JPH0338321B2 - - Google Patents

Info

Publication number
JPH0338321B2
JPH0338321B2 JP17252582A JP17252582A JPH0338321B2 JP H0338321 B2 JPH0338321 B2 JP H0338321B2 JP 17252582 A JP17252582 A JP 17252582A JP 17252582 A JP17252582 A JP 17252582A JP H0338321 B2 JPH0338321 B2 JP H0338321B2
Authority
JP
Japan
Prior art keywords
metal
bath
electrolytic
electrolysis
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17252582A
Other languages
Japanese (ja)
Other versions
JPS5964703A (en
Inventor
Akio Kyama
Akira Niitsuma
Shinji Fukuda
Takeshi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP17252582A priority Critical patent/JPS5964703A/en
Publication of JPS5964703A publication Critical patent/JPS5964703A/en
Publication of JPH0338321B2 publication Critical patent/JPH0338321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属微粉末に係り、さらに詳しくは
Alまたはその合金の表面に形成せしめた陽極酸
化皮膜中の超微細孔を利用した電解析出法によつ
て製出される針状金属微粉末に関する。 金属微粉末は、主として粉末治金用あるいは顔
料用として製造、使用されているが、これらの金
属粉末は平均粒径が数μないし数100μの所謂サ
ブシーブ、あるいはシーブ領域の大きさであり、
これらの粉末は粉砕法、アトマイズ法、電解法そ
の他の物理的、化学的方法により製造されてい
る。これに対して、近年オングストローム級の粒
子サイズの所謂超微粉末が製造されるようにな
り、それらの超微粉末には従来の金属粉末とは異
つた有用な性質が見出されその用途が拡大してき
ている。すなわち、高密度化磁気記録媒体用の磁
性粉(Fe、Co、Niとそれらの合金)をはじめと
して導電・抵抗塗料用顔料(Ag、Ni、Cu等)、
導電性ゴム・樹脂用充填剤、界面化学反応素子
(触媒、電池用極板、低温焼結媒体等にAg、Ni、
Pt、Pa等)微粒子フイルター(Ni等)、ロケツト
燃料の燃焼助剤(Al、Ni)分散強化型合金(Ni
等)、赤外線等放射検出器の受光用塗料(Au)等
がそれである。 これらの超微粉末の製造法としては、低圧不活
性ガス中で金属を蒸発させる所謂、気中蒸発法の
ごとき物理的方法のほかいくつかの化学的方法に
よつて製造されている。化学的方法としては、金
属化合物を高温で還元する方法、化学的に超微粒
子の金属塩の沈澱をつくり、これを加熱還元する
方法、金属イオンを含む塩の水溶液を霧化しこれ
を凍結乾燥法によつて微粒化し加熱還元する方
法、金属イオンを含む塩をガス低温プラズマで熱
分解する方法等が提唱せられその一部が工業化さ
れている。しかしながら気中蒸発法は金属を蒸発
させるのに多大のエネルギーを必要とするほか大
型の真空装置を要し、しかも生産性が低いため、
コスト高となる欠点がある。また化学的方法は原
料化合物の調製に費用がかさむほかいづれも加熱
還元工程が不可避であり、加熱中に生成微粒子の
粒成長をおこし粒径の安定性に乏しい等の欠点が
ある。 本発明の目的は、金属または合金のオングスト
ローム級サイズの超微粉末を安定した品質かつ低
コストで製造する方法、とくに磁気的特性の優れ
た超微粉末を製造する方法を関発することにあ
る。 本発明者等は、金属とくにAlまたはその合金
の表面に形成せしめた陽極酸化皮膜内にきわめて
均整の孔径と深さを有する微細孔が密に存在する
知見に基いて種々研究の結果本発明に到達した。
すなわち本発明は、上記微細孔内に金属または合
金の微粒子を電解析出せしめ、ついで上記陽極酸
化皮膜を選択的に溶解除去して製出される針状金
属微粉末に関する。 本発明の方法は水性相における二工程の電解反
応と、酸化物の溶解反応により実施する。 第1工程:AlまたはAl合金の表面に陽極酸化皮
膜を形成させる工程(一次電解処理) 第2工程:上記皮膜中の微細孔内に金属または合
金の微粒子を電解析出させる工程(二次電解処
理) 第3工程:上記陽極酸化皮膜を選択的に溶解除去
する工程(皮膜溶解処理) 以下、上記各工程について説明する。 (1) 一次電解処理 Alまたはその合金を陽極とし、酸浴中にお
いて直流または交流電解すると、その表面に耐
食性、耐摩耗性、装飾性を有する酸化皮膜が形
成されることは周知のとおりであり、酸浴とし
ては、各種無機酸、有機酸、あるいはこれらの
混酸が使用される。陽極酸化皮膜は微細孔が密
集した多孔質層と、微細孔の底部から金属面ま
での問の薄い緻密なバリヤー層の二重構造から
なる。多孔質層の微細孔はオングストローム級
の孔径で金属面に垂直方向にほゞ規則的に配列
され、その頂部は開孔している。微細孔の孔径
は電解浴の種類、浴温等によつて異るが、一定
条件下ではリン酸が最大、硫酸が最小である。
多孔質層の厚みすなわち孔の深さはAlの純度、
合金組成、電解条件等により変化するが一般に
純Alでは厚く、重金属含有合金では薄い。ま
た電解時間により多孔質層の厚みに最大点が存
在し、一旦形成した皮膜は電解浴に溶解して薄
くなつてゆく。 皮膜の成分はバリヤー層、多孔質層共に主と
して非晶質無水Al2O3であるが、電解条件によ
つては一部結晶質Al2O3を生じ、また電解浴に
接する部分は1〜3水和物に変化している。 本発明の目的に適した微細孔を有する陽極酸
化皮膜を形成する一次電解処理液としては、硫
酸、クロム酸、リン酸、等の無機酸、または蓚
酸、スルフアミン酸、酒石酸、マレイン酸等の
脂肪族カルボン酸類、芳香族スルホン酸類等の
有機酸、あるいはこれらの混酸が挙げられる
が、必要な多孔質層の均整な形成という観点か
ら硫酸、クロム酸、リン酸、蓚酸が良好であ
り、とりわけ硫酸電解浴は、形成される微細孔
径が小さいほか、浴が安価で電解電力も少く経
済的であり本発明に最も有利に適用される。 ところで現在Alまたはその合金製品の多く
に硫酸電解浴による陽極酸化皮膜が施されてい
るが、この場合浴の濃度は10〜30wt%H2SO4
浴温は15〜25℃の範囲内の所定温度に保持し、
電流密度0.5〜3A/cm2、電解電圧15〜20vで電
