JPS5964703A - Fine acicular metal powder - Google Patents

Fine acicular metal powder

Info

Publication number
JPS5964703A
JPS5964703A JP17252582A JP17252582A JPS5964703A JP S5964703 A JPS5964703 A JP S5964703A JP 17252582 A JP17252582 A JP 17252582A JP 17252582 A JP17252582 A JP 17252582A JP S5964703 A JPS5964703 A JP S5964703A
Authority
JP
Japan
Prior art keywords
metal
bath
electrolytic
film
oxidized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17252582A
Other languages
Japanese (ja)
Other versions
JPH0338321B2 (en
Inventor
Akio Kiyama
木山 晃男
Akira Niitsuma
新妻 亮
Shinji Fukuda
福田 伸二
Takeshi Fujimoto
健 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Industries KK
Showa Keikinzoku KK
Original Assignee
Showa Aluminum Industries KK
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Industries KK, Showa Keikinzoku KK filed Critical Showa Aluminum Industries KK
Priority to JP17252582A priority Critical patent/JPS5964703A/en
Publication of JPS5964703A publication Critical patent/JPS5964703A/en
Publication of JPH0338321B2 publication Critical patent/JPH0338321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To manufacture the titled fine acicular metal powder or stable quality at a low cost, by electrolyzing Al or an Al alloy having the surface coated with an anodically oxidized film in an aqueous phase containing one or more of metal ions to precipitate said metal ion in fine pores inside the coating film, and then removing said anodically oxidized film by dissolution. CONSTITUTION:Al or an Al alloy having the surface coated with an anodically oxidized film is electrolyzed as an anode in an aqueous solution of one or more of water-soluble metal compounds as an electrolyte. After the electrolysis, said metal is precipitated in the fine pores of the anodically oxidized film on the surface. Thereafter, the surface is treated with an aqueous phosphoric acid solution having the excellent ability to dissolve an anodically oxidized film, e.g. one of concentration of 1-10% and a liquid temp. above 50 deg.C, to dissolve said anodically oxidized film. Thus, the acicular powder of said metal is obtained.

Description

【発明の詳細な説明】 本発明は金属微粉末に係り、さらに詳しくはAeまたは
その合金の表面に形成せしめた陽極酸化皮膜中の超微細
孔を利用した電解析出法によって製出される針状金属微
粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fine metal powder, and more particularly to a fine metal powder produced by electrolytic deposition using ultra-fine pores in an anodic oxide film formed on the surface of Ae or its alloy. Regarding fine metal powder.

金属微粉末は、主として粉末冶金用あるいは顔料用とし
て製造、使用されているが、これらの金属粉末は平均粒
径が数μないし数100 ttの所謂サブシーブ、ある
いはシーブ領域の大きさであり、これらの粉末は粉砕法
、アトマイズ法、電解法その他の物理的、化学的方法に
より娼(造されている。
Fine metal powders are mainly produced and used for powder metallurgy or pigments, but these metal powders have an average particle size of several μ to several 100 tt, the size of the so-called sub-sieve or sieve region, and these The powder is produced by pulverization, atomization, electrolysis, and other physical and chemical methods.

これに対して、近年オングストローム級の粒子サイズの
所謂超微粉末が製造されるようになり、それらの超微粉
末には従来の金属粉末とは異った有用な性質が見出され
その用途が拡大してきている。
On the other hand, in recent years so-called ultrafine powders with particle sizes on the angstrom level have been manufactured, and these ultrafine powders have been found to have useful properties different from conventional metal powders, and their uses are expanding. It is expanding.

すなわち、高密度化磁気記録媒体用の磁性粉(Fe。That is, magnetic powder (Fe) for high-density magnetic recording media.

Co、 Niとそれらの合金)をはじめとして導電・抵
抗塗料用顔料(Ag、 Ni、 Cu等)、導電性コ゛
ム・樹脂用充填剤、界面化学反応素子(触媒、電池用極
板、低温焼結媒体等にAg、 Ni、 PL、 pa等
)微粒子フィルター(Ni等)、口をット燃旧の燃焼助
剤(A1. Ni )  分散強化型合金(Ni等)、
 赤外線等放射検出器の受光用塗料(AIJ )  等
がそれである。
Co, Ni, and their alloys), pigments for conductive/resistance paints (Ag, Ni, Cu, etc.), fillers for conductive combs/resins, surface chemical reaction elements (catalysts, electrode plates for batteries, low-temperature sintering, etc.) (Ag, Ni, PL, PA, etc.) Particulate filter (Ni, etc.), Combustion aid (A1.Ni), Dispersion-strengthened alloy (Ni, etc.),
Examples include light-receiving paint (AIJ) for infrared and other radiation detectors.

これらの超微粉末の製造法としては、低圧不活性ガス中
で金属を蒸発させる所謂、気中蒸発法のごとき物理的方
法のほかいくつかの化学的方法によって製造されている
。化学的方法としては、金属化合物を高温で還元する方
法、化学的に超微粒子の金属J’+njの沈澱をつくり
、これを加熱還元する方法、金属イオンを含む塩の水溶
液を霧化しこれを凍結乾J:、’+lj法によって?a
 $Si (t シ加−″(シ還元−qる方法、金属イ
オンを含む塩をガス低?!−11プラズマで熱分解する
方法等が提唱せられその一部が工業化されている。しか
しながら気中蒸発法は金属を蒸発させるのに多大のエネ
ルギーを必吸とするほか大型の真空装置を要し、しがも
生産性が低いため、コスト高となる欠点がある。−18
だ化学的方法は原料化合物の調製に費用ががさむほがい
づれも加熱還元工程が不可避であり、加熱中に生成微粒
子の粒成長をおこし粒径の安定Iソ1:、に乏しい笠の
欠点がある。
These ultrafine powders are manufactured by several chemical methods in addition to physical methods such as the so-called in-air evaporation method in which metals are evaporated in a low-pressure inert gas. Chemical methods include reducing metal compounds at high temperatures, chemically precipitating ultrafine particles of metal J'+nj and reducing them by heating, and atomizing an aqueous solution of salt containing metal ions and freezing it. Inui J:, by '+lj method? a
A method of thermally decomposing salts containing metal ions using low gas plasma has been proposed, and some of them have been industrialized. The medium evaporation method requires a large amount of energy and large vacuum equipment to evaporate the metal, and has the drawback of low productivity and high costs.-18
In chemical methods, the preparation of the raw material compounds is expensive, but in both cases a thermal reduction step is unavoidable, which causes grain growth of the produced fine particles during heating, resulting in poor particle size stability. There is.

