JPS5964528A - Bismuth-molybdenum amorphous compound material and its preparation - Google Patents

Bismuth-molybdenum amorphous compound material and its preparation

Info

Publication number
JPS5964528A
JPS5964528A JP17380082A JP17380082A JPS5964528A JP S5964528 A JPS5964528 A JP S5964528A JP 17380082 A JP17380082 A JP 17380082A JP 17380082 A JP17380082 A JP 17380082A JP S5964528 A JPS5964528 A JP S5964528A
Authority
JP
Japan
Prior art keywords
bismuth
mixture
molybdenum
raw material
amorphous compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17380082A
Other languages
Japanese (ja)
Other versions
JPH0328377B2 (en
Inventor
Kenji Suzuki
謙爾 鈴木
Shuji Masuda
増田 修二
Yukihiro Oota
進啓 太田
Mika Ookubo
美香 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP17380082A priority Critical patent/JPS5964528A/en
Publication of JPS5964528A publication Critical patent/JPS5964528A/en
Publication of JPH0328377B2 publication Critical patent/JPH0328377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a bismuth-molybdenum amorphous compound material useful as light-electricity responce element, light-magnetism response element, high ionic conduction material, etc., by melting a mixture of bismuth oxide and molybdenum oxide under heating, quenching it extremely quickly. CONSTITUTION:A mixture of bismuth oxide and molydbedum oxide having a composition in a weight ratio shown by the formula (MoO3)x.(Bi2O3)1-x(0.95<= x>0) as a raw material is melted under heating. The melting is carried out at a temperature wherein the mixture is sufficiently melted or higher, preferably at a temperature higher than the melting temperature by 50-200 deg.C. The raw material mixture is quenched extremely quickly. It is an essential condition. The supercooling is usually carried out at about 10<4>-10<6> deg.C/sec cooling speed. When the quenching device 3 is used, the raw material mixture is extruded from the melt extruding nozzle 11 to the surface of the high-speed rotating roll 13. The prepared material is made into a thin film, scaly or fine particulate state, to give an amorphous compound material.

Description

【発明の詳細な説明】 本発明は、新規なビスマス−モリブデン系非晶質化合物
材料及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel bismuth-molybdenum based amorphous compound material and a method for producing the same.

近年エレクトロニクス及びその関連技術の発展に伴って
、酸化ビスマス(Bf203)を主とする酸化物系セラ
ミクス及びその単結晶の研究が活発に行なわれており、
特に光−電気、音−香気、雰囲気ガス−電気、光音偏光
、X線分光等の分野における変換素子月利として、又触
媒材料として研究が行なわれている。B! 203とM
OO3との安定な化合物としては、数種の結晶体につい
て2〜3の文献に記載されているのみで、これ等の単結
晶化の研究はざか/υに行なわれているものの、非晶質
化合物についての研究は行なわれていない。
In recent years, with the development of electronics and related technologies, research has been actively conducted on oxide-based ceramics, mainly bismuth oxide (Bf203), and their single crystals.
In particular, research is being carried out as a conversion element and as a catalyst material in fields such as photo-electricity, sound-aroma, atmospheric gas-electricity, photoacoustic polarization, and X-ray spectroscopy. B! 203 and M
As stable compounds with OO3, only a few types of crystalline forms have been described in a few documents, and although research on single crystallization of these is currently being carried out, there are no amorphous compounds. No studies have been conducted on the compound.

本発明は、従来全く知られていないビスマス−モリブデ
ン系非晶質酸化物を提供するものである。
The present invention provides a bismuth-molybdenum-based amorphous oxide that has been completely unknown heretofore.

即ち、本発明は、(B! 203 ) +−x ・(M
O03)x  (但し0.95≧X >O>なる組成を
右づる新規なビスマス−モリブデン系非晶質化合物材料
、及び(Bt 203 ) +−x ・(MO03)x
  (但し×は上記に同じ〉に相当づる酸化ビスマスと
酸化モリブデンとの混合物を加熱溶解した後、唱急冷す
ることを特徴とするビスマス−モリブデン系非晶質化合
物材料の製造方法に係るものである。
That is, the present invention provides (B! 203 ) +−x ・(M
A novel bismuth-molybdenum amorphous compound material having a composition such that O03)x (0.95≧X >O>, and (Bt 203 ) +-x ・(MO03)x
(However, × corresponds to the above) This relates to a method for producing a bismuth-molybdenum-based amorphous compound material, which is characterized by heating and melting a mixture of bismuth oxide and molybdenum oxide, and then quenching the mixture. .

