とは言えず、鍾々の化学成分的改良が数多く行
われてきた。例えばAl5ID7のように、5人1) 
1 +に約4%のVを添加し、VC炭化物の生成によっ
て耐摩耗性を向上したもの、51cD2のようにWを約
2%添加し、高温の軟化抵抗の増大による耐摩耗性同上
を計る等である。
Among cold work tool steels, high C゛, high C'r such as 5KD1, 5ICJ) 11 etc. have traditionally been used for applications that require wear resistance.
Steel is mainly used, but even this is not sufficient in terms of wear resistance, and many improvements have been made to the chemical composition of the steel. For example, like Al5ID7, 5 people 1)
1+ with about 4% V added to improve wear resistance by forming VC carbides, and 51cD2 with about 2% W added to improve wear resistance by increasing high temperature softening resistance. etc.

耐摩耗性の向上方策としては (1)  基地硬さを上げる。As a measure to improve wear resistance, (1) Increase base hardness.

(2)基地に多量の硬質粒子(例えば炭化物粒子)を多
量に分散させる。
(2) A large amount of hard particles (for example, carbide particles) are dispersed in the base.

(5)加工硬化指数の高いオーステナイト基地とする。(5) Use an austenite base with a high work hardening index.

等の手法が考えられるが、マルテンサイト基地とする場
合(11、(21の方策はいずれも機械的性質を劣化さ
せるため、実際にはほとんど実施されていない状況にあ
る。とくに高C1高C’rの場合、共晶炭化物が鋳造時
に網目状に晶出すること、この炭化物が熱間加工によっ
て棒状に加工方向に展伸するために、高C゛高C″r化
には限界がある。(5)項の対策として、高温焼入を行
ない安定な残留オーステナイトを90係以上残留させて
、土砂摩耗用等σ)特殊摩耗条件下で高耐摩耗を狙う方
法(特公昭54−35168号)もあるが、これは一般
的解法策とはなりにくい。この他共晶粒化物を鋳造時圧
粒状化させるためにsi、n等の元素を添加する方法(
特公昭51−19371号)、C″U約4%を添加して
、基地硬さを上げる(特公昭7I9−112570号)
、Niを02〜10%添加して靭性と耐摩耗性を向上さ
せる(%開昭52−575++号)、coを25〜10
%添加して、焼戻軟化抵抗を上げる(特開昭5l−16
OB+6号) 、 C’。
However, in the case of using a martensite base (11, (21), these measures deteriorate mechanical properties, so they are rarely implemented in practice. In particular, high C1 high C' In the case of r, the eutectic carbide crystallizes in a network during casting, and this carbide expands into a rod shape in the processing direction during hot working, so there is a limit to increasing the C'r. As a countermeasure for item (5), a method of high-temperature quenching to retain stable residual austenite of 90 modulus or higher to achieve high wear resistance under special wear conditions such as soil wear (σ) (Japanese Patent Publication No. 54-35168) However, this is unlikely to be a general solution.In addition, there is a method of adding elements such as Si and N to make the eutectic grains into pressure granules during casting (
(Special Publication No. 1971-19371), increase base hardness by adding about 4% C″U (Special Publication No. 7I9-112570)
, adding 02 to 10% Ni to improve toughness and wear resistance (%Kai No. 52-575++), 25 to 10% of co.
% to increase tempering softening resistance (JP-A-5L-16)
OB+6), C'.

とC’uを併合添加する(特開昭55−79715号)
、Tiを添加してMC炭化物を形状制御する(特公昭4
7−15581号)、Alを添加して9化効果を付与す
る(特開昭52−4415号)、Cを下げて靭性向上を
狙う(特開昭47−8801号)等数多くの手法が提案
されているが、いずれもマイナーな改良に属し。
and C'u are added together (Japanese Patent Application Laid-open No. 79715/1983)
, to control the shape of MC carbide by adding Ti (Special Publication Publication No. 4
7-15581), adding Al to impart a 9-ization effect (Japanese Patent Application Laid-open No. 52-4415), lowering C to improve toughness (Japanese Patent Application Laid-Open No. 47-8801), etc. have been proposed. However, these are all minor improvements.

本質的に耐摩耗性を同上させるとは言い難い。It cannot be said that the wear resistance is essentially the same as above.

つぎに鉄基高V系材料でこれに若干のC゛γを添加して
耐摩耗性に焼入性を伺加した一群の材料がある。例えば
A I S I  Type 449は重量比で2.4
56’−0,9Si −0,5un −5,25Cr 
−1,5Aio −9,75V 。
Next, there is a group of iron-based high V-based materials in which a small amount of C゛γ is added to improve wear resistance and hardenability. For example, AISI Type 449 has a weight ratio of 2.4.
56'-0,9Si -0,5un -5,25Cr
-1,5Aio -9,75V.

Type dd6は525 f−’ −0,3δZ −
0,!l Mn−1,OCr −1、+ MO−127
”  で残部鉄および不純物を含む合金がある。これら
はMC型炭化物が多量に存在し、ml摩耗性はすぐれる
が、C゛含有量が高く、熱間加工性か悪いこと、被研削
性が低く砥石加工が困難なこと、被削性が悪いこと、焼
入性も比較的低く太物では油冷が必要なこと等から、天
際にはあまり使用されない。またこれらの材料はC゛r
含有量が低いために、自硬性が少なく高温の軟化抵抗が
低いために、使用時に温度上昇が太きいものについては
使えない。このため(、Oを15%以下添加し%W02
〜10受併合添加して、軟化抵抗を上げる試み(特公昭
42−26591号)、同じ<(、’6とMOを添加す
る試み(特公昭59−11054号)があるが、高温の
軟化抵抗は大きくは向上せす、現実には実施されていな
い。
Type dd6 is 525 f-' −0,3δZ −
0,! l Mn-1, OCr-1, + MO-127
There are alloys that contain a large amount of MC type carbides and have excellent ML wear resistance, but they have a high C content, poor hot workability, and poor grindability. These materials are not often used for high-speed grinding because they are low and difficult to process with a grinding wheel, have poor machinability, and have relatively low hardenability and require oil cooling for thick materials.
Due to its low content, it has low self-hardening properties and low softening resistance at high temperatures, so it cannot be used in applications where the temperature rise is large during use. For this reason (, 15% or less of O is added and %W02
There is an attempt to increase the softening resistance by adding ~10 and MO (Japanese Patent Publication No. 42-26591), and an attempt to add MO with the same <(, '6) (Japanese Patent Publication No. 59-11054), but the softening resistance at high temperatures is Although it would be a great improvement, it has not been implemented in reality.