本発明の目的は、金属または合金のオングストローム級
サイズの超微粒粉末を安定した品質かつ低コストで製造
する方法、とくに磁気的特性の優れた超微粉末を製造す
る方法を開発することにある。
An object of the present invention is to develop a method for producing angstrom-sized ultrafine powder of metal or alloy at a stable quality and at low cost, and in particular, a method for producing ultrafine powder with excellent magnetic properties.

本発明者等は、金属とくにA/ またはその合金の表面
に形成せしめた陽極酸化皮膜内にきわめて均整の孔径と
深さを有する微乳]孔が密に存在する知見にノ1(いて
4′lO々研究の結果本発明に到達した。
The present inventors have discovered the first (and fourth) finding that micropores with extremely uniform pore diameters and depths are densely present in the anodic oxide film formed on the surface of metals, particularly A/ or its alloys. As a result of extensive research, we have arrived at the present invention.

金のfa2:!/r−を”lti解イノT出ぜしめ、つ
いて]−記11号枠1俊化皮膜を;)i4t :I+<
的に溶解除去して製出される剣状金属微粉末に関する。
Gold fa2:! /r- "lti solution Ino T comes out, followed] - note No. 11 frame 1 brightening film ;) i4t :I+<
This invention relates to fine sword-shaped metal powder produced by melting and removing the powder.

本発明の方法は水性相における二工程の’fIL 解反
応と、酸化物の溶解反応により実施する。
The process of the invention is carried out by a two-step 'fIL decomposition reaction in the aqueous phase and an oxide dissolution reaction.

第1工稈:AlまたはA/’合金の表面に陽極酸化皮膜
を形成させる工程(−次電解処 理) 第2王稈:」5記皮膜中の徘・′!7別孔内孔内属また
は合金の微粒子を′IL!角イ伍出さぜる玉子”1゛(
二次電角了処理) &53丁程二斗−記陽枠酸化皮膜を選択的に溶解除去す
る工程(皮膜溶解処、、r!iり 以下、上記各工程について説明する。
First culm: Step of forming an anodic oxide film on the surface of Al or A/' alloy (-subsequent electrolytic treatment) Second culm: "5. Wandering in the film"! 7. Separate fine particles of metal or alloy inside the inner hole. The egg that comes out in the corner is 1゛ (
The process of selectively dissolving and removing the oxidized film on the frame (film dissolving process) will be described below with reference to each of the above steps.

(1)−次電解処理 A/ またはその合金を陽極とし、1岐浴中において直
流または交流電解する′と、その表面に耐食性、耐摩粍
性、装飾性を有する酸化皮膜が形成されることは周知の
とおりであり、酸浴としては、各種無軸ば、イJ゛((
鼾獄、あるいはこれらの/lll、酸が使用される。(
湯極酸化皮膜は微細孔が密集した多孔r[層と、微71
′li1孔の底部から金属面までの間の2,1い細密な
バリヤ一層の二重構造からなる。 多孔質層の微細孔は
オングストローム級の孔径で金属面に垂直方向には父゛
規則的に配列され、その頂部は開孔している。微細化の
孔径は電解浴の種類、浴温等によって異るが、一定条件
下ではリン酸が最大、硫酸が最小である。多孔質層の厚
みすなわち孔の深さはl’の純度、合金組成、電解条件
等により変化するが一般に純Aj?では厚く、重金属含
有合金ではljVい。また電解時間により多孔T′r、
層の厚みに最大点が存在し、一旦形成した皮膜は電解浴
に溶解してtri <なってゆく。
(1) When electrolytic treatment A/ or its alloy is used as an anode and subjected to direct current or alternating current electrolysis in a branched bath, an oxide film having corrosion resistance, abrasion resistance, and decorative properties will be formed on the surface. As is well known, acid baths include various types of shaftless baths, IJ゛((
Snoring prison, or these /lll, acids are used. (
The hot water electrode oxide film has a porous layer with densely packed micropores, and a fine 71
It consists of a double layer structure with a few fine barrier layers between the bottom of the 'li1 hole and the metal surface. The micropores in the porous layer have a diameter on the order of angstroms, are regularly arranged in the direction perpendicular to the metal surface, and are open at the top. The pore size of the refinement varies depending on the type of electrolytic bath, bath temperature, etc., but under certain conditions, phosphoric acid is the largest, and sulfuric acid is the smallest. The thickness of the porous layer, that is, the depth of the pores, varies depending on the purity of l', alloy composition, electrolytic conditions, etc., but is generally pure Aj? For alloys containing heavy metals, it is thick. Also, depending on the electrolysis time, porous T'r,
There is a maximum point in the thickness of the layer, and once the film is formed, it dissolves in the electrolytic bath and becomes tri <.

皮j(作の成分はバリヤ一層、多孔質層共に主として非
晶質無水A403 であるが、電解条件によっては一部
結品質Al2O3を生じ、廿だ電解浴に接゛する部分は
1〜3水和物に変化している。
The composition of the coating is mainly amorphous anhydrous A403 for both the barrier layer and the porous layer, but depending on the electrolytic conditions, a part of crystallized Al2O3 is formed, and the other parts in contact with the electrolytic bath contain 1 to 3 water. It has changed to Japanese food.

本発明の目的に適した微細孔を有する陽(1メ酸化皮膜
を形成する一次7ij llI’i′処理液としては、
Wj酸、クロム酸、リン酸、等の無憬酸、且たは蓚酸、
スルファミン酸、酒石酸、マレインロ?等の脂肪族カル
ボン1+、’;2 シn’!、芳香族スルボン酸a2′
1等の有(;q酸、あるいはこれらの混酸が挙げられる
が、必要な多孔質層の均整な形成という観点から硫酸、
クロム酸、リン酸、蓚酸カー良好であり、とりわけ硫酸
電解浴は、形成される微細孔径が小さいほか、浴が安価
で電解電力も少く経済的であり本発明に最もイJ利に適
用される。
The primary 7ij llI'i' treatment solution for forming a positive (1mega) oxide film having micropores suitable for the purpose of the present invention includes:
Wj acid, chromic acid, phosphoric acid, etc., or oxalic acid,
Sulfamic acid, tartaric acid, maleiro? Aliphatic carbon 1+, ';2 syn'! , aromatic sulfonic acid a2'
Examples include 1st class acid (;q acid, or a mixed acid thereof; however, from the viewpoint of uniformly forming the necessary porous layer, sulfuric acid,
Chromic acid, phosphoric acid, and oxalic acid are suitable for use in electrolytic baths. In particular, sulfuric acid electrolytic baths form small pores, are inexpensive, and require little electrolytic power, making them economical and therefore most advantageously applied to the present invention. .