解される。電解の進行に伴う発熱により浴温が
上昇し、そのため一旦生成した皮膜の溶解をも
たらし、また高浴温で生成した皮膜は軟質で耐
摩耗性、耐食性が劣るため、冷却手段により浴
を強制冷却する操作が不可欠であつて、この冷
却に要する電力量が電解電力量を上廻るのが実
状である。 しかしながら本発明においては皮膜中の微細
孔を利用するので、あえて皮膜を硬質化して耐
摩耗性を賦与せしめる必要は全くなく、従つて
浴温の上昇は別の観点から規制される。この点
について本発明者等は種々研究の結果、本発明
に適する硫酸電解浴の浴温は30〜80℃の範囲に
あることを見出した。浴温がこの上限を越える
と一旦生成した皮膜の溶解が速すぎて必要な厚
みの皮膜を均一に形成することができない。一
方浴温が上記下限に満たない場合は形成される
皮膜が硬質で、微細孔に金属粒子を析出した後
の皮膜の溶解が緩慢であり、その除去が不充分
であるため本発明の効果を充分発揮しえない。
さらに注目すべきは、一次電解浴温が高い方が
二次電解処理を径て得られる強磁性金属微粉の
磁気特性(保持力、飽和磁化、残留磁化)が優
れていることである。このように本発明は高浴
温電解であるため通例の陽極酸化処理を比して
浴冷却エネルギーも少く、また低電圧電解とな
るため電解電力量も大巾に低減しうる。 (2) 二次電解処理 上記多孔質層の微細孔内に金属または合金の
粒子を電解析出させる二次電解処理は、上記の
陽極酸化皮膜を形成させたAlまたはAl合金を
電極とし、水溶性金属化合物の水溶液を単独ま
たは混合して水性電解浴とし、他の適当な電極
との間に直流、交流、交直重畳等の電流を通じ
て電解することにより行う。析出金属として
は、Fe、Co、Ni、Pa、Pt、Ir、Mn、Cr、
Mo、W、V、Nb、Ta、Bi、Ti、Zr、Y、
La、Ce、Sm、Zn、Cu、Ag、Au、等金属性
元素の大部分が対象となる。 上記金属の水溶性化合物としては、硫酸塩、
硝酸塩、リン酸塩、ピロリン酸塩、シアン酸
塩、ハロゲン化物、金属酸塩等の無機化合物、
酢酸塩、酒石酸塩、スルフアミン酸塩等の有機
化合物からなる群から選択される1種または2
種以上が適用される。これら金属塩における金
属元素の種類及びその原子価の高低は電解電流
に選択性があり、また低原子価金属塩において
は適当な酸化防止剤を共存させる必要がある。
例えばNi、Coの塩の場合、交流電解が適し、
またFeの場合第二鉄塩では交、直流電解いず
れも金属は析出せず、第一鉄塩の交流電解によ
つてのみFeを析出させうる。この場合電解中
の酸化(Fe+2→Fe+3)によりFe(OH)3の沈澱
を生成してFe利用率を低下するため、電解液
中にハイドロキノン等の酸化防止剤を少量添加
するのが良い。 一般に二次電解処理の電解浴にはホウ酸及び
グリセリンの添加が有効である。前者の添加は
電解浴のPHの緩衝作用及び金属イオンの錯化作
用の効果があり、また後者の添加は電解浴の粘
度を上昇して電解析出を均質化する効果があ
り、この種の添加剤としてはグリコール、糖類
も使用し得る。必要な添加量は電解対象金属塩
によつて異り、実験により適量を定めるが、例
えばFe、Ni、Coの場合ホウ酸は浴中H3BO3
して25〜40g/グリセリンは浴中10〜30g/
の濃度になるように添加する。 二次電解処理において2種以上の金属の化合
物を電解することによりそれら金属の合金を電
解析出しうる。この場合塩の種類、浴組成等を
選択して効果よく電解析出させる必要がある。
Ni−Coでは析出電位が接近しているが、Fe−
Ni、Fe−Ni−Co等においては、Feの析出電位
が離れているため、塩の種類、錯化剤等の選択
によつて近づける必要がある、これら2種以上
の金属を同時に二次電解処理で電解析出させる
条件は、既に実用化されている合金メツキの場
合とほとんど同じである。 二次電解処理の電解浴温は金属化合物の種
類、濃度等によつても異るが、一定の電解電圧
下においては浴温が高いほど金属析出量は多
い。例えば硫酸コバルト水溶液(PH=4.3)を
電解浴として交流電解した場合、金属析出量は
浴温50℃では浴温20℃の場合の約150%に達す
る。しかしながら一般に浴温が75℃を越える
と、金属の析出効率は飽和され、一方では高浴
温を維持するためのエネルギー損失が増大す
る。従つて工業的操業条件として浴温は20〜60
℃の範囲に維持されることが望ましい。 (3) 皮膜溶解処理 上記二次電解処理により析出した微細孔内の
微細金属又は合金を可及的に溶解することな
く、陽極酸化皮膜のみを選択的に溶解する操作
は、皮膜と析出金属または合金の化学的反応性
の差異の利用に基づく。前記のごとく微細孔を
形成する陽極酸化皮膜の組成は主としてAlの
酸化物、一部水酸化物であり、一次電解処理条
件により被膜の化学的活性度が異る。本発明に
おいては前記したように一次電解処理の浴温を
高くしたことによつて、酸、アルカリに溶け易
いAl酸化物となつている。 皮膜溶解性に優れた液として酸では濃度約1
〜10%、液温50℃以上のリン酸水溶液が適用さ
れる。アルカリでは濃度約0.5〜10%、液温30
℃以上の苛性アルカリが適用される。析出金
属、合金が重金属系では苛性アルカリが適当で
あり、非重金属系例えばSn、Se、Zn、Bi等の
場合は、析出金属に適したインヒビターを含む
皮膜溶解液が適する。 皮膜溶解液中に金属の表面酸化防止剤(イン
ヒビター)を添加するのが有効で、アルカリ性
溶解液では水溶性ケイ酸塩、例えばNa2SiO3
9H2Oを添加すると、得られる金属、合金の磁
気特性が優れている。 皮膜溶解処理後液中に残留する金属、合金の
微粒子はその酸化を防ぐため可及的速かに溶解
液と分離し、洗浄、乾燥する。溶解液との分離
は過、あるいは遠心分離がよく、また洗浄液
は水のほかアルコール、エーテル等有機溶剤が
一層有効である。乾燥は低温減圧乾燥が適して
いる。 被膜溶解処理後の析出金属は、後述の実施例
の第1図、第2図に示すごとく、例えば直径d
≒100〜500Å、長さl≒0.2〜3umの針状体が
その長さ方向に密接集合した状態を呈する。こ
れらの各針状体のd及びlは前記した電解処理
条件によつて制御しうる。また各針状体同志の
接合は弱い抑圧力により容易に分離することが
でき、また必要に応じ半径方向に分断すること
もできる。このような解砕、破砕には衝撃式粉
砕機あるいは粒子を相互衝撃させるジエツト流
粉砕機等が適している。 以下、本発明を実施例、および実施例に基い
て説明するが、本発明はこれに限定されるもの
ではない。 実施例 1 (1) 基材; 〔A〕…アルミニウム箔(99.9%Al、厚さ0.1mm×
巾50mm×長さ100mm) 〔B〕…工業用純アルミニウム板(JIS A1100−
H24、厚さ1.0mm×巾50mm、×長さ100mm) (2) 予備表面処理;基材を40℃の5%NaOH水
溶液中に2分間浸漬し、ついで30%HNO3液中