本発明のビスマス−モリブデン系非晶質酸化物は、光−
電気応答素子、光−磁気応答素子、高イオン伝導材料、
有機合成における酸化・脱水素触媒等として有用である
The bismuth-molybdenum amorphous oxide of the present invention
Electric response elements, optical-magnetic response elements, high ionic conductivity materials,
It is useful as an oxidation/dehydrogenation catalyst in organic synthesis.

尚、本発明においては、″ビスマスーモリブデン系非晶
質化合物“′とは、非晶質単独の場合のみならず、非晶
質中に多結晶相を含む場合及び高温安定相が苗温におい
ても生成している場合をも包含するものとづる。
In the present invention, the term "bismuth-molybdenum-based amorphous compound" is used not only when the compound is amorphous alone, but also when the amorphous contains a polycrystalline phase and when the high-temperature stable phase is present at the seedling temperature. It is said to include the case where it is also generated.

本発明のビスマス−モリブデン系非晶質酸化物は、以下
の様にして製造される。
The bismuth-molybdenum amorphous oxide of the present invention is produced as follows.

本発明におい゛℃使用する原おlは、酸化ビスマスと酸
化モリブデンとの混合物であり、その組成割合は、(M
O03)x ・(Bi 203 ) +−x (但し0
.95≧×〉O)となる量比である。上記組成比の原料
混合物を加熱溶融し、これを超急冷する。加熱溶融は、
これ等原料混合物が充分に溶融でる温度以上で行なえば
良く、好ましくは溶融温度よりも50〜200℃以上特
に好ましくは80〜150’CI、/、上高い温度で加
熱層る。加熱時の雰囲気に対づる制限は特に無く、通常
空気中で行う。
The raw material used in the present invention at °C is a mixture of bismuth oxide and molybdenum oxide, and its composition ratio is (M
O03)x ・(Bi 203 ) +-x (However, 0
.. The quantity ratio is 95≧×〉O). A raw material mixture having the above composition ratio is heated and melted, and then cooled extremely rapidly. Heat melting is
The heating may be carried out at a temperature higher than the temperature at which these raw material mixtures are sufficiently melted, preferably at a temperature higher than the melting temperature by 50 to 200° C., particularly preferably by 80 to 150°C. There are no particular restrictions on the atmosphere during heating, and heating is usually performed in air.

次いで原料混合物の融液を超急冷する。、超急冷は、本
発明方法の必須の要件であって、これによりはじめて非
晶質新規化金物を収得づることが出来る。
Next, the melt of the raw material mixture is ultra-quenched. , ultra-quenching is an essential requirement of the method of the present invention, and only by this is it possible to obtain a novel amorphous metal.

超急冷は通常10A〜100℃/秒程度の冷却速度で行
う。この超急冷は、上記冷却速度で冷却出来る手段であ
れば広い範囲で各種の手段が採用出来、高速回転中のロ
ール表面上に原r1混合物の融液を噴霧して液体状態の
原子配置にて固化せしめる方法を代表例として挙げるこ
とが出来る。
Ultra-quenching is usually performed at a cooling rate of about 10A to 100°C/sec. This ultra-rapid cooling can be carried out by a wide variety of means as long as it can be cooled at the above-mentioned cooling rate, and by spraying the melt of the raw R1 mixture onto the surface of the roll rotating at high speed, the atomic arrangement in the liquid state is achieved. A typical example is a method of solidification.

以下図面を参照しつつ本発明方法の実施に際し使用され
る融解原料混合物の急冷装置の一例を説明する。
An example of a quenching apparatus for a molten raw material mixture used in carrying out the method of the present invention will be described below with reference to the drawings.

第1図は、架台(1)上に設置された急冷装置本体(3
)の正面図を示す。急冷装置は、誘電加熱用コイル(5
)、(5)・・・・、原料加熱用チューブ(7)、該チ
ューブ(7)の支持体(9)、融解原F31噴出川のノ
ズル(11)、急冷用ロール(13)、ノズル(11)
の冷却用ノズル<15)、渦流防止エアノズル(17)
、ノズル(11)の微調整機構(19)、エアシリンダ
ー(21>、冷却された材料の受は箱(23>、冷却材
料取出口(25)等を主委構成部としている。
Figure 1 shows the main body of the rapid cooling device (3) installed on the stand (1).
) is shown. The quenching device consists of a dielectric heating coil (5
), (5)..., raw material heating tube (7), support for the tube (7) (9), melt source F31 spout river nozzle (11), quenching roll (13), nozzle ( 11)
cooling nozzle <15), anti-vortex air nozzle (17)
The main components include a fine adjustment mechanism (19) for the nozzle (11), an air cylinder (21>), a box (23>) for receiving the cooled material, and a cooling material outlet (25).