以上の如く、従来の冷間用高耐摩工具鋼は基本的には高
C′高C″r糸鋼で、炭素1〜2%を含有し。
As mentioned above, conventional high wear-resistant tool steels for cold working are basically high C' and high C''r thread steels containing 1 to 2% carbon.

マルテンサイト基地へのCrycxr型の炭化物を分散
させ、これに2%以下のSi、3%以下のW、Mo。
Crycxr-type carbide is dispersed into the martensite base, and this includes 2% or less of Si, 3% or less of W, and Mo.

5%以下のVを添加した一群の材料と、高C゛高V系で
炭素25〜3,5%と、29〜12%を含有し、これに
5%以下のC°γとNo、Wを添加する第二群の材料に
分類される。前者は耐摩耗性は比較的低いが靭性は中位
であり、焼入性にすぐれる。後者は耐摩耗性は高いが靭
性が低く、焼入性は悪い。結果的には高耐崩高靭性の要
求が完全に満される材料とは言い難い。
A group of materials with 5% or less V added, a high C, high V system containing 25-3.5% carbon and 29-12%, and with 5% or less C°γ and No, W It is classified as a second group of materials. The former has relatively low wear resistance but medium toughness and excellent hardenability. The latter has high wear resistance but low toughness and poor hardenability. As a result, it is difficult to say that the material completely satisfies the requirements for high collapse resistance and high toughness.

これに対し本発明材料は重量比でC’i、s〜3.5%
In contrast, the material of the present invention has a weight ratio of C'i, s ~ 3.5%.
.

Si2%以下、Mn2%以下、C’r10〜15%、V
5〜15%、W又はMOが7F+2 No 量テ0.5
〜5 % 、残部不純物と鉄を含み目的によっては5%
以下のCoや5係以下のNiを含む材料で、従来の高C
′r系材料と高V系材料の両者の長所を兼備した特性を
有するものである。発明の骨子は高C高C’r系材料[
5%以十〇〕Vを併合添加することによって鋳造時に晶
出するC’r糸炭化炭化物状晶化することを見出シ5.
これによって靭性が大きく向上できること、ならひに炭
素および炭化物形成元素間に適切なバランスを保持せし
めることによって、耐摩耗性を大きく  □向」ニさせ
ながら靭性の劣化を最少限に喰い止めること、2次硬化
度な著しく高め高温の焼戻軟化抵抗をきわめて高くした
こと、ならびに好まし、くは、前述の成分範囲σン合金
を1rMl径以下σ)粒子状に手簡合金化させて凝固さ
せ、押出又は熱間静水圧等の手法によって圧密化させる
ことによって、均一微細で且つ粒状の炭化物を分散せし
め耐摩耗性と靭性のバランスを取り得ることを見出した
ものである。
Si2% or less, Mn2% or less, C'r10-15%, V
5-15%, W or MO is 7F+2 No amount te 0.5
~5%, balance may include impurities and iron, depending on purpose 5%
Materials containing Co below or below Co and Ni below coefficient 5, compared to conventional high C
It has characteristics that combine the advantages of both 'r type materials and high V type materials. The gist of the invention is a high-C, high-C'r material [
It was discovered that by adding 5% or more of V in combination, C'r threads crystallized into carbide carbides during casting.5.
This can greatly improve toughness, and by maintaining an appropriate balance between carbon and carbide-forming elements, wear resistance can be greatly improved while minimizing deterioration of toughness. The degree of subsequent hardening is significantly increased, and the resistance to temper softening at high temperatures is extremely high. It has been discovered that by compacting by extrusion or hot isostatic pressure, uniform fine and granular carbides can be dispersed and a balance between wear resistance and toughness can be achieved.

以下に実施例によって本発明を説明する。The present invention will be explained below by way of examples.

第1表に実験的に吹製した21cA、+の化学分析結果
を示す。A151  C’lαss 449.Al5I
D7,5KD11の6種類を比較鋼として用い、あとは
いずれも発明鋼である。発明鋼は50Ky/Ch4’の
高周波溶解炉を用いて大気雰囲気中で吹製後、N2ガス
アトマイズ法で合金粒末を作成した。
Table 1 shows the chemical analysis results of experimentally blown 21cA,+. A151 C'lαss 449. Al5I
Six types, D7, 5KD11, were used as comparative steels, and the rest were all invented steels. The invention steel was blown in the atmosphere using a 50Ky/Ch4' high-frequency melting furnace, and then alloy powder was created by N2 gas atomization.

第  1  表 一52meshの粉末にサイジング後、515Cの軟鋼
製カプセルに充填後、  10−’7orγの真空下で
封着し、1100υの温度、 1000気圧の、4r雰
囲気で2hrの熱間静水圧圧密な行なった。その後熱間
鍛伸により加工比16を加え各種試験片を削出した。ま
た比較鋼は在来の溶解冶金法で作られた7IOφ前後の
市販鋼から試験片を削出した。
Table 1: After sizing into 52 mesh powder, filling it into a 515C mild steel capsule, sealing it under a vacuum of 10-'7 orγ, and hot isostatic compaction for 2 hours in a 4R atmosphere at a temperature of 1100υ and 1000 atm. I did it. Thereafter, various test pieces were cut out by hot forging and stretching at a processing ratio of 16. For comparative steel, a test piece was cut from a commercially available steel of approximately 7IOφ made by a conventional melt metallurgy method.