ところで現在1?またはその合金製品の多くに(顎1波
′)1を前浴(Cよる同棲酸化皮膜が施されているが、
この劫゛・合浴の霞1度は1o 〜30 wt、 @ 
H2SO4、谷?#Lは15〜25℃の範囲内の所定温
度に保持し、電流密度O” 〜3 A / on2、電
解電圧15〜20vで電解される。電解の進行に伴う発
熱により浴温か上昇し、そのため一旦生成した皮膜の溶
解をもたらし、また高浴貌で生成した皮11%yは軟質
で(岨摩耗性、耐食=+!+4が劣るため、冷却手段に
より浴を強制冷却する操作が不可欠であって、この冷却
に四する電力;11が電IQT′電力11トを−1.廻
るのが′j′私である。
By the way, is it currently 1? Or, many of the alloy products are coated with a pre-bath (C) co-existing oxide film.
The haze of this kalpa/combined bath is 1 o ~ 30 wt, @
H2SO4, valley? #L is held at a predetermined temperature within the range of 15 to 25 °C, and electrolyzed at a current density of O''~3 A/on2 and an electrolytic voltage of 15 to 20 V.The bath temperature rises due to heat generation as the electrolysis progresses, and therefore This leads to the dissolution of the film once formed, and the skin 11%y formed with a high bath appearance is soft (with poor abrasion resistance and corrosion resistance = +! +4), so it is essential to forcibly cool the bath using a cooling means. So, the power required for this cooling is 11, and the power IQT' power 11 is -1.

しかしかがら本発明においては皮膜中の微細孔を利用す
るので、あえて皮膜を硬a化して1iil摩J’[)性
を賦−1jぜしぬる心力は全くなく、従って浴7□:+
i’tの上昇は別の観点から、15L制される。この点
について本発明者等は神々研究の結果、本発明に適才る
硫酸型iQ・r浴の浴温は130〜80℃の範囲にある
ことを見出した。浴温がこの−1−限を超えると一1シ
生成した皮膜の溶角7(が速すぎて必要な厚みの皮膜を
均一に形成することができない。一方浴温が1こ記斗限
に満たない場合は形成される皮膜が硬質で、微細孔に金
属粒子を析出した後の皮膜の溶解力;緩慢であり、その
除去が不充分であるため本虻明の効果を充分発揮しえな
い。さらに注目すべきは、−次電解浴温か高い方が二次
電解処理を径で得られる強磁性金属微粉の磁気特性(保
持力、飽和磁化、残留磁化)が優れていることである。
However, in the present invention, since the micropores in the film are used, there is no mental strength to harden the film and impart 1iil J'[) property, and therefore, the bath 7□: +
The increase in i't is controlled by 15L from another point of view. Regarding this point, the present inventors have conducted extensive research and found that the bath temperature of the sulfuric acid type iQ.r bath suitable for the present invention is in the range of 130 to 80°C. When the bath temperature exceeds this -1 limit, the melting angle of the film formed is too fast to form a film of the required thickness uniformly.On the other hand, when the bath temperature exceeds this limit, If it is less than 100%, the film formed is hard and the dissolving power of the film after metal particles are deposited in the micropores is slow, and the removal is insufficient, so the effect of this invention cannot be fully demonstrated. What is further noteworthy is that the higher the temperature of the secondary electrolytic bath, the better the magnetic properties (coercive force, saturation magnetization, residual magnetization) of the ferromagnetic metal fine powder obtained by the secondary electrolytic treatment.

このように本発明は高浴温電解であるため通例の陽(1
′i、、 rl’2化処理全処理て浴冷却エネルギーも
少く、また低電圧電解となるため電解重力)i、も大中
にイ氏減しうる。
As described above, since the present invention uses high bath temperature electrolysis, it is different from the usual positive (1
'i,, rl' The bath cooling energy is small in the entire process, and since the electrolysis is performed at a low voltage, the electrolytic gravity (i) can be reduced by a large degree.

(2)二次?[i解処用l 子を電角T1析出させる二次電解処理は、上記の陽極酸
化皮膜を形成させたAj?tたはl?金合金7;j棲と
し、水溶性金り;化合物の水溶液を1)′J独または混
合して水性’lit解浴と前浴他の適当な11枠との間
に直流、交流、交直重畳等の電流を通して電解すること
により行う。析出金属としては、Fe、Co、Ni。
(2) Secondary? The secondary electrolytic treatment for electrolytic T1 precipitation of the Aj? T or l? Gold alloy 7: J-based water-soluble gold alloy; an aqueous solution of the compound 1) 'J alone or mixed and DC, AC, AC/DC superposition between the aqueous 'lit solution and the pre-bath or other suitable 11 frames. This is done by electrolyzing by passing a current such as Precipitated metals include Fe, Co, and Ni.

])a 、P L + F r 1M n 、Cr +
 M o + W + V + N b + T a 
、B 1+T i、Zr + Y + La + Ce
 、Sm、Znl Cu + Ag ! Au +等金
属性元素の大部分が対象となる。
]) a , P L + F r 1M n , Cr +
M o + W + V + N b + T a
, B 1 + Ti, Zr + Y + La + Ce
, Sm, Znl Cu + Ag! Most of the metallic elements such as Au + are targeted.

−1〕記金属の水溶性化合物としては、硫1佼塩、硝酸
塩、リン:’jR塩、ピロリン酸塩、シアン酸塩、ハロ
ゲン化物、金属酸塩等の無椋化合物、酢酸塩、酒石1浚
塩、スルファミン酸塩等の有機化合物からなる群から選
択される1種または2種板−1−が適用される。これら
金属塩における金属元宋のf、tli Wi及びその原
子価の高低は電解電流に選択性があり、また低原子価金
属塩においてはjノ当なF;゛化防止剤を共存させる必
要がある。 例え1JNi、Coの181・1の場合、
交流電解が適し、またFe の場合第二鉄」)1Xでは
交、直流電解いずれも金属は析出せず、第一鉄塩の交流
型ifJ?(によってのみFe を析出させつる。この
場合電解中の酸化(Fe−+Fe)によりFe(OH)
3の沈遅1を生成してFe利川用を低下するため、電解
液中にハイドロキノン等の酸化防止剤を少宿添加するの
が良い。
-1] Water-soluble compounds of the metals include sulfur salts, nitrates, phosphorus:'jR salts, pyrophosphates, cyanates, halides, metal salts, etc., acetates, and tartaric compounds. 1 or 2 plates selected from the group consisting of organic compounds such as dredging salts and sulfamates are applied. In these metal salts, there is selectivity in the electrolytic current depending on the f, tli Wi, and valence of metals in these metal salts. be. For example, in the case of 181.1 of 1JNi, Co,
AC electrolysis is suitable, and in the case of Fe (ferric iron), no metal is deposited in either AC or DC electrolysis in 1X, and the AC type of ferrous salt ifJ? In this case, oxidation (Fe-+Fe) during electrolysis causes Fe(OH) to precipitate.
In order to generate precipitation retardation 1 of 3 and reduce Fe flux, it is preferable to add a small amount of an antioxidant such as hydroquinone to the electrolytic solution.