急冷用ロール(13)の内部に該ロール冷却用のノアン
を設置し且つロール表面側端部に空気吹込み口を設(づ
ることにより、融M原料の急冷を安定して行なうことが
出来る。第2図は、支持体く9)の詳細を示す。第2図
においで、支持体(9)は、バルブ(27)を備えた冷
却水導入路(29)、冷却水抽出路(31)、ニードル
バルブ(33)を備えたブローエア導入路<35)、ロ
ール(13)の表面とノズル(11)との間隔微調整機
構(37)及び原料融液を均一に押出す為の整流用1朋
(39)を備えている。
By installing a noan for cooling the quenching roll (13) and providing an air blowing port at the end of the roll surface, the molten M raw material can be quenched stably. FIG. 2 shows details of the support 9). In FIG. 2, the support (9) includes a cooling water introduction path (29) equipped with a valve (27), a cooling water extraction path (31), and a blow air introduction path (<35) equipped with a needle valve (33). , a mechanism (37) for finely adjusting the distance between the surface of the roll (13) and the nozzle (11), and a rectifier (39) for uniformly extruding the raw material melt.

第1図及び第2図に示す急冷装置く3)を使用して本発
明方法を実施づ“る場合、まず所定組成の原料混合物を
融液吹出し用ノズル(11)を右するチューブ(7)内
に収納する。このチューブ(7)は、高温酸化雰囲気状
態で充分耐久性のある材質で作られ、たとえば白金、白
金−ロジウム、イリジウム、窒化ケイ素、窒化ボロン等
で作られたものが好ましい。尚、原F31融液と直接接
触しない部分の材?1は、高融点のセラミックス、ガラ
ス、金属でも良い。ノズル口の形状は、目的製品に応じ
て適宜に決定され、たとえば細い線状材料の場合は円い
形状で、[1]の広い製品の場合はスリット状の形状の
ものを使用する。ノズル1]の形状は、惰円形その他の
形状であっても良い。チューブ(7)内に収納された原
料混合物は、次いでその融点以上の温度に加熱され、融
液とされた後、ノズル(11)の[]部から高速回転し
ているロール(13)の面上に一定ガス圧にて吹出され
、ロール表面上で急冷せしめられる。ノズル口と[1−
ル面における原料融液の吹出し角度は、目的化合物のt
lJが約3mm以下の場合はロール面に対して垂直で良
く、またその巾が約3mm以上の場合はロール面垂線に
対して00〜45°である。これ等の吹出し角度調整機
構は、装置自体に所定の角度を設定可能な機構として組
み込むことも出来るが、好ましくはノズル自体を加工し
てL13<のが良い。
When carrying out the method of the present invention using the quenching device 3) shown in FIGS. 1 and 2, first, a raw material mixture of a predetermined composition is passed through a tube (7) connected to a melt blowing nozzle (11). The tube (7) is preferably made of a material that is sufficiently durable under high temperature oxidizing atmosphere conditions, such as platinum, platinum-rhodium, iridium, silicon nitride, boron nitride, etc. The material 1 for the parts that do not come into direct contact with the raw F31 melt may be ceramics, glass, or metals with a high melting point.The shape of the nozzle opening is appropriately determined depending on the target product. In case of wide product [1], use a slit-shaped one.The shape of nozzle 1] may be circular or other shape.Inside the tube (7) The stored raw material mixture is then heated to a temperature higher than its melting point to form a melt, and then is applied to a constant gas pressure from the [ ] part of the nozzle (11) onto the surface of the roll (13) rotating at high speed. It is blown out and rapidly cooled on the roll surface.The nozzle opening and [1-
The blowing angle of the raw material melt on the plane is t of the target compound.
When lJ is about 3 mm or less, it may be perpendicular to the roll surface, and when the width is about 3 mm or more, it is at 00 to 45 degrees to the normal to the roll surface. Although these blowout angle adjustment mechanisms can be incorporated into the device itself as a mechanism that can set a predetermined angle, it is preferable to process the nozzle itself so that L13<.

原料混合物の加熱方法は、特に制限されないが、通常梵
熱体を有する炉、誘電加熱炉または集光加熱炉で行う。
The method of heating the raw material mixture is not particularly limited, but it is usually carried out in a furnace with a Brahma heating element, a dielectric heating furnace, or a concentrator heating furnace.