第2表に各材料の焼入硬さ、焼戻硬さ、抗折曲げテスト
による破断応力測定結果を示す。
Table 2 shows the quenching hardness, tempering hardness, and fracture stress measurement results of each material by bending test.

焼入硬さは100011100℃の2種類の温度に保持
した電気炉中で30分保持後油冷した。1000 E 
The quenching hardness was determined by holding the sample in an electric furnace for 30 minutes at two temperatures of 1,000, 1, and 100°C, and then cooling it in oil. 1000E
.

1100℃の両温度からの焼入硬さは、比較鋼種対比本
発明鋼はいずれも高い硬さを有する。とくに1100で
の高温焼入においてこの傾向が顕著である。
Regarding the quenching hardness at both temperatures of 1100° C., both the steels of the present invention have higher hardness than the comparative steel types. This tendency is particularly noticeable in high temperature quenching at 1100°C.

なかでも硬さの絶対値がRRC67,0を越えるものが
かなりの頻度で存在する。焼戻硬さは1000E油冷2
00’C1hrX2回焼戻、  110011:油冷5
50でx1Arx2回の2条件で行なった。
Among these, there are cases where the absolute value of hardness exceeds RRC67.0 with considerable frequency. Tempering hardness is 1000E oil-cooled 2
00'C1hrX2 tempering, 110011: Oil cooling 5
The experiment was carried out under two conditions: 50°C and x1Arx2 times.

本発明鋼の特徴は高温焼入、高温焼戻材において顕著に
あられれる。V2〜Va、Ai+ 、(、’1.C2,
Kt 。
The characteristics of the steel of the present invention are noticeable in high-temperature quenching and high-temperature tempering materials. V2~Va, Ai+, (,'1.C2,
Kt.

第2表 P1〜P2.Sl、F2等の材料において、在米の冷間
工具鋼では考えられないような1lnc66.0  以
上の高い焼戻硬さを得ることができる。
Table 2 P1-P2. In materials such as Sl and F2, it is possible to obtain a high tempering hardness of 1lnc66.0 or more, which is unimaginable with American cold work tool steel.

第1図にF3鋼の焼入温度と焼戻温度別の硬さ変化を例
として示した3、10釘で以上の高温焼入において、2
次硬化現象が顕著となり、  1125℃焼入〜560
υ焼戻では最高HpC6Bに近い硬さを示す。これは5
〜8%のCoを含有する高速度工具鋼のそれに匹敵する
ものである。鋼中のr′の増加の効果がとくに顕著でこ
の他Mo 、 C”r 、 Si等の増加も焼戻軟化抵
抗を上昇させる。機械的性質は1100υ焼入で500
℃以上で焼戻を行なった場合について1発明鋼はIIR
C62〜65の範囲で抗折破断応力値を示した。
Figure 1 shows as an example the change in hardness of F3 steel depending on the quenching temperature and tempering temperature.
The subsequent hardening phenomenon becomes noticeable, and the hardening process starts from 1125℃ to 560℃.
In υ tempering, the maximum hardness is close to that of HpC6B. This is 5
It is comparable to that of high speed tool steel containing ~8% Co. The effect of increasing r' in the steel is particularly remarkable, and increases in Mo, C''r, Si, etc. also increase the temper softening resistance.The mechanical properties are as follows:
1 invention steel has IIR when tempered at temperatures above ℃
The transverse fracture stress value was shown in the range of C62 to C65.

比較鋼はこのような硬さが得られないのでllR657
〜60の範囲の破断応力値で示した。
Comparative steel cannot achieve this kind of hardness, so llR657
The breaking stress values ranged from ~60.

本発明鋼は比歓鋼対比いずれも高い機械的性質を有する
ことが明らかである。
It is clear that the steel of the present invention has higher mechanical properties than the steel of the present invention.

本発明鋼のような高合金鋼がこのようなすぐれた靭性な
有する原因にミクロ組織の差異があげられる。
The reason why high alloy steels such as the steel of the present invention have such excellent toughness is the difference in microstructure.

第2図に代表例としてσ−1t3.b−Δl5I11r
i9゜c−5人D11のX400のミクロ組織を掲載し
た。本発明鋼はクローム炭化物とMC型のバナジウム炭
化物の両者が完全に球状化し1粒径も微細で分布も均一
である。これにたいしAJSJd49は棒状のクローム
炭化物と不定形状のバナジウム炭化物が混在した組織、
S人1) + 1は角型状の巨大なりローム炭化物が加
工方向に配列した組織な示す。
FIG. 2 shows a typical example of σ-1t3. b-Δl5I11r
The X400 microstructure of i9°c-5 D11 is shown. In the steel of the present invention, both the chromium carbide and the MC-type vanadium carbide are completely spheroidized, each grain size is fine, and the distribution is uniform. On the other hand, AJSJd49 has a structure in which rod-shaped chromium carbide and irregularly shaped vanadium carbide are mixed.
S person 1) + 1 shows a structure in which large square-shaped loam carbides are arranged in the processing direction.

かかるように本発明鋼はVの7%以」二の添加でフロー
ト炭化物を球状化し、さらに超急冷凝固された合金粉末
を用いることにより微細均一化する、ことができ、これ
が高靭性化の大きな要因となっている。
As described above, in the steel of the present invention, float carbides can be made spheroidized by adding 7% or more of V, and further made fine and homogeneous by using ultra-rapidly solidified alloy powder, which is a major factor in achieving high toughness. This is a contributing factor.