一般に二次電解処理の電解浴にはホウ酸及びグリセリン
の添加が有効である。前者の添加は電解浴のpHの緩衝
作用及び金属イオンの錯化作用の効果があり、1だ後者
の添加は電解浴の粘度を上昇して電解析出を均質化する
効果があり、この種の添加剤としてはグリコール、糖類
も使用し得る。
Generally, it is effective to add boric acid and glycerin to the electrolytic bath for secondary electrolytic treatment. The former addition has the effect of buffering the pH of the electrolytic bath and complexing the metal ions, while the latter addition has the effect of increasing the viscosity of the electrolytic bath and homogenizing the electrolytic deposition. Glycols and sugars can also be used as additives.

必要な添加F1iは電解対象金属塩によって異り、実験
により適斤(を定めるが、例えばFe、NrrCoの場
合ホウ酸は浴中H3B03として 25〜40.9々グ
リセリンは浴中10〜30.9/lの濃度になるように
添加する。
The necessary addition F1i varies depending on the metal salt to be electrolyzed and is determined by experiment, but for example, in the case of Fe, NrrCo, boric acid is 25 to 40.9 as H3B03 in the bath, glycerin is 10 to 30.9 in the bath. Add to a concentration of /l.

二次電解処理において2種以上の金属の化合物を′rl
・)97することによりそれら金属の合金を電解析出し
うる。この場合塩の種類、浴組成等を選択して効果よく
電解析出させる必要がある。N1−C。
In secondary electrolytic treatment, compounds of two or more metals are
)97, alloys of these metals can be electrolytically deposited. In this case, it is necessary to select the type of salt, bath composition, etc. for effective electrolytic deposition. N1-C.

では析出■・位が接近しているが、Fe−Ni、Fe−
Ni−Co等においては、Feの析出電位が離れている
ため、塩の種石、錯化剤等の選択によって近づける必要
がある。これら2種以−にの金属を同時に二次電解処理
で電解析出させる条件は、既に実用化されている合金メ
ッキの場合とは七んと同しである。
In this case, the precipitation positions are close to each other, but in Fe-Ni and Fe-
In Ni--Co, etc., since the deposition potential of Fe is far apart, it is necessary to bring them close by selecting a salt seed, a complexing agent, etc. The conditions for electrolytically depositing these two or more metals simultaneously by secondary electrolytic treatment are the same as those for alloy plating that has already been put into practical use.

二次電解処理の電解浴温は金属化合物の種類、lI−、
′1度等によっても異るが、一定の電解電圧下において
は浴温が高いほど金属析出バ1は多い。例えば硫酸コバ
ルト水溶液(pH=4.3)  を電解浴として交流電
解した場合、金属析出:);−は浴IN 50 ℃では
浴温20℃の場合の約150係に達する。しかしながら
一般に浴温め一75℃を超えると、金属の析出効率は飽
和され、一方では高浴温を卸持するためのエネルギー損
失が増大する。従って]二巣的操粟条件として浴温は2
0−760℃の範囲に絹持されることが望ましい。
The electrolytic bath temperature of the secondary electrolytic treatment depends on the type of metal compound, lI-,
Under a constant electrolytic voltage, the higher the bath temperature, the more metal deposited bars 1 will be formed, although this will vary depending on factors such as 1 degree. For example, when alternating current electrolysis is carried out using a cobalt sulfate aqueous solution (pH=4.3) as an electrolytic bath, the metal deposition ();- reaches about 150 times the value when the bath temperature is 20°C at a bath temperature of 50°C. However, in general, when the bath temperature exceeds -75°C, the metal deposition efficiency is saturated, and on the other hand, the energy loss for maintaining the high bath temperature increases. Therefore, the bath temperature is 2 as a double millet treatment condition.
It is desirable to maintain the temperature within the range of 0-760°C.

(3)皮膜溶解処理 11、己−沙ご山’ iQ’(処」甲に二1ニリ(万出
したイ;X!Jイ用(′!」]Jの伸;ri′1il金
ノ・](]又Q−]fン金庖111及にα、解する・二
と1.r <、陽]稿5゛f)−皮j(11“jθ〕み
をJll”j折曲に電解する操作は、皮膜と伍出金シ・
1:H:l: iニジ:]合金の1L学的反1.ig、
・111.の、i′異の第1」川に基づく。l!’I 
、!l!のごとく微細1孔を形成する賜(・σl酸化皮
II・1(の組成にヒ1としてA/’の酸化物、一部水
12化物であり、−次市IQ’r処〕II)条イ/1に
より被膜の化学的活″1ノ1度が異る。本発明において
は前記したように一次′山IQ’(処〕−甲の浴1’l
’1i!を高くしたことし−rっで、11・2、アルカ
リシこ/l;+’け易いA/’酸化物と+1゛っCいる
(3) Film dissolution treatment 11, self-Sagoyama'iQ' (dokoro) 21 ni (man put out ii; ](]Also Q-]fn gold plate 111 and α, understand・2 and 1.r The operation to do is to remove the film and the
1:H:l: i Niji:] 1L chemical reaction of alloy 1. ig,
・111. Based on the i′ first river. l! 'I
,! l! The property of forming fine pores as shown in (-σl oxidized skin II. The chemical activity of the film differs depending on A/1.In the present invention, as described above, the primary 'mountain IQ' (treatment) -
'1i! This year, I raised -r, 11.2, alkali silicon/l; +'easy to oxidize A/' oxide and +1'C.

皮1F;j #i解性に伐−れた液として1τ関では濃
度約1〜10%、液!!1.!  50℃以上のリン酸
水溶/(夕が適川される。アルノJ ’)では濃度約0
5〜lo係、液温3 Fl ℃以[のj′1)性アルカ
リが適川され2)。(Jで出金1.、バ、合金が111
金i:r;、系では苛性アルカリが適当であり、非屯金
居系例えばS n + S e + Z n +旧 等
の」コ)合は、析出金属に適したインヒビターを含ム皮
11)1き溶解液が、適する。     ゛皮膜溶解液
中に金属の表面酸化防止前1rインヒビター)を添加す
るのが有効で、アルカリ性的1t+イ液で(廿水tV仁
1ゾ1)1−イ1浚嗜5、例えばNa、、 S i 0
3 ’ !l It、、 Oを添加すると、得14′l
る金ス・、i玉、合金の鼓・気1冒′1が優ねている。
Skin 1F; j #i As a decomposable liquid, the concentration of 1τ is about 1-10%, liquid! ! 1. ! The concentration of phosphoric acid in water at 50°C or above is approximately 0.
5 to lo, the liquid temperature is 3 Fl ℃ or higher [j'1) and the alkali is 2). (Withdrawal with J 1., Ba, alloy is 111
For gold i:r; systems, caustic alkalis are suitable, and for non-metallic systems such as S n + S e + Z n + old etc., a caustic alkali containing an inhibitor suitable for the precipitated metal is used ) 1 lysis solution is suitable. It is effective to add 1R inhibitor to prevent metal surface oxidation in the film solution, and add an alkaline 1T+I solution (1-I 1 dredging 5, for example, Na,... S i 0
3'! Adding l It,, O gives 14'l
Rukinsu, i-dama, and alloy drums are predominant.

