JPS5963819A - Circuit for generating high voltage pulse - Google Patents

Circuit for generating high voltage pulse

Info

Publication number
JPS5963819A
JPS5963819A JP17345882A JP17345882A JPS5963819A JP S5963819 A JPS5963819 A JP S5963819A JP 17345882 A JP17345882 A JP 17345882A JP 17345882 A JP17345882 A JP 17345882A JP S5963819 A JPS5963819 A JP S5963819A
Authority
JP
Japan
Prior art keywords
circuit
contact
semiconductor
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17345882A
Other languages
Japanese (ja)
Inventor
Shinichi Nishimura
伸一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17345882A priority Critical patent/JPS5963819A/en
Publication of JPS5963819A publication Critical patent/JPS5963819A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To shorten the time required for the generation of a high voltage pulse by connecting a contact switch and a semiconductor switching element in parallel with a negative load and actuating the contact switch by the discharge of heat. CONSTITUTION:When AC power is applied between R and N, voltage is applied to a semiconductor Q through an inductor L and the contact switch S and the semiconductor Q is turned on and turned to low impedance. Subsequently, discharge is generated among a discharging electrode, a fixed electrode and a bimatal movable electrode through a capacitor C and heat is dispersed.

Description

【発明の詳細な説明】 本発明は高圧パルス発生回路にかかわるもので、さらに
詳しくは負性9荷(以下、単に負荷と称す)と並列に有
接点スイッチ(以下、車に有接点と称す)および半導体
スイッチ素子(以下、単に半導体と称す)を備えると伴
に熱放散によって有接点を作動させ負荷に高圧パルスを
発生させるものに関する。
[Detailed Description of the Invention] The present invention relates to a high-voltage pulse generation circuit, and more specifically, a contact switch (hereinafter referred to as a vehicle contact) in parallel with a negative 9 load (hereinafter simply referred to as a load). The present invention also relates to a device that is equipped with a semiconductor switch element (hereinafter simply referred to as a semiconductor) and that operates a contact point by heat dissipation to generate a high voltage pulse to a load.

従来、この種の高圧パルス発生はすてに特公昭44−2
0047、特公昭56−27067、特公昭56−46
292、で公知である。これらはとんとは半導体とパル
ス発振に主力がおかれており、負荷および周囲導度との
感応動性や高速スイッチング阻止方法が全く考慮されて
いなかった。一方、グロ一方式による高圧パルス発生に
おいては温度との感応動性が考慮されているものの高圧
パルス発生に時間を要する欠点があった。
Conventionally, this type of high-voltage pulse generation was completely
0047, Special Publication No. 56-27067, Special Publication No. 56-46
292, is known. The main focus of these efforts was on semiconductors and pulse oscillations, and no consideration was given to sensitivity to the load and surrounding conductivity or methods for preventing high-speed switching. On the other hand, in the generation of high-pressure pulses using the GLO method, sensitivity to temperature is taken into consideration, but there is a drawback that it takes time to generate high-pressure pulses.

本発明はかかる欠点を除くためIに案されたもので有接
点の持つ超高速接点開放速度と半導体により1〜数個の
高圧パルスを発生することを特徴とする。
The present invention was devised in order to eliminate such drawbacks, and is characterized by the extremely high contact opening speed of the contacts and the generation of one to several high voltage pulses by the use of semiconductors.

以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)N (+13 は本発明の一実施例を示す
等価回路図であって負荷接続していない。図においてR
,Nは交流電源、14はインダクタ、Sは有接点、Qは
半導体、Dはダイオード、AはインダクタLとを接点S
の中点、Bは半導体QとN側電源の中点、Cはコンデン
サを示し、有接点Sはグロー球内に固定極とバイメタル
の可動棚が初期状態で接点がON設定されると伴にさら
に放電用電極を有している。第1図(a)において交流
電源R,N間はR側−インダクタし一中点A−有築点S
内のON接点−半4体Q−中点B−N側を通る第1の回
路とR側−インダクタl、−中点へ一介接点S内の放電
用電極−コンデンサC−中点B  N (111を通る
第2の回路から構成されている。
Figure 1 (a) N (+13 is an equivalent circuit diagram showing one embodiment of the present invention, and no load is connected.
, N is an AC power supply, 14 is an inductor, S is a contact, Q is a semiconductor, D is a diode, A is an inductor L and a contact S
B is the midpoint between the semiconductor Q and the N-side power supply, C is the capacitor, and the contact S is when the fixed pole and bimetal movable shelf are in the initial state and the contact is set to ON in the glow bulb. Furthermore, it has a discharge electrode. In Fig. 1(a), between AC power supplies R and N, connect the R side to the inductor, and connect the middle point A to the built-in point S.
ON contact in - half 4 body Q - middle point BN - first circuit passing through N side and R side - inductor l, - to middle point - discharge electrode in contact S - capacitor C - middle point BN ( 111.