で1分間デスマツトし水洗乾燥した。 (3) 一次電解処理; (1) 電解浴: (a):15%H2SO4、浴温20℃又は50℃に一定
に保持 (b):25%H3PO4、浴温20℃に一定に保持 (2) 電解: 純Al板を対負極として、所定の電流密度
で一定時間直流電解した。 (4) 二次電解処理; (1) 電解浴: H3BO32.5%およびグリセリン2.0%を溶解
した水溶液中に 浴…FeSO4・7H2O5.0% 浴…CoSO4・7H2O5.0% を溶解し、各H2SO4によりPH=3.5に調製し
て電解浴とした。浴温は30℃に一定に保持し
た。 (2) 電解: カーボンプレートの対極として所定の電流
密度で一定時間交流電解した。 (5) 皮膜溶解処理等; 上記二次電解終了後、析出金属によつて黒褐
色を呈した基材を40℃の2%NaOH水溶液中
に3分間浸漬して被膜を溶解し、液中に沈降し
ている析出金属微粒子を東洋紙5Cを用いて
吸引過した。上記微粒子を蒸溜水ついでエチ
ルアルコールで洗浄した後、過塩素酸マグネシ
ウムを乾燥剤とする真空デシケーターに入れて
室温で24時間乾燥した。 (6) 結果; 一次電解処理、二次電解処理の条件別微粉金
属の収得量、および同微粉金属の磁気的特性を
第1表に示す。表中一次電解浴温20℃と50℃の
結果を比較(実施No.1、2と5、6および実験
No.3、4と7、8の比較)すると、高浴温の方
が一次電解電力消費量が著しく低減し、かつ二
次電解の金属析出量が多く、得られる金属微粉
の磁気的特性も優れていることが認められる。
一次電解処理液としては硫酸、リン酸ともに有
効に使用しうるが、リン酸の場合、浴温30℃以
上では皮膜が形成されず、また電流密度を
1A/αm2以上では焼けが生ずるため第1表の
条件が限界であつた。 実施例 2 (1) 基材;アルミニウム箔(99.99%Al
The present invention relates to fine metal powder, and more specifically,
This invention relates to acicular fine metal powder produced by electrolytic deposition using ultrafine pores in an anodic oxide film formed on the surface of Al or its alloy. Fine metal powders are mainly produced and used for powder metallurgy or pigments, but these metal powders have an average particle size of several microns to several hundred microns, the size of a so-called subsieve or sieve region,
These powders are manufactured by pulverization, atomization, electrolysis, and other physical and chemical methods. In contrast, in recent years so-called ultrafine powders with particle sizes in the angstrom range have been produced, and useful properties different from those of conventional metal powders have been discovered in these ultrafine powders, and their uses are expanding. I've been doing it. In other words, magnetic powders (Fe, Co, Ni, and their alloys) for high-density magnetic recording media, pigments for conductive and resistive paints (Ag, Ni, Cu, etc.),
Fillers for conductive rubber and resins, surface chemical reaction elements (Ag, Ni, etc. for catalysts, battery plates, low-temperature sintering media, etc.)
Pt, Pa, etc.) Particulate filters (Ni, etc.), Combustion aids for rocket fuel (Al, Ni) Dispersion strengthened alloys (Ni, etc.)
etc.), and the light-receiving paint (Au) for infrared radiation detectors. These ultrafine powders are manufactured by several chemical methods in addition to physical methods such as the so-called air evaporation method in which metals are evaporated in a low-pressure inert gas. Chemical methods include reducing metal compounds at high temperatures, chemically precipitating ultrafine metal salt particles and reducing them by heating, and atomizing an aqueous salt solution containing metal ions and freeze-drying it. A method of atomizing metal ions and thermally reducing them, a method of thermally decomposing salts containing metal ions using low-temperature gas plasma, etc. have been proposed, and some of these methods have been commercialized. However, the aerial evaporation method requires a large amount of energy to evaporate the metal, requires large vacuum equipment, and has low productivity.