皮j]・1才溶解処341j後液中に残留する金属、合
金の(;及イ\ソ子はその1旨化を防ぐためi”i]及
的速かに溶解液と分則し、洗n1、乾燥する。溶)リイ
液との分v1(1にIll過、あるい0.1遠心分離Z
’:よ!、 、た6し浄液は水の日かアルコール、エー
テル等イを機溶剤)〕−一層有効である。乾燥は低温減
圧乾燥が適している。
Metals and alloys remaining in the solution after dissolution treatment 341j (; Wash n1, dry.Soluble) Minute v1 (1 to 1 Ill filtration, or 0.1 centrifugation Z)
':Yo! However, the purifying solution is even more effective when used with water, alcohol, ether, etc. as a solvent. Low temperature and reduced pressure drying is suitable for drying.

+ノ、1; +14.:溶解処j−jjj後の析出金属
は、後述の実施例の第1図、第2図に示すごとく、例え
O;丁直仔d:] 00−5fl (l A 、長さe
 −: 0.2− :’J urn の飼状体がその長
さ方向に密接集合した状Iルを呈する。
+ノ, 1; +14. : The precipitated metal after the melting treatment j-jjj, as shown in FIGS. 1 and 2 of the Examples described below, is
-: 0.2-: 'Jurn's feed body exhibits a shape in which it is tightly packed in the length direction.

これらの各金1状体のd及び7?は前記した電が1処理
祭件によって制御しうる。また各剣状外同志σ)接合は
弱い抑圧力により容易に分;加することができ、また必
要に応じ半径方向に勺断することもてきろ。。
d and 7 of each of these gold 1-like bodies? The electricity described above can be controlled by one processing event. In addition, each xiphoid outer comrade joint σ) can be easily applied with a weak suppressing force, and can also be ruptured in the radial direction if necessary. .

このような解砕、破砕には衝′撃式粉砕(牙−あるいは
粒子を相!T−@ii撃させるシェツト流、粉砕機等が
イ・りしている。
For such disintegration and crushing, impact type crushing (shock flow, crushing machine, etc. in which teeth or particles are bombarded with each other) is used.

以下、本発明を実験例、および実施例に基いて説明する
/ノミ、本発明はこれに限り!されるものではない。
The present invention will be explained below based on experimental examples and examples. The present invention is limited to this! It is not something that will be done.

実施例 (1)  ノ占  イ」 ; ■J・・・・・7′ルミニウノ−′/i’+ (9g、
 LJ係Al、厚さ0、 ]、 111111 X I
ll 501n1nX長さ100 mm )[iCl・
・・・−1業用純アルミニウム&(JIS  A1 ]
 00−繁$24、+12さ1.0 +nm X l1
15 +1111111.  ×長ざl 00 mm 
)(2)  子イノ11」入面処理;基イAを10℃の
5 % N a OH水溶液中に2分間浸漬し、ついて
:う()係J−rNO,。
Example (1) No divination i';■J...7'Lumiuno-'/i'+ (9g,
LJ Al, thickness 0, ], 111111 X I
ll 501n1nX length 100 mm) [iCl・
...-1 Industrial pure aluminum & (JIS A1]
00-Horizontal $24, +12 1.0 +nm X l1
15 +1111111. ×Length L 00 mm
)(2) Inner surface treatment for child Ino 11: Substrate A was immersed in a 5% NaOH aqueous solution at 10°C for 2 minutes, followed by: U() Section J-rNO,.

’111中で1分間デスマフートシ水洗乾燥した。Washed and dried in '111 for 1 minute with water.

(3)−次市、屑処理; 1) 電角了浴 : (a) : ] 55%H2S Os 、浴r!in 
20℃又は50℃U・こ一定にイ呆14i ”〕) : 25%113P04、浴温20’CK一定
に保1 2) ′1k   角?C: 糾A/’板を対負極として、所定の電流密度て一定[時
間直流電解した。
(3) - Next city, waste disposal; 1) Denkaku Ryoba: (a): ] 55% H2SOs, bath r! in
Keep the bath temperature constant at 20°C or 50°C at 20°C or 50°C. Direct current electrolysis was performed at a constant current density [time].

(4)  二次電解処理; 11)71 、)り7浴: ++1旧)、25係およびグリセリン20%を溶解した
水溶液中に 浴(’、)’ ・Fc SO4・71−120 5.0
 %浴(鴛)・−CoSO4H7Tl2O5,0%を溶
解し、各lI2SO4によりpH= 3.5に調整して
電i竹浴とし1ミ。浴温は3 (1℃に一定にイ呆1−
11−シた。。
(4) Secondary electrolytic treatment; 11) 71,) 7 bath: ++1 old), 25 and 20% glycerin dissolved in an aqueous solution containing (',)' ・Fc SO4 ・71-120 5.0
Dissolve 5.0% of CoSO4H7Tl2O, adjust the pH to 3.5 with each lI2SO4, and use it as an electric bamboo bath for 1 minute. The bath temperature is 3 (keep it constant at 1℃)
11-It was. .

2)  7i、+    111了 :カーボンプレー
トを対極どして所定の111流7ハj−9で一定[I、
7間文流電11+F(した。
2) 7i, + 111 completion: Place the carbon plate on the opposite pole and keep the specified 111 flow 7haj-9 constant [I,
7 minutes Bunryuden 11+F (did.

(5)皮膜溶解処理等; 上記二次’li:解終了後、伍出金I+≦によって黒褐
色を呈しパノ、(利を40℃の2%NaoII水溶液中
に3分間浸漬して被膜を溶解し、液中に沈降している析
出金属微粒子を東dlI紙5Cを用いて吸引カj過した
。−1,記微わン千を〃、yji’し1(ついでエヂル
アルコールで洗浄した後、過塩素酸マグネシウムを乾燥
剤とする真空デシケーク−に入れて室温で2411.l
1間乾煙した。
(5) Film dissolution treatment, etc.; After the above-mentioned secondary 'li: solution, it becomes blackish brown due to I + ≦. The precipitated metal fine particles that had settled in the liquid were suctioned and filtered using TodlI paper 5C. Place in a vacuum desiccant using magnesium perchlorate as a desiccant and dry at room temperature.
Dry smoked for 1 hour.