原料融液の温度は、その融点より50〜200℃好まし
くは80〜150°C程度高い温度とするのが良い。こ
の際融点にあまり近過ぎると、融液を1コ一ル面上に吹
き出している間にノズル附近で冷却固化するおそれがあ
り、逆にあまりにも高くなりすぎると、l」−ル面」−
での急冷が困難となる傾向がある。
The temperature of the raw material melt is preferably 50 to 200°C, preferably 80 to 150°C higher than its melting point. If the temperature is too close to the melting point, there is a risk that the melt will cool and solidify near the nozzle while it is being blown onto the surface of one coil.On the other hand, if it is too close to the melting point, it may cool and solidify near the nozzle.
Rapid cooling tends to be difficult.

ロール面上に融液を吹き出すために使用りる加圧用ガス
としては、不活性ガスが好ましく、たとえばアルゴン、
窒素、ヘリウム等でも良いが、融液原料を酸化状態に維
持する為には、乾燥圧縮空気が好ましい。ガス圧は、ノ
ズル[1の大きさにもよるが、通常0.1〜2.0ka
/cm2好ましくは0.5〜1 、0k(]/Cm2程
度である。また原料融液を吹き出す際のノズル口とロー
ル面間の距離は、0.01〜1.On+m程度が良く、
より好ましくは0.05〜Oy5IRm程度である。0
.01mmよりも小さな場合、パドル句が非常に少なく
なり、均一な材料が得られず、一方1.QmI11より
も大きい場合、パドル員が過剰になったり、又組成融液
の界面張力により形成されるパドル厚さ以上の場合には
、パドルが形成され難くなる傾向が生ずる場合がある。
The pressurizing gas used to blow out the melt onto the roll surface is preferably an inert gas, such as argon,
Although nitrogen, helium, etc. may be used, dry compressed air is preferable in order to maintain the melt raw material in an oxidized state. The gas pressure is usually 0.1 to 2.0 ka, depending on the size of the nozzle [1].
/cm2 is preferably about 0.5 to 1.0k(]/cm2. Also, the distance between the nozzle opening and the roll surface when blowing out the raw material melt is preferably about 0.01 to 1.On+m.
More preferably, it is about 0.05 to Oy5IRm. 0
.. If it is smaller than 0.01 mm, there will be very few paddle phrases and no uniform material will be obtained, while 1. When QmI is larger than 11, the number of paddle members becomes excessive, and when the thickness exceeds the thickness of the paddle formed by the interfacial tension of the composition melt, it may be difficult to form a paddle.

ロールの材質は、熱伝導性の良い銅及びその合金、硬質
り[Jムメツキ層を右する上記材料、さらには鋼、ステ
ンレス鋼等である。IJ−ルの周速度を5m/秒〜35
m/秒、好ましくは10m/秒〜20m/秒とし、原料
融液を急冷刀ることにより目的とプる良質の非晶質化合
物材料が轡られる。
The materials of the roll include copper and its alloys, which have good thermal conductivity, hard metals [the above-mentioned materials that form the uneven layer], steel, stainless steel, and the like. IJ-ru peripheral speed from 5m/sec to 35
m/sec, preferably 10 m/sec to 20 m/sec, and quench the raw material melt to obtain a high-quality amorphous compound material for the purpose.

この際ロール周速度が5m/秒以下の場合には、非晶質
化し難い傾向が生じるので、あまり好ましくない。[J
−ル周速度が35m/秒よりも大きくなると、得られる
目的物材料の形状が非常に薄膜化し、すべて鱗片状もし
くは細粉状となるが、材料構造的にはやはり本発明の非
晶質化合物材料である。
In this case, if the peripheral speed of the roll is 5 m/sec or less, it is not very preferable because it tends to be difficult to become amorphous. [J
- When the circumferential speed of the ring is higher than 35 m/sec, the shape of the target material obtained becomes extremely thin and becomes scaly or fine powder, but the material structure is still the same as the amorphous compound of the present invention. It is the material.

融液原料を回転ロール面上へ吹き出ず雰囲気として減圧
下乃至高真空下、又は不活性ガス雰囲気中で本発明化合
物の製造を行なう場合には、高温状態での原料融液の還
元が発生し、組成原子中の酸素原子の減少が起り、得ら
れる材料に紫色もしくは黒色等の着色が発生する。しか
し乍ら、この着色生成物も物性的には本発明化合物であ
り、着色された状態で使用可能である。
When producing the compound of the present invention under reduced pressure or high vacuum or in an inert gas atmosphere without blowing out the raw material melt onto the rotating roll surface, reduction of the raw material melt at high temperature may occur. , a decrease in oxygen atoms in the composition atoms occurs, and the resulting material becomes colored purple or black. However, this colored product is also a compound of the present invention physically and can be used in a colored state.