第3表に冷間ダイス鋼の用途特性として重要な焼入性に
ついて1代表鋼の測定結果を示した評価方法は半冷時l
′¥!15分、iQ分の冷却時の硬さの絶対値で行った
。ここで半冷時間とはオーステナイト化渦度(1050
わ)から、その半分の温度まで(525で)の冷却に決
する時間の事で、冷却速度を示す一つのパラメーターで
ある。半冷時間5分とけ油冷時の17Of棒鋼の中心部
、10分とは油冷時の24o/ m鋼の中心部の冷却速
度に対応する。゛本発明鋼は比較鋼対比いずれも高い焼
入性を有することが明らかである。
Table 3 shows the measurement results for one representative steel regarding hardenability, which is an important usage characteristic of cold die steel.The evaluation method is
'¥! The absolute value of the hardness after cooling for 15 minutes and iQ minutes was used. Here, the half-cooling time is the austenitizing vorticity (1050
It is the time it takes to cool down from 525 to half that temperature (at 525), and is a parameter that indicates the cooling rate. The half-cooling time of 5 minutes corresponds to the cooling rate of the center of the 17Of steel bar during oil cooling, and 10 minutes corresponds to the cooling rate of the center of the 24o/m steel bar during oil cooling. It is clear that the steel of the present invention has higher hardenability than the comparative steels.

第3表 第5図に代表鋼の大越式摩耗試験の結果を示す。Table 3 Figure 5 shows the results of the Okoshi type wear test for representative steels.

試験条件はSN6M2+を相手材として接触荷重6即、
摩擦距離1100 m、摩擦速度1〜’ m/Secで
比摩耗量な測定した。
The test conditions were a contact load of 6 with SN6M2+ as the mating material,
The specific wear amount was measured at a friction distance of 1100 m and a friction speed of 1~' m/Sec.

比較鋼対比発可調はいちぢるしく耐摩耗性にすぐれてい
ることが明らかである。とくにP°含4′量が増加する
ほど、耐摩耗性は向上する。
It is clear that the adjustable steel has significantly better wear resistance than the comparative steel. In particular, as the P° content 4' increases, the wear resistance improves.

第6図Vこプラスチック成形用材料としての腐食摩耗試
験を行った時の代表鋼の測定結果を示す。
FIG. 6 shows the measurement results of representative steels subjected to corrosion wear tests as plastic molding materials.

試験装置の概略図を第5図に示す。ゐ15図において境
界を鉄板で仕切り、パイプの連結口10ついた容器2の
下段PCAES系プラスチック樹脂3上段にガラス粉末
4を充填し容器2全体を電気炉5内に装置’l、、、2
40Eに加熱する。加熱により樹脂5は溶融分解し、 
S (/2 、 C’12. BI’ 、 B2Sなど
のガスを発生し連結口1を通ってガラス粉末4中に混入
する。試験片6はガラス粉末中に完全に埋没するように
セットし、モーター(図示せず)に連結してガラス粉末
中で回転させる。その回転数はd501?PM  程度
である。腐食試験中の温度は熱電対7によリーボに調整
されている。また容器2の上部にはガス抜き口8を有し
ている。試験片は50時間ごとに取り出しM景減少率を
算出し摩耗減量を比較した。
A schematic diagram of the test apparatus is shown in FIG. In Fig. 15, the boundary is partitioned with an iron plate, the lower PCAES plastic resin 3 of the container 2 with the pipe connection port 10 is filled with glass powder 4, and the entire container 2 is placed in an electric furnace 5.
Heat to 40E. By heating, the resin 5 melts and decomposes,
A gas such as S (/2, C'12.BI', B2S, etc.) is generated and mixed into the glass powder 4 through the connection port 1.The test piece 6 is set so as to be completely buried in the glass powder. It is connected to a motor (not shown) and rotated in the glass powder.The number of revolutions is about d501?PM.The temperature during the corrosion test is adjusted to the desired temperature using a thermocouple 7. The upper part has a gas vent 8. The test piece was taken out every 50 hours and the M-shape reduction rate was calculated and the wear loss was compared.

腐食摩耗に対しても発明鋼のすぐれた耐腐食性の効果が
明らかである。
The excellent corrosion resistance of the invented steel is also evident against corrosion wear.

つぎに成分限定の理由について示す。Next, the reason for limiting the ingredients will be explained.

(、°rは基地に固溶して、耐食性と焼入性を増大させ
ると共に焼戻軟化抵抗を上げ残部は炭化物を形成して耐
摩耗性付与に寄与する重要な構成元素である。含有量7
%以下では耐食性、耐焼入性が劣り基地へのVの固溶能
力を低下させ、Vを6%以上添加しても二次硬化性を低
下させるので下限量を7%とした。−1:た165%を
越えるとむしろ焼戻硬さが減少し、ネットワーク状の炭
化物を晶出しはじめVの添加による炭化物の粒状化効果
が減少する。あわせて熱間加工性も低下するので165
%を上限とする。
(, °r is an important constituent element that dissolves in the matrix and increases corrosion resistance and hardenability, as well as temper softening resistance, and the remainder forms carbide and contributes to imparting wear resistance.Content 7
If V is less than 6%, the corrosion resistance and quenching resistance will be poor, and the solid solution ability of V in the matrix will be reduced. Even if V is added in an amount of 6% or more, the secondary hardenability will be decreased, so the lower limit amount was set at 7%. -1: When it exceeds 165%, the tempering hardness decreases, network-like carbides begin to crystallize, and the carbide granulation effect due to the addition of V decreases. At the same time, hot workability also decreases, so 165
The upper limit is %.