It has the disadvantage of high cost. In addition, chemical methods are disadvantageous in that the preparation of the raw material compound is expensive, and a heating reduction step is unavoidable, which causes grain growth of the produced fine particles during heating, resulting in poor particle size stability. An object of the present invention is to provide a method for producing angstrom-sized ultrafine powder of a metal or alloy at a stable quality and at low cost, and in particular, a method for producing ultrafine powder with excellent magnetic properties. The present inventors have developed the present invention as a result of various studies based on the knowledge that fine pores with extremely uniform pore diameters and depths are densely present in an anodic oxide film formed on the surface of metal, especially Al or its alloy. Reached.
That is, the present invention relates to an acicular fine metal powder produced by electrolytically depositing metal or alloy fine particles into the fine pores and then selectively dissolving and removing the anodic oxide film. The method of the invention is carried out by a two-step electrolytic reaction in the aqueous phase and an oxide dissolution reaction. 1st step: Step of forming an anodized film on the surface of Al or Al alloy (primary electrolytic treatment) 2nd step: Step of electrolytically depositing metal or alloy fine particles into the micropores in the film (secondary electrolytic treatment) Processing) Third step: Step of selectively dissolving and removing the anodic oxide film (film dissolving treatment) Each of the above steps will be explained below. (1) Primary electrolytic treatment It is well known that when Al or its alloy is used as an anode and subjected to direct current or alternating current electrolysis in an acid bath, an oxide film with corrosion resistance, wear resistance, and decorative properties is formed on the surface. As the acid bath, various inorganic acids, organic acids, or mixed acids thereof are used. The anodic oxide film has a dual structure: a porous layer with densely packed micropores, and a thin, dense barrier layer that extends from the bottom of the micropores to the metal surface. The fine pores of the porous layer have a diameter on the order of angstroms and are arranged almost regularly in a direction perpendicular to the metal surface, and the tops of the pores are open. The pore size of the micropores varies depending on the type of electrolytic bath, bath temperature, etc., but under certain conditions, phosphoric acid has the largest diameter and sulfuric acid has the smallest diameter.
The thickness of the porous layer, that is, the depth of the pores, depends on the purity of Al,
Although it varies depending on the alloy composition, electrolytic conditions, etc., it is generally thicker for pure Al and thinner for alloys containing heavy metals. Also, depending on the electrolysis time, there is a maximum point in the thickness of the porous layer, and once formed, the film becomes thinner as it dissolves in the electrolytic bath. The components of the film are mainly amorphous anhydrous Al 2 O 3 in both the barrier layer and the porous layer, but depending on the electrolytic conditions, some crystalline Al 2 O 3 is formed, and the part in contact with the electrolytic bath is It has changed to trihydrate. The primary electrolytic treatment solution for forming an anodized film having micropores suitable for the purpose of the present invention includes inorganic acids such as sulfuric acid, chromic acid, phosphoric acid, etc., or fatty acids such as oxalic acid, sulfamic acid, tartaric acid, maleic acid, etc. Examples include organic acids such as group carboxylic acids and aromatic sulfonic acids, or mixed acids thereof, but sulfuric acid, chromic acid, phosphoric acid, and oxalic acid are preferable from the viewpoint of uniformly forming the necessary porous layer.In particular, sulfuric acid Electrolytic baths are most advantageously applied to the present invention because they form small pores and are economical because they are inexpensive and require little electrolysis power. By the way, currently many Al or its alloy products are anodized using a sulfuric acid electrolytic bath, but in this case the concentration of the bath is 10 to 30 wt% H 2 SO 4 .
The bath temperature is maintained at a predetermined temperature within the range of 15 to 25℃.
Electrolysis is carried out at a current density of 0.5 to 3 A/cm 2 and an electrolytic voltage of 15 to 20 V. The heat generated as electrolysis progresses causes the bath temperature to rise, leading to the dissolution of the film once formed.Furthermore, the film formed at high bath temperatures is soft and has poor wear and corrosion resistance, so the bath must be forcibly cooled using a cooling means. The actual situation is that the amount of power required for this cooling exceeds the amount of electrolysis power. However, in the present invention, since the micropores in the coating are utilized, there is no need to make the coating hard and impart wear resistance, and therefore, the increase in bath temperature is regulated from another perspective. As a result of various studies in this regard, the present inventors have found that the bath temperature of the sulfuric acid electrolytic bath suitable for the present invention is in the range of 30 to 80°C. If the bath temperature exceeds this upper limit, the film once formed will dissolve too quickly, making it impossible to uniformly form a film of the required thickness. On the other hand, if the bath temperature is less than the above lower limit, the film formed will be hard, and the film will dissolve slowly after depositing metal particles in the micropores, and its removal will be insufficient, so the effect of the present invention will not be achieved. I can't perform to my full potential.
What should be noted further is that the magnetic properties (coercive force, saturation magnetization, residual magnetization) of the ferromagnetic metal fine powder obtained through the secondary electrolytic treatment are better when the primary electrolytic bath temperature is higher. As described above, since the present invention uses high bath temperature electrolysis, the bath cooling energy is less than that of conventional anodizing treatment, and because the present invention uses low voltage electrolysis, the amount of electrolytic power can be significantly reduced. (2) Secondary electrolytic treatment The secondary electrolytic treatment in which metal or alloy particles are electrolytically deposited into the fine pores of the porous layer is performed by using Al or Al alloy on which the anodic oxide film has been formed as an electrode, and using water-soluble Electrolysis is carried out by applying a direct current, alternating current, AC/DC superimposed current, etc. between an aqueous solution of a metal compound alone or a mixture thereof to form an aqueous electrolytic bath, and other suitable electrodes. Precipitated metals include Fe, Co, Ni, Pa, Pt, Ir, Mn, Cr,
Mo, W, V, Nb, Ta, Bi, Ti, Zr, Y,
Most of the metallic elements such as La, Ce, Sm, Zn, Cu, Ag, and Au are targeted. Water-soluble compounds of the above metals include sulfates,
Inorganic compounds such as nitrates, phosphates, pyrophosphates, cyanates, halides, metal salts,
One or two selected from the group consisting of organic compounds such as acetate, tartrate, sulfamate, etc.