原料混合物をチューブ内で加熱溶融せしめるに際しては
、該混合物をづべて完全に融液化することが必要である
。しかし乍ら、該混合物が完全に融液化する前に、一部
融液化したものが、ノズル先端から流出して′しよう恐
れがあるため、ノズル先端を局部的に冷却して融液の流
出を防止することが好ましい。ノズルを局部的に冷却す
る代表的手段は、ノズル先端に冷却用ガスを吹きつける
手段であり、ガスとしてはア潰ブン、ヘリウム、窒素等
の不活性ガスでも良いが、乾燥冷圧締空気がより好まし
い。
When heating and melting a raw material mixture in a tube, it is necessary to completely melt the mixture. However, before the mixture is completely molten, some of the molten material may flow out from the nozzle tip, so the nozzle tip is locally cooled to prevent the melt from flowing out. It is preferable to prevent this. A typical means of locally cooling a nozzle is to blow a cooling gas onto the tip of the nozzle.The gas may be an inert gas such as abrasive, helium, or nitrogen, but dry, cold compressed air is preferable. More preferred.

本発明に係る新規なる非晶質化合物材料は、通常50〜
10μm程度の厚さであり、非常にもろい材料である。
The novel amorphous compound material according to the present invention usually has a
It has a thickness of about 10 μm and is a very brittle material.

このためロール面で急冷され、固体化された後、できる
限り材料に応力が加えられない状態にηることか好まし
い。応力付加と4にる原因の一つに大気中でのロール回
転により発生でる風切り現象からくるロール表面空気層
の大ぎな乱流がある。この乱流を防止Jるとともに忠冷
却すべき溶融原料混合物とロール面との密着性をより良
好とするために、風切り防止用向流吹出しノズル即ち第
1図に示す渦流防止エアノズル(17)を設置でるか、
【」−ル内部にファンを固定設置づる。後者の場合は、
ロールの自転により1」−ル表面側喘部に設けられた口
径可変式の空気導入[−1よりロール内部へ発生ずる乱
流をプい込み、j−1−ル軸正面より排出し、ロール表
面上空気をロール内部へ移動せしめ、これにより溶融物
をロール面へより押しつけ密着させ、さらに空気の吹込
み移動によりロール自体をも空冷することが出来る。ま
た得られる材料の寸法均一性を保持させるために、ロー
ル表面に回転方向とは直角に月利切断用の溝を設けてお
けば、一定寸法で切断された材料が得られる。
For this reason, after being rapidly cooled and solidified on the roll surface, it is preferable to keep the material in a state where stress is not applied to it as much as possible. One of the causes of stress addition and number 4 is the large turbulent flow in the air layer on the roll surface due to the wind blowing phenomenon caused by roll rotation in the atmosphere. In order to prevent this turbulence and to improve the adhesion between the molten raw material mixture to be thoroughly cooled and the roll surface, a countercurrent blowout nozzle for preventing wind blowing, that is, an air nozzle for preventing swirling (17) shown in Fig. 1 is installed. Can you install it?
[''-Fixed the fan inside the room. In the latter case,
Due to the rotation of the roll, the turbulent flow generated inside the roll is pulled into the roll through a variable-diameter air intake provided at the pant part on the surface side of the roll, and is discharged from the front of the shaft of the roll. On the surface, the air is moved inside the roll, which brings the melt closer to the roll surface, and the roll itself can also be air-cooled by the blown air movement. Further, in order to maintain the dimensional uniformity of the obtained material, if grooves for monthly cutting are provided on the roll surface at right angles to the direction of rotation, the material can be cut to a constant size.

本発明のビスマス−モリブデン系化合物は、ぞの原料混
合比により化合物の原子配列「4造が大ぎく変化し、具
体的には以下の如くに大別される。
The atomic arrangement of the bismuth-molybdenum compound of the present invention varies greatly depending on the mixing ratio of the raw materials, and specifically, it can be broadly classified into the following types.

先ず、0.55≦X≦0.95の場合には非晶質化合物
100%のものが得られ、0.35≦X〈0.55の範
囲ではδ−B!203多結品相少色と非晶質化合物との
混合物が得られ、またQ<X<0.35では高イオン電
導体どして有用な(5−Bf203を含む混合物が(ワ
られる。第3図に本発明4オ料の生成範囲を示づ。
First, when 0.55≦X≦0.95, a 100% amorphous compound is obtained, and when 0.35≦X<0.55, δ-B! A mixture of 203 multicrystalline phase oligochromic and amorphous compound is obtained, and when Q Figure 3 shows the production range of the 4-O material of the present invention.

使用づる急冷装置の急冷用ロールの周速度が、5m/秒
〜3bm/秒の範囲内では、各組成域にd5いて得られ
る材料の@造自体には大きな変化は認められない。
When the circumferential speed of the quenching roll of the quenching device used is within the range of 5 m/sec to 3 bm/sec, no significant change is observed in the structure of the material obtained in each composition range.