Vは本発明を構成するC゛γについで重要な元素である
。鋼中できわめて硬質のAi C型炭化物を形成し耐摩
耗性向上に大きく害鳥する。かつ6%以上の添加でクロ
ーム炭化物を粒状化させる効果がある。このV添加禁以
下では二次硬化性が少なく粒状化効果が少ないので下限
を6%とする。また上限は14%以上では熱間加工が不
可能となる。
V is an important element next to C゛γ which constitutes the present invention. It forms extremely hard Ai C-type carbides in steel, which greatly impairs the improvement of wear resistance. Moreover, addition of 6% or more has the effect of granulating chromium carbide. If the addition of V is below this limit, the secondary curing property is low and the granulation effect is small, so the lower limit is set at 6%. Further, if the upper limit is 14% or more, hot working becomes impossible.

C゛は本発明鋼の強度と耐摩耗性を不与するために欠く
ことができない元素である。
C is an indispensable element for imparting strength and wear resistance to the steel of the present invention.

まづVと結合して硬質のMC炭化物を生成する。First, it combines with V to form a hard MC carbide.

この炭化物の生成にはV添加量×021%のC゛含有I
11が最低限必要で、この他基地に固溶してマルテンサ
イトの硬化および6“rと結合してクローノ・炭化物な
生成するのに必要且つ十分な量を添加する必要がある。
For the generation of this carbide, the amount of V added x 021% of the C content I
11 is required as a minimum, and in addition, it is necessary to add a necessary and sufficient amount to form a solid solution in the matrix, harden the martensite, and combine with 6"r to form a chrono-carbide.

本発明のVZo〜14,0%の範囲では少く共C’=Q
、5+ 021Vを満足するCを添加する必要があり、
C゛がこれより低いと焼入焼戻硬さが著しく低下する。
In the range of VZo to 14.0% in the present invention, there is little co-C'=Q
, it is necessary to add C that satisfies 5+021V,
If C' is lower than this, the quenching and tempering hardness will decrease significantly.

上式を満たすには最低限2%が必要である。また4%を
越えると熱間加工ができなくなるので上限値を4%とす
る。
A minimum of 2% is required to satisfy the above formula. Moreover, if it exceeds 4%, hot working becomes impossible, so the upper limit is set at 4%.

Noは基地と炭化物圧分配され、基地中ではパーライト
変態温度を長時間側圧移行させ焼入el向上に有効な元
素である。また焼戻軟化抵抗を」二げ高温強度の同上に
富力する。05%以下ではこの効果がほとんどなく、5
%を越えると、M6(、’型の炭化物な晶出させて、V
によるクローム炭化物の粒状化効果を害するので6チ以
下とした。またAioはIFによっておき代えても同様
の効果が発生する。
No is an element that is effective in distributing the carbide pressure with the base, shifting the pearlite transformation temperature over a long period of time in the base, and improving the quenching EL. It also enhances tempering softening resistance and high-temperature strength. Below 0.05%, this effect is almost absent;
%, M6(,' type carbide crystallizes, V
Since this impairs the granulation effect of chromium carbide, the thickness was set to 6 or less. Further, even if Aio is replaced by IF, the same effect will occur.

同一効果を発揮するには、重量比でMoの2倍のWが使
用される。
To achieve the same effect, twice as much W as Mo is used in terms of weight ratio.

IViは耐食性向上に有効な元素であるが本願発明の必
須の構成元素ではない。
Although IVi is an effective element for improving corrosion resistance, it is not an essential constituent element of the present invention.

1%以下では耐食性向上には効果なく、65%以上では
焼戻硬さをむしろ低下させる。耐食性がとくに要求され
る用途には最低1%、最高3%添加することができる。
If it is less than 1%, it is not effective in improving corrosion resistance, and if it is more than 65%, the tempering hardness is actually reduced. For applications where corrosion resistance is particularly required, it can be added at a minimum of 1% and a maximum of 3%.

C’oもNiと同様に必須の構成元素ではない。第6図
に示すようにプラスチック成型時のような特殊な雰囲気
条件下で腐食摩耗量を減少させる効果がある。この際、
1.5%以下の添加では効果が少なく65%以上添加し
ても効果の増加がないので6.5%を上限とする3、 Siは脱酸剤として用いられるが、焼戻軟化抵抗を上昇
させる効果がある。ただし2%以上添加しても、この効
果の増加がなく、熱間加工性を害するので上限を2%と
する。
C'o is also not an essential constituent element like Ni. As shown in FIG. 6, it has the effect of reducing the amount of corrosion and wear under special atmospheric conditions such as during plastic molding. On this occasion,
Adding less than 1.5% is less effective, and adding more than 65% does not increase the effect, so the upper limit is set at 6.5%3.Si is used as a deoxidizing agent, but it increases resistance to temper softening. It has the effect of However, even if it is added in an amount of 2% or more, this effect will not increase and hot workability will be impaired, so the upper limit is set at 2%.

AinはSiと同じく脱酸剤として用いられると同時に
焼入性向上にも効果があるが、2%を越えると変態温度
を下げ焼なまし硬さが下がりにくく、熱間加工性も低下
するので上限を2%とした。
Like Si, Ain is used as a deoxidizing agent and is also effective in improving hardenability, but if it exceeds 2%, it lowers the transformation temperature, makes it difficult to reduce annealing hardness, and reduces hot workability. The upper limit was set at 2%.

この他車発明ではとくに規定しないが、これらの元素以
外に従来K C’ K C″r系冷間工具鋼で用途に応
じては適宜効果ありと開示された、1’i 、 Al 
、 C’uの添加やNの増量なども本願発明の主旨をと
くに損うものではなく本発明鋼に適用されることは苗然
予測されるものである。
In addition to these elements, although not specified in the invention, there are 1'i, Al, which have been disclosed to be effective depending on the application in conventional K C' K C''r cold work tool steels.
, the addition of C'u, the increase in the amount of N, etc. do not particularly impair the gist of the present invention, and it is naturally expected that they will be applied to the steel of the present invention.