Applicable to more than one species. The type of metal element in these metal salts and the level of their valence have selectivity in the electrolytic current, and low valence metal salts require the coexistence of an appropriate antioxidant.
For example, in the case of Ni and Co salts, AC electrolysis is suitable;
Furthermore, in the case of Fe, the metal does not precipitate in either alternating current or direct current electrolysis with ferric salts, and Fe can be precipitated only by alternating current electrolysis of ferrous salts. In this case, oxidation during electrolysis (Fe +2 → Fe +3 ) produces Fe(OH) 3 precipitates and reduces the Fe utilization rate, so it is recommended to add a small amount of an antioxidant such as hydroquinone to the electrolyte. is good. Generally, it is effective to add boric acid and glycerin to the electrolytic bath for secondary electrolytic treatment. The former addition has the effect of buffering the pH of the electrolytic bath and complexing the metal ions, while the latter addition has the effect of increasing the viscosity of the electrolytic bath and homogenizing the electrolytic deposition. Glycols and sugars can also be used as additives. The necessary addition amount varies depending on the metal salt to be electrolyzed, and the appropriate amount is determined by experiment. For example, in the case of Fe, Ni, and Co, boric acid is 25 to 40 g as H 3 BO 3 in the bath, and glycerin is 10 to 40 g in the bath. 30g/
Add to a concentration of . By electrolyzing a compound of two or more metals in a secondary electrolytic treatment, an alloy of these metals can be electrolytically deposited. In this case, it is necessary to select the type of salt, bath composition, etc. for effective electrolytic deposition.
For Ni−Co, the deposition potentials are close, but for Fe−
In Ni, Fe-Ni-Co, etc., since the deposition potential of Fe is far apart, it is necessary to bring these two or more metals closer together by selecting the type of salt, complexing agent, etc. The conditions for electrolytic deposition are almost the same as those for alloy plating that has already been put into practical use. The electrolytic bath temperature in the secondary electrolytic treatment varies depending on the type, concentration, etc. of the metal compound, but under a constant electrolytic voltage, the higher the bath temperature, the greater the amount of metal deposited. For example, when alternating current electrolysis is carried out using a cobalt sulfate aqueous solution (PH = 4.3) as an electrolytic bath, the amount of metal deposited at a bath temperature of 50°C reaches approximately 150% of that at a bath temperature of 20°C. However, in general, when the bath temperature exceeds 75°C, the metal precipitation efficiency is saturated, and on the other hand, energy loss for maintaining the high bath temperature increases. Therefore, as an industrial operating condition, the bath temperature is 20 to 60℃.
Desirably maintained in the °C range. (3) Film dissolution treatment The operation of selectively dissolving only the anodic oxide film without dissolving as much as possible the fine metals or alloys in the micropores precipitated by the secondary electrolytic treatment is a process that dissolves the film and the deposited metal or Based on the use of differences in the chemical reactivity of alloys. As mentioned above, the composition of the anodic oxide film that forms micropores is mainly Al oxide and partially hydroxide, and the chemical activity of the film varies depending on the primary electrolytic treatment conditions. In the present invention, as described above, by increasing the bath temperature in the primary electrolytic treatment, the Al oxide becomes easily soluble in acids and alkalis. As a liquid with excellent film solubility, the concentration of acid is approximately 1.
~10% phosphoric acid aqueous solution with a liquid temperature of 50℃ or higher is applied. For alkaline, the concentration is about 0.5 to 10%, and the liquid temperature is 30
Caustic alkali above ℃ is applied. If the precipitated metal or alloy is a heavy metal type, caustic alkali is suitable. If the precipitated metal or alloy is a non-heavy metal type, such as Sn, Se, Zn, Bi, etc., a film dissolving solution containing an inhibitor suitable for the precipitated metal is suitable. It is effective to add a metal surface oxidation inhibitor (inhibitor) to the film solution, and in an alkaline solution, add a water-soluble silicate, such as Na 2 SiO 3 .
When 9H 2 O is added, the resulting metals and alloys have excellent magnetic properties. In order to prevent oxidation of the fine particles of metal or alloy remaining in the solution after film dissolution treatment, they are separated from the solution as soon as possible, washed, and dried. Separation from the solution is best carried out by filtration or centrifugation, and as the washing solution, in addition to water, organic solvents such as alcohol and ether are more effective. Low temperature and reduced pressure drying is suitable for drying. The precipitated metal after the film dissolution treatment has a diameter d, for example, as shown in FIGS.