(6)結 果; 一次電IQlf処理、二次電解処理の条件別微粉全屈の
収R) 斤i、および同微粉金属の磁気的特性を第1表
に示ず。表中−次電fTlイ浴温2o℃と50℃の結果
を比較(実施No 1 、2と5゜6および実験No3
.4と7.8の比較)すると、高浴温の方が一次電解l
lu力消費[11が著しく低減し、かつ二次電解の金属
4ガ出(!;″が多く、得られる金fffj微粉の磁気
的q′、?性も優れていることが認められる。−次電解
処理液としてはイ1Ilv酸、リン酸ともに有効に使用
しうるが、リン酸の場合、浴温30℃以−1,では皮膜
が形成されず、また電流密度をIA/αnL2以−1〕
では焼けが生ずるため第1表の条件が限界であった。
(6) Results; Convergence of fine powder total bending R) according to the conditions of primary electric IQlf treatment and secondary electrolytic treatment, and the magnetic properties of the same fine metal powder are not shown in Table 1. In the table - Compare the results of secondary electric fTl bath temperature 2o℃ and 50℃ (experiment No. 1, 2 and 5゜6 and experiment No. 3)
.. 4 and 7.8), the higher the bath temperature is, the higher the primary electrolysis rate.
It is recognized that the lu force consumption [11] is significantly reduced, there is a large amount of metal 4 discharge (!;'' in the secondary electrolysis, and the magnetic q′, ? properties of the obtained goldfffj fine powder are also excellent.-Next As the electrolytic treatment solution, both Ilv acid and phosphoric acid can be effectively used, but in the case of phosphoric acid, a film will not be formed if the bath temperature is 30°C or higher, and if the current density is lower than IA/αnL2 or lower.
In this case, the conditions in Table 1 were the limit because burning occurred.

実施例 2 (])基  材;アルミニウム箭(419,99−A7
?j1フさ0. i 1n+11 X 1lJ125 
+1m X長さ250+Ill++ ) (2)予イ!i!i表聞処胛;60℃のアルクリン#1
100(奥野UiW 、j’、!;工業?l−製市販A
f脱脂剤商品名)3%水溶dk中に3分■1浸漬してエ
ツチングしたのち水6(C較:燥した。
Example 2 (]) Base material; aluminum bamboo (419,99-A7
? j1fusa0. i 1n+11 X 1lJ125
+1m x length 250+Ill++) (2) Preliminary! i! Alcrine #1 at 60℃
100 (Okuno UiW, j',!; Kogyo?l-manufactured commercially available A
f Degreasing agent (trade name) After etching by immersing it in 3% aqueous DK for 3 minutes, it was dried in water 6 (compared to C: drying).

(3)−次電解処月1; 1)′、[1解浴: 15俸H2So4、浴温715℃
に一定に保持した。
(3)-Next electrolytic treatment 1; 1)', [1 Bath decomposition: 15 tons of H2So4, bath temperature 715°C
was held constant.

2)?’Lj  解:純Al板を対負植として;3A/
d7112X 3.3分、”! タh 5 A /dn
’f×2分で直流電解した。
2)? 'Lj Solution: Pure Al plate as counterplant; 3A/
d7112X 3.3 minutes,”! 5 A/dn
DC electrolysis was carried out at 'f x 2 minutes.

(4)二次霜解処理; ■)電解浴: 04係を溶解した水温液中に 1’1CD−=−Fe so、 −711204,0%
 +N15O。
(4) Secondary frost thawing treatment; ■) Electrolytic bath: 1'1CD-=-Fe so, -711204,0% in the water temperature liquid in which Section 04 was dissolved.
+N15O.

・7H201,0係 浴■・・・・・・tt    u   2. (l係−
I 〃・ 7H,,03,0係 を(容角Irシ、各■■2SO4お゛よひN1−1.O
HによりpH−:3.7に調整して′rシi角了浴とし
た。淫i/、′、ffi′。
・7H201,0 Bath ■・・・・・・tt u 2. (L section-
I 〃・7H,,03,0 section
The pH was adjusted to 3.7 with H to prepare a bath. obscene i/, ′, ffi′.

は:I O’Cに一定に保持した。was held constant at: IO'C.

2)電 解: カーボンブレートを文1(愼として]、 4 V X 
75分交流電解した。
2) Electrolysis: carbon plate as sentence 1 (as 愼), 4 V
AC electrolysis was carried out for 75 minutes.

(,5)皮膜溶解処理等; 溶厘r液S1・・・2%NaOH水溶液S丁 L/  S 2−IMI+ 02%N a2 S l 
03 ’(] l−I20  水淫lり 溶解条件  40℃×;う分間 伍出金屈微粒子のシ″I過、洗浄、乾lj■は実施例1
と同じ。
(,5) Film dissolution treatment, etc.; Melting solution S1... 2% NaOH aqueous solution S 2-IMI+ 02% Na2 S l
03' () l-I20 Water dissolution conditions 40°C
Same as.

(6)結 果; 二次電解浴中のFe5O4は電解中に1就化してFe(
011)3の沈f6 t llする。人中’+’S h
ljNo、 11−12、およびNo、 1’:う−1
/lの比較から明らかなように、ハイドロキノンの添加
は収li′、)微粉金属、または合金の磁気#、′j性
に悪影響を−rjえることな←I−記酸化を防止し、建
浴後の4)l!茄)11.〒間に自由瓜を75え、析出
金属r「;を減少させない効果がある。
(6) Results: Fe5O4 in the secondary electrolytic bath becomes monovalent during electrolysis and becomes Fe(
011) Set f6 t ll of 3. Ninchu'+'S h
ljNo, 11-12, and No, 1': U-1
As is clear from the comparison of /l, the addition of hydroquinone prevents oxidation without adversely affecting the magnetic properties of fine powder metals or alloys. 4) l! Eggplant) 11. By placing 75 pieces of free melon in between, it has the effect of not reducing the amount of precipitated metal.

皮膜性1’+’1’液としてはN a OH単味のsl
 よリインヒビターとしてNa25in、をイノ[川し
たS2の方が溶解1稍間が長くなっても磁気q、j性が
あまり劣化せず優れていることが認められる。
As the film property 1'+'1' liquid, SL with only NaOH
It is recognized that S2 containing Na25in as a reinhibitor is superior in magnetic q and j properties without much deterioration even if the dissolution period becomes longer.