以上の如く本発明鋼は従来の高C高c′r系または高C
高V系の耐摩耗性がとくに要求される冷間工具鋼分野で
飛躍的に耐摩耗性を向上するのはきわめてすぐれた効果
を有する。
As described above, the steel of the present invention can be used in conventional high C, high c'r series or high C
In the field of cold work tool steel, where high V type wear resistance is particularly required, the dramatic improvement in wear resistance has an extremely excellent effect.

rの添加によるクローム炭化物の粒状化効果は耐摩耗性
付与を行ないつつ、靭性な損うものではない。本発明鋼
に合金粉末を出発原料とする粉末冶金の手法を採用する
ことは組織の均一微細化による靭性向上で大きな効果が
ある。
The granulation effect of chromium carbide due to the addition of r imparts wear resistance without impairing toughness. Adopting a powder metallurgy method using alloy powder as a starting material for the steel of the present invention has a great effect in improving toughness through uniform refinement of the structure.

抜き金をはじめとする金型、土砂摩耗用、ロール、プラ
スチック成型金型の寿命向上に大きな寄与をする材料で
ある。
It is a material that greatly contributes to extending the lifespan of molds such as punching metals, dirt wear molds, rolls, and plastic molds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼の焼入温度と焼戻温度別の硬を示す線
図、第2図は本発明鋼と比較鋼のミクロ組織を示す顕微
鏡写真でaは本発明鋼V3、b。 Cは夫々比較鋼、qlSIaaq、5KI)11である
。第3図は本発明鋼と比較鋼の大越式摩耗試験による摩
擦速度と比摩耗舟の線図、第4図はプラスチック成形用
材料としての本発明鋼と比較鋼の腐食摩耗試験を示す図
、第5図は腐食摩耗試験に用いた装置の概略図である。 1:ガス通路、2:容器、5:ABS系プラプラスチッ
ク樹脂ニガラス粉末、5:電気炉、6I試験片、7:熱
電対。 ;t IV 則−2口 cLX4t′ρ S、C,メtj−17U 第3図 オ 4 腐 θ乙 つダ オ 5 膓 昭和57f1111j1.′I願第17’0545シj
’rt ”l (7) 名に4’  高ni 糸高靭性
冷間工具鋺補11″をする者 補正の内容 1、 明細書の特許請求の範囲の楠を次のように訂正す
る。 1、 重量比でozo〜4.0%、Or7.0〜服%、
■6.0〜14.0%、MOo、5〜3.0%、S12
.0%以下、Mn&O%以下残部Fθおよび不純物から
なる高耐摩耗高靭性冷間工具鋼。 2L  T1!量比T O20〜4.0%、Or7.0
〜17.1%、76.0〜140%、Mo0.5〜3.
0%、Sij?、0%以下、MnfiLo%以下でさら
にMo0.5〜3.0%の一部又は全部をWl、0〜6
.0%の範囲で、かつ−!(%W)−(%Mo )なる
等式で負換した残部Feおよび不純物からなる高耐摩耗
高靭性冷間工具鋼。 3、 重量比で02PO〜40%、Or7.0〜17.
1%、760〜140%、Mo0.5〜3.0%、Si
2.0%以下、Mn2.0%以下さらに00又はHlを
1.0〜3.5%含み残部’Feおよび不純物からなる
高耐摩耗高靭性冷間工具鋼02 明細書の発明の詳細な
説明の欄を次のように訂正する。 fll  明細書第5頁第4行「基地への」を「基地へ
」に訂正する。 (2)  同書第5頁第14行「ol、5〜」から、同
頁第18行「以下の」までを次のように訂正する。 「020〜40%、S12.0%以下、Mn2−0%以
下、Or7.0〜17.1%、760〜140%、W又
はMOがW−1−2Mo量で1.0〜6.0%、残部不
純物と鉄を含み、目的によっては1.5〜30%の00
や」 (3)  同書第5頁第20行「5%」を「6%」に訂
正する0 (4)  同書第13頁第8行1aucsJをl’−A
BsJに訂正する。 (5)  同書第14頁第7行「以下」を、「未満」に
訂正する。 (6)  同書第14頁第10行及び同頁第13行の「
16,5」を、それぞれ「17.1」に訂正−する。 (力 同書第15頁第1行「以上では熱間加工が不可能
となる。」を「を越えると熱間加工が不可能となるので
、14%とする。」に訂正する。 (8)  同書第15頁第10行「7.OJを「6.0
」に訂正する。 (9)  同1第15頁第19行「以下」を、「未満」
に訂正する。 0Ill  同1.第16頁第2行「3%以下」を、「
、05〜3.0%」に訂正する。 (11)  同1第16頁第6行「本願発明」を、「本
願の第1及び第2の」に訂正する。 αδ 同1第16頁第8行「以下」を、「未満」に訂正
する。 側 N1第16頁第8行から第9杓にわたz)「以上で
は」を、「を越えると」に訂正する。 Q4)  l751m!第1勺頁第10行「3jを、r
3.5jに訂正する。 05)  同1第16頁第12行「同様に」の後に、「
第1及び第2の発明では、」を加入する。 0伊 同書第16頁第15行「1.5%以下」を、「1
.0未満」に訂正する。 071  同書第16頁第16行「3.5%以上」を、
「35%を越えて」に訂正する。 0Q  同書第16頁第15行から第17行にわたる「
3.5%を上限とする。」を、「、1.0〜3.5%と
する。」a!1  同書第16頁第19行「以上」を、
「を越えて」に訂正する。 3 図面の第1図を臨角の第1図と差替える。
FIG. 1 is a diagram showing the hardness of the steel of the present invention at different quenching and tempering temperatures, and FIG. 2 is a micrograph showing the microstructures of the steel of the present invention and comparative steel, where a is steel of the invention V3 and b is steel of the invention. C is comparative steel, qlSIaaq, 5KI)11, respectively. Fig. 3 is a diagram showing the friction velocity and specific wear coefficient of the Okoshi type wear test of the inventive steel and the comparative steel, and Fig. 4 is a diagram showing the corrosion wear test of the inventive steel and the comparative steel as materials for plastic molding. FIG. 5 is a schematic diagram of the apparatus used for the corrosion wear test. 1: gas passage, 2: container, 5: ABS plastic resin Nigaras powder, 5: electric furnace, 6I test piece, 7: thermocouple. ;t IV Rule-2cLX4t'ρ S, C, Metj-17U Fig. 3 O 4 Fu θ Otsu Dao 5 Showa 57f1111j1. 'I Application No. 17'0545
(7) Contents of the amendment by the person who added 4' High Ni Thread High Toughness Cold Work Tool Compensation 11'' to the name 1. The claims in the specification are corrected as follows. 1. Weight ratio: ozo~4.0%, Or7.0~clothing%,
■6.0~14.0%, MOo, 5~3.0%, S12
.. A cold work tool steel with high wear resistance and high toughness, consisting of 0% or less, Mn&O% or less, the balance Fθ and impurities. 2L T1! Amount ratio TO20~4.0%, Or7.0
~17.1%, 76.0~140%, Mo0.5~3.
0%, Sij? , 0% or less, MnfiLo% or less, and further add some or all of Mo0.5 to 3.0% to Wl, 0 to 6
.. In the range of 0% and -! A cold work tool steel with high wear resistance and high toughness, consisting of the balance Fe and impurities subtracted by the equation (%W) - (%Mo2). 3. Weight ratio: 02PO to 40%, Or7.0 to 17.
1%, 760-140%, Mo0.5-3.0%, Si
Highly wear-resistant, high-toughness cold work tool steel 02 consisting of 2.0% or less Mn, 2.0% or less Mn, and 1.0 to 3.5% 00 or Hl, with the remainder being Fe and impurities. Correct the column as follows. fll On page 5 of the specification, line 4, "to the base" is corrected to "to the base." (2) The text from page 5, line 14, ``ol, 5~'' to line 18, ``the following'' on page 5 of the same book, is corrected as follows. "020-40%, S12.0% or less, Mn2-0% or less, Or7.0-17.1%, 760-140%, W or MO is 1.0-6.0 in W-1-2Mo amount %, including the balance impurities and iron, depending on the purpose 1.5-30% 00
(3) Correct “5%” on page 5, line 20 of the same book to “6%” 0 (4) Correct “1aucsJ” on page 13, line 8 of the same book to l’-A
Corrected to BsJ. (5) In the same book, page 14, line 7, "less than" is corrected to "less than". (6) “In the same book, page 14, line 10 and page 13, “
16,5" are respectively corrected to "17.1". (The first line of page 15 of the same book, ``Hot working becomes impossible if it exceeds this.'' is corrected to ``Since hot working becomes impossible if it exceeds that, it is set at 14%.''). (8) The same book, page 15, line 10, “7.OJ” to “6.0
” is corrected. (9) 1, page 15, line 19, “less than” is replaced with “less than”
Correct. 0Ill Same 1. Page 16, line 2, “3% or less” is changed to “
,05-3.0%". (11) 1, page 16, line 6, "Invention of the present application" is corrected to "first and second of the present application". αδ Correct “less than” in line 8 of page 16 of the same 1 to “less than”. Side N1, page 16, line 8 to line 9 z) Correct "more than" to "beyond". Q4) l751m! 1st page, line 10 “3j, r
Corrected to 3.5j. 05) After “Similarly” on page 16, line 12 of the same 1, “
In the first and second inventions, " is added. 0 Ibid., page 16, line 15 of the same book, “1.5% or less” was changed to “1.5% or less”.
.. Correct to "less than 0." 071 The same book, page 16, line 16 “3.5% or more”
Corrected to "over 35%." 0Q From line 15 to line 17 on page 16 of the same book, “
The upper limit is 3.5%. ", ", 1.0 to 3.5%." a! 1 The same book, page 16, line 19, “more than”
Correct to "beyond". 3. Replace Figure 1 of the drawings with Figure 1 of the angle of view.