尚、本発明月利の構造の同定に際しては、X線回折及び
偏光顕微鏡により結晶性の有無の確認及び構造解析を行
ない、走査型電子顕微鏡により極少部分の観察を行なっ
た。
In order to identify the structure of the present invention, the presence or absence of crystallinity was confirmed and structural analysis was performed using X-ray diffraction and a polarizing microscope, and a very small portion was observed using a scanning electron microscope.

以−ト実施例により本発明の特徴とするところをより一
層明らかにする。
The following examples will further clarify the features of the present invention.

実施例 B I 203(i I−a 99 、996 >及び
MOO3(純度99.9%)を所定の組成で配合し、均
一に混合した後、850℃で30分間仮焼して組成物原
料とした。得られた組成物原料を白金チューブ(直径1
0101l1長さ15Qmm)に充填し、誘S<fi加
熱コイル内に設置して、発振管繊条電圧13V、陽極電
圧10 K V、格子電流1.20〜150m A、陽
極電流1.2〜1.8Δの条件T” i、:誘電加熱し
た。完全に融液化した原料を急冷用回転L1−ル表面上
に乾燥圧縮空気により吹き出し、急冷さけた。
Example B I 203 (i I-a 99, 996 >) and MOO3 (purity 99.9%) were blended in a predetermined composition, mixed uniformly, and then calcined at 850°C for 30 minutes to form a composition raw material. The obtained composition raw material was put into a platinum tube (diameter 1
0101l1 length 15Qmm), installed in a heating coil with induction S Conditions T"i of .8Δ: Dielectric heating was performed. The completely molten raw material was blown out with dry compressed air onto the surface of the quenching rotary L1-ru to avoid quenching.

第1表及び第2表に組成及び製造時の諸条件を示す。第
1表及び第2表中試料No、1〜2o及び29は、リボ
ン状の本発明の非晶l!4酸化物材11を示τ。又、N
o、24は、[1−ルの回転速度が大きい為薄片となっ
ているが、形状に制約のない触媒等の分野では、使用可
能である。
Tables 1 and 2 show the composition and manufacturing conditions. Samples Nos. 1 to 2o and 29 in Tables 1 and 2 are ribbon-shaped amorphous l! τ indicates the tetraoxide material 11. Also, N
O, 24 is a thin piece due to the high rotational speed of [1-ru], but it can be used in fields such as catalysts where there are no restrictions on shape.

尚、ノズル形状Aとあるのは、0 、2 mmx lI
−mmのスリン1〜状ノズルを示し、ノズル形状Bとあ
るのは径0.2mmの円形ノズルを示す。又、組成が例
えばX 〜0.90とあるのは、 (Bl 203 )+−x ・(MO03)xにおいて
(Bt 203 )   ・(MO03>   なるこ
と0.10               0.90を
示づ。
In addition, nozzle shape A means 0.2 mm x lI.
The nozzle shape B indicates a circular nozzle with a diameter of 0.2 mm. Further, the composition is, for example, X ~ 0.90, which means that (Bt 203 ) .(MO03) is 0.10 0.90 in (Bl 203 )+-x .(MO03)x.

参考例1 (B! 203 )+−x ・(Mo 03)xにおい
CX=0.70に相当する上記実施例の試料No。
Reference Example 1 Sample No. of the above example corresponding to CX=0.70 in (B!203)+-x/(Mo03)x.

5.6.7及び8についてのX線回折結果を第4図に示
す。急冷用ロールの周速度が5.18m/秒(No、7
)から34.54m/秒(No、8)の範囲内で得られ
た材料の1京子配列構造には、大きな変化が認められな
いことが明らかcある。
The X-ray diffraction results for 5.6.7 and 8 are shown in FIG. The peripheral speed of the quenching roll is 5.18 m/s (No. 7
) to 34.54 m/sec (No. 8), it is clear that no major change is observed in the 1-kyoko array structure of the material obtained within the range of 34.54 m/sec (No. 8).

参考例2 (Bi 20a ) +−x ・(Mo 03 )Xに
おいCX−0,70に相当する上記実施例の試料NO。
Reference Example 2 Sample No. of the above example corresponding to CX-0,70 in (Bi 20a ) +-x .(Mo 03 )X.

5の示差熱分析結果を第5図に示づ。The differential thermal analysis results of No. 5 are shown in FIG.

第5図において、T cは結晶化温度、1−(lはガラ
ス転位点を夫々示す。結晶化による発熱ピークは、38
3℃である。
In FIG. 5, Tc is the crystallization temperature, and 1-(l is the glass transition point.The exothermic peak due to crystallization is 38
It is 3℃.