次に回路について説明すれば、インダクタLはインピー
ダンス降下を有する例えばチョークコイル、リーケージ
コイルなとの線型インダクタからなろう半導体Qはブレ
ークオーバ電圧VBoを有する例えば4層構造また1よ
5Q構会の双方向性2端子サイリスタ、双方向性トリガ
ダイオードなとのダーイアック、PNPNスイッチ(シ
ョックレイダイオード)の片方向性2端子サイリスタな
との手心’$ Qからなり、半導体QのV9oは少なく
ともインダクタLのインピーダンス降下電圧値V+oよ
り高く交流電源のピーク電圧値Vpρと同等またはそれ
より低い値である。つまり■D (V叩≧VPPの関係
にある。
Next, to explain the circuit, the inductor L is composed of a linear inductor having an impedance drop, such as a choke coil or a leakage coil.The semiconductor Q is composed of a linear inductor having an impedance drop, such as a choke coil or a leakage coil. A diac with a directional two-terminal thyristor, a bidirectional trigger diode, and a unidirectional two-terminal thyristor with a PNPN switch (Shockley diode) consists of Q, and V9o of the semiconductor Q is at least the impedance of the inductor L. This value is higher than the voltage drop value V+o and is equal to or lower than the peak voltage value Vpρ of the AC power source. In other words, ■D (V hit≧VPP).

次に電気的11711作について説明すればR,N間に
交流電源を印加すると第1の回路はインダクタしおよび
有接点Sを通して半導体Qに電圧印加され半2Ω体Qが
点弧して低インピーダンスになると伴に第2の回路はコ
ンデンサCを通して放電用電極と固定棚、バイメタル可
動極間て放電されて熱漱敬する。この熱放散によりバイ
メタル可動棚は接点を高速IJfIj&してOFFする
。このOFFする瞬間時においてインダクタ■、はイン
ダクションキック電圧を発生してA、8間に1個の高圧
パルスを発生させて動作を完了する。動作完了すると第
1の回路は有接点Sの接点がオープン状態となって非導
通となり、半導体Qも同様に低インピーダンスに至る。
Next, to explain the electrical 11711 operation, when AC power is applied between R and N, the first circuit becomes an inductor, and a voltage is applied to the semiconductor Q through the contact S, and the half 2Ω body Q is ignited, resulting in a low impedance. At the same time, the second circuit is discharged through the capacitor C between the discharge electrode, the fixed shelf, and the bimetal movable pole, and the heat is absorbed. Due to this heat dissipation, the bimetal movable shelf turns off the contacts at high speed IJfIj&. At the instant of this OFF, inductors 1 and 2 generate an induction kick voltage to generate one high voltage pulse between A and 8, completing the operation. When the operation is completed, the contact point S of the first circuit becomes open and non-conductive, and the semiconductor Q similarly becomes low impedance.

しかし第2の回路はなおも77電を続けているので、有
接点3は電FFカットするまで引き続きオープン動作し
ているものである。
However, since the second circuit continues to receive 77 current, the contact point 3 continues to operate in an open state until the FF is cut off.

@1図(b)は第1図(a)の有接点Sと並列にダイオ
ードDを接続したものて、正の半サイクルのみ有接点S
の放電用電極のみが放atするようにしたものであって
、第1図(a)と同様に電気的動作を行うが第1の回路
は負の半サイクルのみ導通されており、また第2の回路
は有接点SのOFF時に放電用電極の放電が1Fまり、
熱M敬を中止して再び有接点SをONさせる。有接点S
がONすると再び同じ動作を繰返し電圧カットするまで
無限に繰返されて高圧パルスを1動作に1@発生するよ
うにしたものである。
@1 Figure (b) shows a diode D connected in parallel with the contact S in Figure 1 (a), and the contact S is connected only in the positive half cycle.
This circuit is designed so that only the discharge electrodes in the circuit are turned off, and the electrical operation is performed in the same way as in FIG. 1(a), but the first circuit is conductive only in the negative half cycle, and the In the circuit, when the contact S is turned off, the discharge of the discharge electrode is stopped by 1F,
Canceling the thermal control and turning on the contact point S again. Contact point S
When turned on, the same operation is repeated again until the voltage is cut off, and one high voltage pulse is generated per operation.