Claims (1)

【特許請求の範囲】 1、 重量比でC2,0〜4.0%、Cr7.o〜16
5%m V6.0〜14.0%、 klo 0.5〜5
.0%*si2.o%以下、 Mn 2.0% 以下残
部Faおよび不純物からなる高耐摩耗高靭性冷間工具鋼
。 2、重量比でC2,0〜4.0%、 Cr 7.0〜1
6.5%wV6.0〜14.0%、 No 0.5〜3
.0%@ St 2.0%以下s un 2.0 %以
下で、さらK No o、s〜3.0%の一部又は全部
をFl、0〜6.0%の範囲で、がつi(%W)=C%
Mo )なる等式で置換した残部Feおよび不純物から
なる高耐摩耗高靭性冷間工具鋼。 6、 重量比でC’ 2.0−4.0%、 Cr7.0
 ヘ165% I V6.0 ヘ14.0 % j N
O0,5〜3.0%tSL2.0%以下、Mn2o%以
下さらにC’o又はNiを15〜5.0%含み残部Fe
および不純物からなる高耐摩耗高靭性冷間工具鋼。
[Claims] 1. C2.0 to 4.0% by weight, Cr7. o~16
5%m V6.0~14.0%, klo 0.5~5
.. 0%*si2. A cold work tool steel with high wear resistance and high toughness, consisting of 0% or less, Mn 2.0% or less, and the balance being Fa and impurities. 2. C2.0-4.0% by weight, Cr 7.0-1
6.5%wV6.0~14.0%, No 0.5~3
.. 0%@St 2.0% or less sun 2.0% or less, further K No o, some or all of s ~ 3.0% is Fl, in the range of 0 ~ 6.0%, Gatsu i (%W)=C%
A high wear-resistant, high-toughness cold work tool steel consisting of impurities and the balance Fe substituted with the equation: Mo). 6. C' 2.0-4.0% by weight, Cr7.0
He165% I V6.0 He14.0% j N
O0.5~3.0%tSL2.0% or less, Mn2o% or less, further containing 15~5.0% C'o or Ni, balance Fe
High wear resistance and high toughness cold work tool steel consisting of and impurities.
JP17054582A 1982-09-29 1982-09-29 High abrasion resistant and highly tough cold working tool steel Granted JPS5964748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17054582A JPS5964748A (en) 1982-09-29 1982-09-29 High abrasion resistant and highly tough cold working tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17054582A JPS5964748A (en) 1982-09-29 1982-09-29 High abrasion resistant and highly tough cold working tool steel