二次電解浴のN i /F e比によって得られる微粉
の磁気特性が異り、この比が1 / 4 (Ni20係
−Fe80%)では保磁力は高いが飽和?Le化および
残留磁化が低く、この比が:メ2(Ni Co%−re
  4o%)  ではその逆になる。
The magnetic properties of the fine powder obtained vary depending on the Ni/Fe ratio of the secondary electrolytic bath, and when this ratio is 1/4 (Ni20% - Fe80%), the coercive force is high, but is it saturated? Le conversion and residual magnetization are low, and this ratio is: Me2(NiCo%-re
4o%), the opposite is true.

実施例 3 (1)基  イ2;アルミニウム板(99,8係Aj?
板−II24、j9さ5 m1ll X巾1.000 
+IIIII X長さ2、 0 0 0  jnTII
 ) (2)予備表向処理;5o℃の5%NaOH水溶液中に
30秒間浸漬してエツチングしたのち2〜3分間浸αJ
してデスマットし、その後水洗した。
Example 3 (1) Base A2; Aluminum plate (99,8 section Aj?
Board-II24, j9 size 5 ml x width 1.000
+III x length 2, 0 0 0 jnTII
) (2) Preliminary surface treatment: immersion in 5% NaOH aqueous solution at 5oC for 30 seconds for etching, followed by immersion for 2 to 3 minutes αJ
It was then desmatted and then washed with water.

(3)  −次電解処理’  1500 ++onX、
ljす15 。
(3) -Next electrolytic treatment' 1500 ++onX,
ljsu15.

0 +111+1 X深さ1500 +nmの′山iQ
’(I曹に15% 112so、水溶液を建浴した。
0 +111+1 x depth 1500 +nm 'mountain iQ
(An aqueous solution of 15% 112so in I soda was prepared.

工業用純アルミニウム板(JIsAllo。Industrial pure aluminum plate (JIsAllo.

−I124)を対負棒として50℃、3分間、直流5A
/dm2の条件で一次電解処理をして直後に水洗した。
-I124) as a counter rod at 50℃, 3 minutes, DC 5A
Immediately after the primary electrolytic treatment was carried out under the conditions of /dm2, it was washed with water.

(4)二次111解処理; 電IQF4槽のマj法は一
次電解処理と同一である。
(4) Secondary 111 electrolytic treatment; The electrolytic IQF4 bath method is the same as the primary electrolytic treatment.

1)電解浴: FeSO4・7H2043%、Nl5o
4・6H200,7%、113B 04 2.5 % 
、クリセリン2係、(NH4,)2 So、1%、の水
(合液をI■2S04とNH,OHでpHを45(02
に調整して電解浴とした。
1) Electrolytic bath: FeSO4.7H2043%, Nl5o
4.6H200.7%, 113B 04 2.5%
, Chrycerin 2, (NH4,)2 So, 1%, water (mixture solution), adjust the pH to 45 (02
This was adjusted to give an electrolytic bath.

2) ′r’、  解; 鉛を対イボとして、14Vの
定電圧商用交流IB解を1o分間実施し、その直後に水
洗した。
2) 'r', solution; 14V constant voltage commercial AC IB solution was applied for 10 minutes using lead as wart countermeasure, and immediately after that, it was washed with water.

(5)  皮膜溶IQ’f処理等; 1、記二次′l[I5解終了水洗後、析出金属によって
黒色を呈した基月を、空の檜につり下げ両側からNa2
5i03 ・9H,,01%を含む50℃、5係NaO
H水溶液を1分間ノズルから強く吹きつけて、−次電解
処理によって形成された陽4ifiA 酸化皮膜を溶解
すると同時に、析出金属をそのN a OFI  水溶
液に懸濁させた。。
(5) Film dissolution IQ'f treatment, etc.; 1. After completion of I5 solution and washing with water, the base metal, which had a black color due to the precipitated metal, was hung in an empty cypress and Na2 was added from both sides.
5i03 ・9H, 50°C containing 01% NaO
The H aqueous solution was strongly sprayed from a nozzle for 1 minute to dissolve the positive 4ifiA oxide film formed by the secondary electrolytic treatment and at the same time suspend the precipitated metal in the Na OFI aqueous solution. .

この懸濁液(黒色)を遠心分肉II器で固体の析出金属
微粒子とN a OH水溶液と分肉ffシ、ずみやかに
温洗乾燥した。分離したNa0II水溶液は反mして使
用することが出来る。
This suspension (black color) was separated into solid precipitated metal particles and an aqueous NaOH solution using a centrifugal separation device II, and then washed and dried at a high temperature. The separated Na0II aqueous solution can be used after reconstitution.

(6)結 果; 収’l!) ’j:”Cは平均1.3,9/m2である
。 m 気’fjj性は、飽和砒イl 94 emo/
、9、残留磁化7゜emO/fj、保7訛力1,200
0eであり、磁性微粒子として使用に十分耐える粒子で
ある。
(6) Results; Yield! ) 'j:'C has an average of 1.3,9/m2.
, 9, residual magnetization 7゜emO/fj, holding force 1,200
0e, and the particles are sufficiently durable to be used as magnetic fine particles.

本発明によって製造される微粉金属の電子顕微鏡写真(
日立製作所製透過型電子顕微鏡、H−700H)の外観
を第1図および第2図の写真にょって示した。これは第
2表の実施N011の場合について例示したが、他の場
合もほとんど類似した外観であった。第1図は皮膜溶解
処理直後の外観で微細針状の析出金属の集合体である。
Electron micrograph of fine powder metal produced by the present invention (
The appearance of a transmission electron microscope (H-700H) manufactured by Hitachi, Ltd. is shown in the photographs in FIGS. 1 and 2. This was exemplified in the case of Example No. 011 in Table 2, but the appearance was almost similar in other cases as well. Figure 1 shows the appearance immediately after the film dissolution treatment, showing an aggregate of fine needle-shaped precipitated metals.

第2図は第1図の析出金属をおだやかな(・成板的な手
段によって解体した状態で本発明の方法によって得られ
る金属微粉の終局の外観である。図に見るごとく金属微
粉は重任100−500A、長さQ2〜31tmの針状
を呈している。
Figure 2 shows the final appearance of the metal fine powder obtained by the method of the present invention after the precipitated metal in Figure 1 has been dismantled by a gentle plate-forming method. -500A, exhibiting a needle shape with a length of Q2 to 31tm.