参考例3 (Bi 203 ) +−X ・(MO03) xにお
いてX=0.65に相当する上記実施例の試料No。
Reference Example 3 (Bi 203 ) +−X ・(MO03) Sample No. of the above example corresponding to X=0.65 in x.

12の外観を示す写真を参考図面工として示す。A photograph showing the appearance of No. 12 is shown as a reference drawing.

参考例4 十記実施例の試料N0.12の走査型電子顕微鏡写n 
(20000倍)を参考図面■として示プ。
Reference Example 4 Scanning electron micrograph of sample No. 12 of Example 4
(20,000x) is shown as a reference drawing ■.

参考例5 ([3f 203 ) +−x ・(MO03) xに
おいてx−0,90に相当する上記実施例の試料N01
及びX =0.65に相当する実施例の試料N012の
赤外線吸収スペクトルを第6図として示づ。
Reference example 5 ([3f 203 ) +-x ・(MO03) Sample N01 of the above example corresponding to x-0,90 at x
FIG. 6 shows the infrared absorption spectrum of sample No. 012 of the example, which corresponds to X = 0.65.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は、本発明方法において使用される融解原料の急
冷装置の一例の正面図、第2図は、第1図の急冷装置の
一部拡大詳細図面、第3図は、本発明材料の組成範囲を
示す図面、第4図は、本発明材料の若年のX線回折図面
、第5図は、本発明による一材料の示差熱分析図、第6
図は、本発明による材料の赤外線吸収スベク1−ルを夫
々示す。 く1)・・・・・・架台、(3)・・・・・・急冷装置
本体、(5)、(5)・・・・・・誘電加熱用コイル、
(7)・・・・・・原料加熱用チューブ、(9)・・・
・・・原料加熱用チューブの支持体、(11)・・・・
・・融解原料噴出用ノズル、(13)・・・・・・急冷
用ロール、(15)・・・・・・ノズル(11)の冷却
用ノズル、(17)・・・・・・渦流防止丁アノズル、
(19)・・・・・・ノズル(11)の微調整機檜、(
21)・・・・・・エアシリンダー、(23)・・・・
・・冷711された材料の受は箱、(25)・・・・・
・冷却材料取り出口、(27)・・・・・・バルブ、(
2つ)・・・・・・冷却水導入路、(31)・・・・・
・冷却水排出路、(33)・・・・・・二一ドルバルゾ
、(35)・・・・・・ブト1−エア導入路、  (3
7)・・・・・・1〕−ル(13)とノズル(11)と
の間隔微調整機構、(39)・・・・・・整流用目皿。 (以 上) 199 第1図 第3図
FIG. 7 is a front view of an example of a quenching device for molten raw materials used in the method of the present invention, FIG. 2 is a partially enlarged detailed drawing of the quenching device in FIG. 1, and FIG. Drawings showing the composition range, FIG. 4 is a young X-ray diffraction diagram of the material of the present invention, FIG. 5 is a differential thermal analysis diagram of one material according to the present invention, and FIG.
The figures respectively show the infrared absorption spectrum of the materials according to the invention. 1)... Frame, (3)... Rapid cooling device body, (5), (5)... Dielectric heating coil,
(7)... Raw material heating tube, (9)...
...Support for raw material heating tube, (11)...
... Nozzle for spouting molten raw material, (13) ... Roll for rapid cooling, (15) ... Cooling nozzle for nozzle (11), (17) ... Preventing vortex flow Ding nozzle,
(19)...Fine adjustment machine for nozzle (11), (
21)...Air cylinder, (23)...
...The container for the cold 711 material is a box, (25)...
・Cooling material outlet, (27)... Valve, (
2)...Cooling water introduction channel, (31)...
・Cooling water discharge channel, (33)...21 dollar valve, (35)...but1-air inlet channel, (3
7)...1]-Mechanism for finely adjusting the interval between the tube (13) and the nozzle (11), (39)...Perforated plate for rectification. (That's all) 199 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 ■ (E3!2u3)+−x ・(MOO3)x  (
但し0.95≧×〉O)なる組成を有するビスマス−モ
リブデン系非晶質化合物材料。 ■ 0,95≧X≧0.55である特許請求の範囲第1
項のごスマスーモリブデン系非晶+p化合物材料。 ■ 0.55>x≧0.35%であるQ’r M’F 
FA求の範囲第1項のビスマス−モリブデン系非晶質化
合物材料。 ■ 酸化ビスマスと酸化モリブデンとの混合物を加熱溶
解した後、融解物を超急冷することを特徴とする(B!
 203 ) +−X ・(MOO* ) xなる組成
を右するビスマス−モリブデン系非晶質化合物材料の製
造法。 ■ 104〜b る特許請求の範囲第4項のビスマス−モリブデン系非晶
質化合物材料の製造法。 ■ 原料融解物を固体に接触させることにより超急冷フ
る特許請求の範囲第4項又は第5項のビスマス−モリブ
デン系非晶質化合物材料の製造法。 ■ スリット状、円形又は楕円形の吹出し[コを設けた
ノズルを佑えた加熱用チューブに原料混合物を投入し、
該混合物の融点よりも50〜200℃高い温度で加熱溶
融させた後、5m/秒〜35m/秒の周速度で回転する
ロール表面上に上記ノズルを経て該融解物を吹き出して
超急冷させる特許請求の範囲第4項乃至第6項のいずれ
かに記載のビスマス−モリブデン系非晶質化合物材わ1
の製造法。
[Claims] ■ (E3!2u3)+-x ・(MOO3)x (
However, a bismuth-molybdenum-based amorphous compound material having a composition of 0.95≧×〉O). ■ Claim 1 where 0.95≧X≧0.55
Smooth molybdenum-based amorphous + p compound material. ■ Q'r M'F where 0.55>x≧0.35%
A bismuth-molybdenum-based amorphous compound material according to item 1 of the FA requirement. ■ It is characterized by heating and melting a mixture of bismuth oxide and molybdenum oxide and then ultra-quenching the melt (B!
203) +-X ・(MOO*) A method for producing a bismuth-molybdenum-based amorphous compound material having a composition x. (104-b) A method for producing a bismuth-molybdenum-based amorphous compound material according to claim 4. (2) A method for producing a bismuth-molybdenum amorphous compound material according to claim 4 or 5, which comprises ultra-quenching the raw material melt by bringing it into contact with a solid. ■ The raw material mixture is put into a heating tube equipped with a slit-shaped, circular or oval-shaped nozzle.
A patent for heating and melting the mixture at a temperature 50 to 200 degrees Celsius higher than the melting point of the mixture, and then blowing the melt through the nozzle onto the surface of a roll rotating at a circumferential speed of 5 m/sec to 35 m/sec for ultra-quenching. Bismuth-molybdenum-based amorphous compound material 1 according to any one of claims 4 to 6
manufacturing method.
JP17380082A 1982-10-01 1982-10-01 Bismuth-molybdenum amorphous compound material and its preparation Granted JPS5964528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17380082A JPS5964528A (en) 1982-10-01 1982-10-01 Bismuth-molybdenum amorphous compound material and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17380082A JPS5964528A (en) 1982-10-01 1982-10-01 Bismuth-molybdenum amorphous compound material and its preparation