Acicular bodies with a diameter of ≒100 to 500 Å and a length l of 0.2 to 3 um are closely assembled in the length direction. d and l of each of these needle-like bodies can be controlled by the electrolytic treatment conditions described above. Furthermore, the needle-shaped bodies can be easily separated by a weak pressing force, and can also be separated in the radial direction if necessary. For such crushing and crushing, an impact type crusher or a jet flow crusher that causes particles to impact each other is suitable. EXAMPLES Hereinafter, the present invention will be explained based on Examples and Examples, but the present invention is not limited thereto. Example 1 (1) Base material; [A]...Aluminum foil (99.9% Al, thickness 0.1 mm
Width 50mm x length 100mm) [B]…Industrial pure aluminum plate (JIS A1100−
H24, thickness 1.0 mm x width 50 mm x length 100 mm) (2) Preliminary surface treatment: Substrate was immersed in 5% NaOH aqueous solution at 40°C for 2 minutes, then desmatted in 30% HNO 3 solution for 1 minute. Washed with water and dried. (3) Primary electrolytic treatment; (1) Electrolytic bath: (a): 15% H 2 SO 4 , bath temperature kept constant at 20°C or 50°C (b): 25% H 3 PO 4 , bath temperature 20°C (2) Electrolysis: Using a pure Al plate as the counter-negative electrode, direct current electrolysis was performed at a specified current density for a certain period of time. (4) Secondary electrolytic treatment; (1) Electrolytic bath: Bath in an aqueous solution containing 2.5% H 3 BO 3 and 2.0% glycerin...FeSO 4 7H 2 O 5.0% Bath... CoSO 4 7H 2 O5. 0% was dissolved and the pH was adjusted to 3.5 using H 2 SO 4 to prepare an electrolytic bath. The bath temperature was kept constant at 30°C. (2) Electrolysis: AC electrolysis was performed for a certain period of time at a predetermined current density as the counter electrode of the carbon plate. (5) Film dissolution treatment, etc.: After completing the above secondary electrolysis, the base material, which has a dark brown color due to the deposited metal, is immersed in a 2% NaOH aqueous solution at 40°C for 3 minutes to dissolve the film, and then settle in the solution. The precipitated metal fine particles were suctioned off using Toyo Paper 5C. After washing the fine particles with distilled water and then with ethyl alcohol, they were placed in a vacuum desiccator using magnesium perchlorate as a desiccant and dried at room temperature for 24 hours. (6) Results; Table 1 shows the yield of fine metal powder according to the conditions of primary electrolytic treatment and secondary electrolytic treatment, and the magnetic properties of the fine metal powder. Comparison of results for primary electrolytic bath temperatures of 20°C and 50°C in the table (Execution Nos. 1, 2, 5, 6 and Experiments
Comparison of Nos. 3, 4 and 7, 8), the higher bath temperature significantly reduces the power consumption of primary electrolysis, the amount of metal deposited in secondary electrolysis is larger, and the magnetic properties of the resulting metal fine powder also improve. Recognized as excellent.
Both sulfuric acid and phosphoric acid can be used effectively as the primary electrolytic treatment solution, but in the case of phosphoric acid, a film will not be formed at a bath temperature of 30°C or higher, and the current density will decrease.
If the temperature exceeds 1A/αm 2 , burning will occur, so the conditions in Table 1 are the limit. Example 2 (1) Base material; aluminum foil (99.99% Al

【表】 厚さ0.1mm×巾125mm×長さ250mm) (2) 予備表面処理;60℃のアルクリン#100(奥野
制約工業社製市販Al脱脂剤商品名)3%水溶
液中に3分間浸漬してエツチングしたのち水洗
乾燥した。 (3) 一次電解処理; (1) 電解浴:15%H2SO4、浴温45℃に一定に
保持した。 (2) 電解:純Al板を対負極として3A/dm2×
3.3分、または5A/dm2×2分で直流電解し
た。 (4) 二次電解処理; (1) 電解浴: H3BO32.5%およびグリセリン2.0%、さらに
酸化防止剤として一部ハイドロキノン0.4%
を溶解した水溶液中に 浴…FeSO4・7H2O4.0%+NiSO4
7H2O1.0% 浴…〃 〃 2.0%+〃
・7H2O3.0% を溶解し、各H2SO4およびNH4OHによりPH
=3.7に調整して電解浴とした。浴温は30℃
に一定に保持した。 (2) 電解: カーボンプレートを対極として14V×7.5
分交流電解した。 (5) 皮膜溶解処理等; 溶解液S1…2%NaOH 水溶液 〃 S2…S1+0.2%Na2SiO3・9H2O水溶液 溶解条件 40℃×3分間 析出金属微粒子の過、洗浄、乾燥は実施例
1と同じ。 (6) 結果; 二次電解浴中のFeSO4は電解中に酸化して
Fe(OH)3の沈澱を生ずる。表中実施No.11−12、
およびNo.13−14の比較から明らかなように、ハ
イドロキノンの添加は収得微粉金属、または合
金の磁気特性に悪
[Table] Thickness 0.1 mm x Width 125 mm x Length 250 mm) (2) Preliminary surface treatment: Immerse for 3 minutes in a 3% aqueous solution of Alclin #100 (commercially available Al degreasing agent manufactured by Okuno Seishin Kogyo Co., Ltd.) at 60°C. After etching, it was washed and dried. (3) Primary electrolytic treatment; (1) Electrolytic bath: 15% H 2 SO 4 , bath temperature kept constant at 45°C. (2) Electrolysis: 3A/dm 2 × using pure Al plate as counter negative electrode
Direct current electrolysis was performed for 3.3 minutes or 5 A/dm 2 × 2 minutes. (4) Secondary electrolytic treatment; (1) Electrolytic bath: H 3 BO 3 2.5% and glycerin 2.0%, and some hydroquinone 0.4% as an antioxidant
Bath in an aqueous solution containing FeSO 4 7H 2 O4.0% + NiSO 4 .
7H 2 O1.0% bath...〃 〃 2.0%+〃
・Dissolve 7H 2 O3.0% and PH with each H 2 SO 4 and NH 4 OH
= 3.7 and used as an electrolytic bath. Bath temperature is 30℃
was held constant. (2) Electrolysis: 14V x 7.5 with carbon plate as counter electrode
Separate current electrolysis was carried out. (5) Film dissolution treatment, etc.; Dissolution solution S1...2% NaOH aqueous solution 〃 S2...S1 + 0.2% Na 2 SiO 3 9H 2 O aqueous solution dissolution conditions 40℃ x 3 minutes Filter, wash, and dry the precipitated metal fine particles Same as example 1. (6) Results: FeSO 4 in the secondary electrolytic bath was oxidized during electrolysis.
Produces precipitation of Fe(OH) 3 . Implementation No. 11-12 in the table,
As is clear from the comparison of Nos. 13 and 14, the addition of hydroquinone has a negative effect on the magnetic properties of the obtained fine powder metal or alloy.