Publications (2)

Publication Number Publication Date
JPS5964748A true JPS5964748A (en) 1984-04-12
JPS6210293B2 JPS6210293B2 (en) 1987-03-05

Family

ID=15906869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17054582A Granted JPS5964748A (en) 1982-09-29 1982-09-29 High abrasion resistant and highly tough cold working tool steel

Country Status (1)

Country Link
JP (1) JPS5964748A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863515A (en) * 1986-12-30 1989-09-05 Uddeholm Tooling Aktiebolag Tool steel
US5679908A (en) * 1995-11-08 1997-10-21 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
US5900560A (en) * 1995-11-08 1999-05-04 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and method for producing the same
US6348109B1 (en) * 1998-03-23 2002-02-19 Uddeholm Tooling Aktiebolag Steel material and method for its manufacturing
WO2009126674A3 (en) * 2008-04-08 2010-01-21 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
US9162285B2 (en) 2008-04-08 2015-10-20 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
US9624568B2 (en) 2008-04-08 2017-04-18 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111414A (en) * 1975-03-26 1976-10-01 Hitachi Ltd High speed steel for welding
JPS5290405A (en) * 1976-01-22 1977-07-29 Amsted Ind Inc Process of producing highhcarbon hard alloy
JPS53146914A (en) * 1977-05-02 1978-12-21 Hitachi Metals Ltd Highhspeed tool steel
JPS55122801A (en) * 1979-03-15 1980-09-20 Daido Steel Co Ltd High speed steel powder and sintered body thereof
JPS5782465A (en) * 1981-08-13 1982-05-22 Hitachi Metals Ltd High speed tool steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111414A (en) * 1975-03-26 1976-10-01 Hitachi Ltd High speed steel for welding
JPS5290405A (en) * 1976-01-22 1977-07-29 Amsted Ind Inc Process of producing highhcarbon hard alloy
JPS53146914A (en) * 1977-05-02 1978-12-21 Hitachi Metals Ltd Highhspeed tool steel
JPS55122801A (en) * 1979-03-15 1980-09-20 Daido Steel Co Ltd High speed steel powder and sintered body thereof
JPS5782465A (en) * 1981-08-13 1982-05-22 Hitachi Metals Ltd High speed tool steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863515A (en) * 1986-12-30 1989-09-05 Uddeholm Tooling Aktiebolag Tool steel
US5679908A (en) * 1995-11-08 1997-10-21 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
US5900560A (en) * 1995-11-08 1999-05-04 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and method for producing the same
US5936169A (en) * 1995-11-08 1999-08-10 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
US6348109B1 (en) * 1998-03-23 2002-02-19 Uddeholm Tooling Aktiebolag Steel material and method for its manufacturing
WO2009126674A3 (en) * 2008-04-08 2010-01-21 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
US9162285B2 (en) 2008-04-08 2015-10-20 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
US9546412B2 (en) 2008-04-08 2017-01-17 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
US9624568B2 (en) 2008-04-08 2017-04-18 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder

Also Published As

Publication number Publication date
JPS6210293B2 (en) 1987-03-05

Similar Documents

Publication Publication Date Title
JP3845805B2 (en) Low alloy steel for manufacturing molds for plastic or rubber materials
JP7038547B2 (en) Abrasion resistant alloy
US4249945A (en) Powder-metallurgy steel article with high vanadium-carbide content
KR20040108699A (en) Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
KR100382212B1 (en) Stainless steel for brake disc excellent in resistance to temper softening
CA2891863A1 (en) Method of manufacturing a ferrous alloy article using powder metallurgy processing
US5522914A (en) Sulfur-containing powder-metallurgy tool steel article
JPS6121299B2 (en)
JP4361686B2 (en) Steel material and manufacturing method thereof
US6053991A (en) Production of cold working tool steel
EP0377307B1 (en) Powdered high speed tool steel
JPS5964748A (en) High abrasion resistant and highly tough cold working tool steel
MX2012005737A (en) Steel with high temper resistance.
CA2037498C (en) Air hardening steel
CA1191039A (en) Powder metallurgy tool steel article
JPH0140901B1 (en)
JPH0146582B2 (en)
US3869037A (en) Ferrous alloy and abrasive resistant articles made therefrom
JPH01119645A (en) Powdery high-speed steel
US2174282A (en) Ferrous alloy
JPH08120333A (en) Tool steel and its production
JPS6137949A (en) Alloy cast iron material having superior resistance to surface roughening and wear
JPS60128247A (en) Wear-resistant cast steel having high toughness
JPH07138700A (en) Hot tool steel and metal mold for die casting using same
JPS63259052A (en) Screw for compression molding machine of chaff