上記のごとくして製造された本発明による金属微粉はり
]れた?B気気持特性有し、?P気記録テープ用磁性粉
として従来汎用されているイlp′l/I:体たとえば
l’  F” ++ 04、 CrO2、Co変性11
り2化鉄、等と損色なく使用されるほか[)11記した
各種の超微粉の用途にjさ1用される。
The fine metal powder beam according to the present invention produced as described above] B Has a feeling characteristic? Ilp'l/I:, which has conventionally been widely used as magnetic powder for P-air recording tapes, such as l'F'' ++04, CrO2, Co-modified 11
In addition to being used without color loss as iron dioxide, etc., it is also used in various ultrafine powder applications as listed in (11) above.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法によって製造したFe−/lPO係
N1g1粉の電子顕微鏡写真であり、第1図は皮膜溶解
処理直後の析出金属微粒子の集合体(ダメ000倍)、
同じく第3図は第1図の集合体を解で、(、/’、”1
.、 ’l、li’ji’flj、1llJj人  11rJ
lf1.l l!’iス1゛(・1べ1朱式4会?1代
り人 j1″’ll! ’−1’、’ r’5  本 
−ヤ −手 続 浦 正 書(方式) Jθ 昭和58年3り≠日 特許庁長官 若 杉 仕 夫 殿 1 事1.!(″の表示 昭二Ell 57年特d[願第172525号2 発明
の名称 針状金属1吸粉末 3 補正をする者 事件との関係  特許出願人 住所 東京都港区芝公園−丁目7番13号名称 昭和軽
金属株式会社 代表者  林   健  彦 4 代理人 居所 東京都港区芝大門−丁目13番9号6、 補正の
対象  願書の「発明者」の欄、および明細書の「図面
の簡単な説明」の欄。 7、 補正の内容 (2)明細書の訂正 明細」第23頁20行の、「第3図」を「第2図」と訂
正する。 以上 一19
The drawings are electron micrographs of Fe-/lPO-related N1g1 powder produced by the method of the present invention, and Figure 1 shows an aggregate of precipitated metal fine particles immediately after film dissolution treatment (magnification: 000x);
Similarly, Figure 3 shows the solution of the aggregate in Figure 1, (,/',"1
.. , 'l, li'ji'flj, 1llJj person 11rJ
lf1. l l! 'is1゛(・1be1 Zhu style 4 meeting?1 substitute person j1'''ll! '-1', 'r'5 book
-Ya-Procedure Written by Masaaki Ura (Method) Jθ March 1981≠Mr. Tsukio Wakasugi, Commissioner of the Japanese Patent Office 1 Matters 1. ! (Display of ``Shoji Ell 1957 Special Application No. 172525 2 Name of the invention Needle-like metal 1-suck powder 3 Relationship to the case of the person making the amendment Patent applicant address 7-13 Shiba Koen-chome, Minato-ku, Tokyo Name: Showa Light Metal Co., Ltd. Representative: Kenhiko Hayashi 4 Agent residence: 13-9-6 Shiba Daimon-chome, Minato-ku, Tokyo Subject of amendment: "Inventor" column in the application and "Brief description of drawings" in the specification Column 7. Contents of the amendment (2) Amended details of the specification", page 23, line 20, "Figure 3" is corrected to "Figure 2."

Claims (1)

【特許請求の範囲】[Claims] (1)表面に陽極酸化皮膜を施したAj?またはAj?
合金を、1種板1−の金属イオンを含む水性相中におい
て電解して、該陽極酸化皮膜の中の微細孔内に金属を析
出せしめ、ついで該陽極酸化皮膜をjデシ折重に溶解、
除去して製出された針状金属微粉末。
(1) Aj? with an anodic oxide film on the surface. Or Aj?
Electrolyzing the alloy in an aqueous phase containing metal ions of type 1 plate 1- to precipitate the metal in the micropores in the anodic oxide film, then dissolving the anodic oxide film in j decimal folds,
Acicular fine metal powder produced by removal.
JP17252582A 1982-10-02 1982-10-02 Fine acicular metal powder Granted JPS5964703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17252582A JPS5964703A (en) 1982-10-02 1982-10-02 Fine acicular metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17252582A JPS5964703A (en) 1982-10-02 1982-10-02 Fine acicular metal powder

Publications (2)

Publication Number Publication Date
JPS5964703A true JPS5964703A (en) 1984-04-12
JPH0338321B2 JPH0338321B2 (en) 1991-06-10

Family

ID=15943544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17252582A Granted JPS5964703A (en) 1982-10-02 1982-10-02 Fine acicular metal powder

Country Status (1)

Country Link
JP (1) JPS5964703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157203A (en) * 1983-02-25 1984-09-06 Fujisash Co Manufacture of hyperfine particle
JPS61270385A (en) * 1985-05-27 1986-11-29 Matsushita Electric Works Ltd Manufacture of fine metallic particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157203A (en) * 1983-02-25 1984-09-06 Fujisash Co Manufacture of hyperfine particle
JPS61270385A (en) * 1985-05-27 1986-11-29 Matsushita Electric Works Ltd Manufacture of fine metallic particle

Also Published As

Publication number Publication date
JPH0338321B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
TWI478185B (en) Super capacitor and method for manufacturing the same
Yoo et al. Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications
CN111593353A (en) Photoelectrochemistry anti-corrosion protection composite photo-anode and preparation method and application thereof
TW201207161A (en) Method of manufacturing aluminum structure, and aluminum structure
CN110424043A (en) A kind of modified graphene oxide/cobalt-based composite deposite and its preparation method and application
CN113622008A (en) Conductive film and preparation method thereof
Karahan et al. Electrodeposition and properties of Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni alloys from acidic chloride–sulphate electrolytes
JP2010502839A (en) Liquid crystal templated deposition method
JP4395506B2 (en) Method for producing silver nanopowder using electrolysis
US4014756A (en) Process for making metal powders
JPS5964703A (en) Fine acicular metal powder
JPS58177494A (en) Anodically oxidizing bath for aluminum-clad part and anodic oxidation
CN112267114A (en) Method for improving compactness and corrosion resistance of hydrotalcite coating on surface of magnesium alloy
Protsenko et al. Current trends in electrodeposition of electrocatalytic coatings
Yousefi et al. A new-type nanostructure of Y (OH) 3 prepared by electrodeposition from chloride medium via electrogeneration of base
US20220002893A1 (en) Iron tungsten coating formulations and processes
KR101979870B1 (en) Spacer for camera lens and preparing method thereof
CN111286750A (en) Nano hierarchical pore Ti-SiO2Preparation method of/Ni-Mo composite hydrogen evolution electrode
JPH01124212A (en) Aluminum alloy electrode for electrolytic capacitor
CN116275057B (en) Corrosion pretreatment method for preparing electronic aluminum foil with micro-couple based on powder sintering
US3265596A (en) Cobalt-nickel alloy plating baths
JPS6151818A (en) Method of producing aluminum electrode material for electrolytic condenser
JP3769621B2 (en) Alloy plating method and molding method of alloy molded product
CN110424037B (en) Metal super-hydrophobic surface treatment method and product
RU2002580C1 (en) Method of producing porous material