第2図(11)、(b)、(c)は第1図(a)、(h
)のグロー放’FJノかわりに発熱体を用いた第2の一
実施例を示す等価回路図であって、第1図と同様の記号
は首略する。
Figures 2 (11), (b), and (c) are similar to Figures 1 (a) and (h).
) is an equivalent circuit diagram showing a second embodiment in which a heating element is used in place of the glow discharger FJ, and the same symbols as in FIG. 1 are omitted.

図において、炉は有接点、LAは発熱体、lはバイメタ
ル、2は熱結合を示す。有接点Slは/l′X型′m型
内m球内はニクロム線、タングステンなとの発熱体とバ
イメタルの可動囁を有し、初期状態は接点がON設定さ
れている。
In the figure, the furnace is a contact point, LA is a heating element, l is a bimetal, and 2 is a thermal coupling. The contact point Sl has a /l'X type'm type inner m sphere and has a heating element such as nichrome wire or tungsten, and a movable bimetallic coil, and the contact point is set to be ON in the initial state.

次に第2図(11)の電気的動作について説明すればR
1N間に交流電源を印加すると電源R側−有接点S゛内
タングステン−バイメタル接点を通し半導体Qに電圧印
加して点弧せしめ低インピーダンスに至らしめる。半導
体Qが低インピーダンスになると回路は導通され有接点
S内のタングステンは急激に自己発熱して熱放散を行い
バイメタルを可動させ接点を高速開放してOFFする。
Next, to explain the electrical operation shown in FIG. 2 (11), R
When an AC power supply is applied between 1N, a voltage is applied to the semiconductor Q through the tungsten-bimetal contact in the power supply R side and the contact point S', causing it to ignite and become low impedance. When the impedance of the semiconductor Q becomes low, the circuit becomes conductive, and the tungsten in the contact point S rapidly generates heat by itself, dissipating heat, moving the bimetal, and opening the contact point at high speed to turn it off.

このOFFする瞬間時においてインダクタLはインダク
シロンキック電圧を発生してA、8間に1個の高圧パル
スを発生させて】動作を完了する。1動作完了すると有
接点S゛の接点がオープン状態となって非導通となり、
もはや回路には通電されなくなって半導体Qも同様に低
インピーダンスになる。回路がOFFされるともはや有
接点S′内の発熱体の自己発熱が止まり、熱Wfl’t
を中II・して温度が低下され、それにともなってバイ
メタルの接点がONされる方向に向い有接点S′がON
される。有接点S′がONされると再び同じ動作を繰返
し電圧カットするまで無限に繰返されて高圧パルスを1
wJ作に1個発生するものである。
At this moment of turning off, the inductor L generates an inductor kick voltage to generate one high voltage pulse between A and 8, completing the operation. When one operation is completed, the contact point S' becomes open and non-conducting.
The circuit is no longer energized and the semiconductor Q likewise has a low impedance. When the circuit is turned off, the self-heating of the heating element inside the contact point S' stops, and the heat Wfl't
During the process, the temperature decreases, and as a result, the bimetal contact points in the direction of turning on, and the contact point S' turns on.
be done. When the contact point S' is turned on, the same operation is repeated again until the voltage is cut off, producing one high voltage pulse.
This occurs once in wJ's work.

第2 (&+(11)は第1図(a)の有接点S′と並
列にダイオードDを接続したものであって常に貴の半サ
イクルの間に回路が通電されている。電気的動作はほぼ
第1図(a)と同様であるが、少し異なる点は有接点ジ
に印加される電圧が正の半サイクルのみであって、有接
点S′のOFF時および正の半サイクル時において非導
通となるものである。この回路は第1図(a)と同様に
1動作に3個の高圧パルスを発生し電圧カットするまで
無限に動作を繰返すものである。
The second (&+(11) is a diode D connected in parallel with the contact point S' in FIG. 1(a), and the circuit is always energized during the first half cycle.The electrical operation is It is almost the same as Fig. 1(a), but the difference is that the voltage applied to the contact point J is only during the positive half cycle, and is not applied when the contact point S' is OFF and during the positive half cycle. This circuit generates three high-voltage pulses in one operation and repeats the operation indefinitely until the voltage is cut off, as in FIG. 1(a).