【表】 影響を与えることなく上記酸化を防止し、建浴
後の経過時間に自由度を与え、析出金属量を減
少させない効果がある。 皮膜溶解液としてはNaOH単味のS1よりイン
ヒビターとしてNaSiO3を併用したS2の方が溶解
時間が長くなつても磁気特性があまり劣化せず優
れていることが認められる。 二次電解浴のNi/Fe比によつて得られる微粉
の磁気特性が異り、この比が1/4(Ni20%−
Fe80%)では保磁力は高いが飽和磁化および残
留磁化が低く、この比が、3/2(Ni60%−Fe40
%)ではその逆になる。 実施例 3 (1) 基材;アルミニウム板(99.8%Al板−H24、
厚さ5mm×巾1000mm×長さ2000mm) (2) 予備表面処理;50℃の5%NaOH水溶液中
に30秒間浸漬してエツチングしたのち水洗、つ
いで室温の10%HNO3水溶液に2〜3分間浸漬
してデスマツトし、その後水洗した。 (3) 一次電解処理;巾500mm×長さ1500mm×深さ
1500mmの電解槽に15%H2SO4水溶液を建浴し
た。 工業用純アルミニウム板(JISA1100−H24)
を対負極として50℃、3分間、直流5A/dm2
の条件で一次電解処理をして直後に水洗した。 (4) 二次電解処理;電解槽の寸法は一次電解処理
と同一である。 (1) 電解浴:FeSO4・7H2O4.3%、NiSO4
6H2O0.7%、H3BO42.5%、グリセリン2%、
(NH42SO41%、の水溶液をH2SO4
NH4OHでPHを4.5±0.2に調整して電解浴と
した。 (2) 電解;鉛を対極として、14Vの定電圧商用
交流電解を10分間実施し、その直後に水洗し
た。 (5) 皮膜溶解処理等; 上記二次電解終了水洗後、析出金属よつて黒
色を呈した基材を、空の槽につり下げ両側から
Na2SiO3・9H2O1%を含む50℃、5%NaOH水
溶液を1分間ノズルから強く吹きつけて、一次
電解処理によつて形成された陽極酸化皮膜を溶
解すると同時に、析出金属をそのNaOH水溶
液に懸濁させた。 この懸濁液(黒色)を遠心分離器で固体の析
出金属微粒子とNaOH水溶液と分離し、すみ
やかに温洗乾燥した。分離したNaOH水溶液
は反覆して使用することが出来る。 (6) 結果; 収得量は平均1.3g/m2である。磁気特性は、
飽和磁化94emo/g、残留磁化70emo/g、保
磁力、12000Oeであり、磁性微粒子として使用
に十分耐える粒子である。 本発明によつて製造される微粉金属の電子顕微
鏡下(日立製作所製透過型電子顕微鏡、H−
70OH)の外観を第1図および第2図の写真によ
つて示した。これは第2表の実施No.11の場合につ
いて例示したが、他の場合もほとんど類似した外
観であつた。第1図は皮膜溶解処理直後の外観で
微細針状の析出金属の集合体である。第2図は第
1図の析出金属をおだやかな機械的な手段によつ
て解体した状態で本発明の方法によつて得られる
金属微粉の終局の外観である。図に見るごとく金
属微粉は直径100〜500Å、長さ0.2〜3μmの針状
を呈している。 上記のごとく製造された本発明による金属微粉
は優れた磁気的特性を有し、磁気記録テープ用磁
性粉として従来汎用されている磁性体たとえばγ
−Fe3O4、CrO2、Co変性酸化鉄、等と損色なく
使用されるほか前記した各種の超微粉の用途に適
用される。
[Table] It has the effect of preventing the above-mentioned oxidation without causing any adverse effects, giving flexibility in the elapsed time after bath preparation, and not reducing the amount of precipitated metal. As a film dissolving solution, it is recognized that S2, which uses NaSiO 3 as an inhibitor in combination, is superior to S1, which contains only NaOH, and its magnetic properties do not deteriorate much even when the dissolution time becomes longer. The magnetic properties of the fine powder obtained differ depending on the Ni/Fe ratio of the secondary electrolytic bath, and this ratio is 1/4 (Ni20%-
Fe80%) has a high coercive force but low saturation magnetization and residual magnetization, and this ratio is 3/2 (Ni60% - Fe40
%), the opposite is true. Example 3 (1) Base material; aluminum plate (99.8% Al plate-H24,
(Thickness: 5 mm x Width: 1000 mm x Length: 2000 mm) (2) Preliminary surface treatment: Etching by immersing in 5% NaOH aqueous solution at 50℃ for 30 seconds, washing with water, and then soaking in 10% HNO 3 aqueous solution at room temperature for 2 to 3 minutes. It was soaked and desmatted, then washed with water. (3) Primary electrolytic treatment; width 500mm x length 1500mm x depth
A 15% H 2 SO 4 aqueous solution was prepared in a 1500 mm electrolytic bath. Industrial pure aluminum plate (JISA1100−H24)
as the counter negative electrode at 50℃ for 3 minutes, DC 5A/dm 2
Immediately after primary electrolytic treatment was performed under the following conditions, it was washed with water. (4) Secondary electrolytic treatment: The dimensions of the electrolytic cell are the same as in the primary electrolytic treatment. (1) Electrolytic bath: FeSO 4.7H 2 O4.3%, NiSO 4 .
6H 2 O 0.7%, H 3 BO 4 2.5%, glycerin 2%,
(NH 4 ) 2 SO 4 1% aqueous solution with H 2 SO 4
The pH was adjusted to 4.5±0.2 with NH 4 OH to prepare an electrolytic bath. (2) Electrolysis: Using lead as a counter electrode, constant voltage commercial alternating current electrolysis at 14V was performed for 10 minutes, followed by washing with water immediately after. (5) Film dissolution treatment, etc. After completing the secondary electrolysis and washing with water, the base material, which has a black color due to the deposited metal, is suspended in an empty tank from both sides.