Publications (2)

Publication Number Publication Date
JPS5964528A true JPS5964528A (en) 1984-04-12
JPH0328377B2 JPH0328377B2 (en) 1991-04-18

Family

ID=15967385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17380082A Granted JPS5964528A (en) 1982-10-01 1982-10-01 Bismuth-molybdenum amorphous compound material and its preparation

Country Status (1)

Country Link
JP (1) JPS5964528A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622636A (en) * 1979-07-26 1981-03-03 Natl Inst For Res In Inorg Mater Synthesizing method for koechlinite type bi2moo6

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622636A (en) * 1979-07-26 1981-03-03 Natl Inst For Res In Inorg Mater Synthesizing method for koechlinite type bi2moo6

Also Published As

Publication number Publication date
JPH0328377B2 (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JPS5964528A (en) Bismuth-molybdenum amorphous compound material and its preparation
JPH0250055B2 (en)
JPS60112643A (en) Material of amorphous compound of vanadium and magnesium and its manufacture
JPH0422854B2 (en)
JPH0346408B2 (en)
JPH0457609B2 (en)
JPS5973438A (en) Bismuth-iron amorphous compound material and preparation thereof
JPH0250051B2 (en)
JPH0250049B2 (en)
JPH0436097B2 (en)
JPH0331652B2 (en)
JPS5957916A (en) Amorphous bismuth-tungsten compound material and its manufacture
JPH0435403B2 (en)
JPH0476930B2 (en)
JPS5969430A (en) Amorphous bismuth-lithium compound material and its manufacture
JPH0372003B2 (en)
JPH0457608B2 (en)
JPH0451483B2 (en)
JPH0314776B2 (en)
JPH0331649B2 (en)
JPH0331653B2 (en)
JPH0331651B2 (en)
JPH0436094B2 (en)
JPH0357053B2 (en)
JPH0331650B2 (en)