A 5% NaOH aqueous solution containing 1% Na 2 SiO 3 9H 2 O is sprayed strongly from a nozzle for 1 minute at 50°C to dissolve the anodic oxide film formed by the primary electrolytic treatment and at the same time remove the precipitated metal from the NaOH. It was suspended in an aqueous solution. This suspension (black color) was separated from the solid precipitated metal fine particles and the NaOH aqueous solution using a centrifuge, and immediately washed and dried at a warm temperature. The separated NaOH aqueous solution can be used repeatedly. (6) Results: The average yield was 1.3 g/m 2 . The magnetic properties are
The particles have a saturation magnetization of 94 emo/g, a residual magnetization of 70 emo/g, and a coercive force of 12,000 Oe, and are sufficiently durable for use as magnetic fine particles. The fine powder metal produced according to the present invention was examined under an electron microscope (transmission electron microscope manufactured by Hitachi, Ltd., H-
70OH) is shown in the photographs in Figures 1 and 2. This was illustrated in the case of Example No. 11 in Table 2, but the appearance was almost similar in other cases as well. Figure 1 shows the appearance immediately after the film dissolution treatment, showing an aggregate of fine needle-shaped precipitated metals. FIG. 2 shows the final appearance of the metal fine powder obtained by the method of the present invention, with the precipitated metal of FIG. 1 disintegrated by gentle mechanical means. As shown in the figure, the metal fine powder has a needle shape with a diameter of 100 to 500 Å and a length of 0.2 to 3 μm. The metal fine powder according to the present invention produced as described above has excellent magnetic properties, and has a magnetic material such as γ, which has been conventionally used as magnetic powder for magnetic recording tapes.
-It can be used with Fe 3 O 4 , CrO 2 , Co-modified iron oxide, etc. without color loss, and can also be applied to the various ultrafine powder applications mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法によつて製造したFe−20
%Ni微粉の電子顕微鏡写真であり、第1図は皮
膜溶解処理直後の析出金属微粒子の集合体
(35000倍)、同じく第2図は第1図の集合体を解
体処理した針状金属微粒子の外観(35000倍)で
ある。
The drawing shows Fe-20 manufactured by the method of the present invention.
%Ni fine powder. Figure 1 shows an aggregate of precipitated metal particles immediately after film dissolution treatment (35,000x magnification), and Figure 2 shows an aggregate of acicular metal particles obtained by dismantling the aggregate in Figure 1. Appearance (35000x).

Claims (1)

【特許請求の範囲】[Claims] 1 表面に陽極酸化皮膜を施したAlまたはAl合
金を、1種以上の金属イオンを含む水性相中にお
いて電解して、該陽極酸化皮膜の中の微細孔内に
金属を析出せしめ、ついで該陽極酸化皮膜を選択
的に溶解、除去して製出することを特徴とする針
状金属微粉末製造方法。
1 Al or Al alloy with an anodic oxide film on its surface is electrolyzed in an aqueous phase containing one or more metal ions to precipitate metal into the micropores in the anodic oxide film, and then the anode A method for producing acicular fine metal powder, which is characterized in that it is produced by selectively dissolving and removing an oxide film.
JP17252582A 1982-10-02 1982-10-02 Fine acicular metal powder Granted JPS5964703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17252582A JPS5964703A (en) 1982-10-02 1982-10-02 Fine acicular metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17252582A JPS5964703A (en) 1982-10-02 1982-10-02 Fine acicular metal powder

Publications (2)

Publication Number Publication Date
JPS5964703A JPS5964703A (en) 1984-04-12
JPH0338321B2 true JPH0338321B2 (en) 1991-06-10

Family

ID=15943544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17252582A Granted JPS5964703A (en) 1982-10-02 1982-10-02 Fine acicular metal powder

Country Status (1)

Country Link
JP (1) JPS5964703A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157203A (en) * 1983-02-25 1984-09-06 Fujisash Co Manufacture of hyperfine particle
JPH0778279B2 (en) * 1985-05-27 1995-08-23 松下電工株式会社 Method for producing fine metal particles

Also Published As

Publication number Publication date
JPS5964703A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
TWI478185B (en) Super capacitor and method for manufacturing the same
CN107937879A (en) A kind of method of neodymium iron boron magnetic body and neodymium iron boron magnetic body overlay coating
CN109778250B (en) Method for preparing magnetic metal nanotube by controlling electrodeposition conditions
TWI612545B (en) Method for producing electrode material for aluminum electrolytic capacitor and electrode material for aluminum electrolytic capacitor
JPH0257690A (en) Aluminum plated substrate for anodic oxidation
TW201337990A (en) Method for manufacturing electrode material for aluminum electrolytic capacitor
US3939046A (en) Method of electroforming on a metal substrate
US4014756A (en) Process for making metal powders
JP4395506B2 (en) Method for producing silver nanopowder using electrolysis
JPH0338321B2 (en)
CN112267114A (en) Method for improving compactness and corrosion resistance of hydrotalcite coating on surface of magnesium alloy
JPH10273318A (en) Production of gallium oxide powder
JPH1018082A (en) Method for coating metallic material with titanium oxide
KR100436523B1 (en) A method for preparing micrometal using liquid phase reduction method and micrometal prepared from this method
CN110085429B (en) Method for pulse deposition of nano tin dots on medium-high voltage anode aluminum foil for aluminum electrolytic capacitor
EP0322420A1 (en) Magnetic recording material.
CN112840422A (en) Method for producing electrode material for aluminum electrolytic capacitor
CN115613099A (en) Aluminum alloy anodic oxidation post-treatment method
JPH01124212A (en) Aluminum alloy electrode for electrolytic capacitor
Ito et al. Challenge of industrializing novel molten salt electrochemical processes
CN116275057B (en) Corrosion pretreatment method for preparing electronic aluminum foil with micro-couple based on powder sintering
CN100532317C (en) Process for preparing alumina ceramic foil materials with penetrative nanohole
CN115637436A (en) Method for removing titanium nitride coating on surface of glass forming die and recovering titanium element
JP2000336495A (en) Production of magnetite hyperfine particle
CN115613086A (en) Nickel-iron plating solution for aluminum alloy and preparation method thereof