第2図(C)は第1 IU(a)の有接点Sのかわりに
発熱f1ζL八とバイメタル(1)を熱結合(2)され
たものであって、発熱体LAは例えば電球、ニクロム線
、タングステン、サーミスタなとの発熱するものであっ
て、発熱体LAの熱放散によりバイメタル(1)を熱結
合(2)によって接点をオープンされるものである。電
気的動作は第2図(a)と全く同様の動作をする。
In Fig. 2(C), instead of the contact point S of the first IU(a), the heat generating f1ζL8 and the bimetal (1) are thermally coupled (2), and the heating element LA is, for example, a light bulb or a nichrome wire. , tungsten, thermistor, etc., and the contact is opened by thermally coupling (2) the bimetal (1) by heat dissipation of the heating element LA. The electrical operation is exactly the same as that shown in FIG. 2(a).

上述した第1図はグローTi電による熱放散、第2図は
発pH4$による熱放散によって有接点SおよびS′を
動作させており、この熱力文散とバイメタルの接市開放
の関係、つまり有接点SおよびS′のOFF時間を負荷
、例えば蛍光灯のフィラメント(陰極)の熱電子放出お
よび放電に至る時間を舎せることにより負荷と感応動で
きる。また周囲温度に対応させるには少なくとも周囲温
度より10〜数100°C高め、好ましくは80°C以
上に設定すると周F#Ia度の影響を受けずに安定した
動作を行うことが出来る。
The above-mentioned Fig. 1 shows that the contacts S and S' are operated by heat dissipation by glow Ti electricity, and Fig. 2 shows that the contacts S and S' are operated by heat dissipation by emitted pH 4$. By setting the OFF time of the contacts S and S' to the load, for example, the time required for thermionic emission and discharge of the filament (cathode) of a fluorescent lamp, it is possible to respond to the load. Further, in order to correspond to the ambient temperature, if the temperature is set at least 10 to several 100 degrees Celsius higher than the ambient temperature, preferably 80 degrees Celsius or higher, stable operation can be performed without being affected by the ambient temperature F#Ia degrees.

また第1図の放電用コンデンサCを抵抗に置換すると、
コンデンサCと同様に動作する一方、A−8間の接続を
組変えても同様に動作する。また第2図のA−8間の接
続組換も同様であって、何等、本発明を制約するもので
ない。
Also, if the discharge capacitor C in Figure 1 is replaced with a resistor,
While it operates in the same way as capacitor C, it operates in the same way even if the connection between A-8 is rearranged. Further, the connection recombination between A-8 in FIG. 2 is the same, and does not limit the present invention in any way.

なお本発明の第1図および第2図の高圧パルス発生回路
はインダクタLおよび負荷を除くと交流点滅回路および
スイッチング回路の制御に用いうろことは文論である。
It should be noted that, except for the inductor L and the load, the high-voltage pulse generating circuit shown in FIGS. 1 and 2 of the present invention is used to control an AC blinking circuit and a switching circuit, which is a matter of literature.

第3図(a)、(++)は本発明の一実施例を示す有接
?Jsの機構図である。図において、3はガラス球、5
は固定極、6はバイメタル、7は放電極、8は売方lモ
体であって図(a)はガラス球(3)にガスを封入させ
、固定極(5)とバイメタル(6)を相対向して接触位
置させると伴に放電極(7)を固定極(5)およびバイ
メタル(6)よりわずかに離れて位置させ、各々からガ
ラス球(3)の外部に導通線を引出したものである。次
に図(1))はガラス球(3)にガスを封入させ、例え
ばタングステン、ニクロム線なとの発熱体(8)の近く
にバイメタル(6)および固定極(5)をわずかに離れ
て位置させたものであって、図(a)と同様に外部に導
通線を引出し有しているものである。動作は81図およ
び第2図で説明した通りである。
FIG. 3(a), (++) shows an embodiment of the present invention. It is a mechanism diagram of Js. In the figure, 3 is a glass bulb, 5
is a fixed pole, 6 is a bimetal, 7 is a discharge electrode, and 8 is a commercial body. In figure (a), a glass bulb (3) is filled with gas, and a fixed pole (5) and a bimetal (6) are connected. The discharge electrode (7) is positioned slightly away from the fixed electrode (5) and the bimetal (6), and conductive wires are drawn from each to the outside of the glass bulb (3). It is. Next, in Figure (1)), a glass bulb (3) is filled with gas, and a bimetal (6) and a fixed electrode (5) are placed near a heating element (8) such as tungsten or nichrome wire, slightly apart. It has a conductive wire drawn out to the outside as shown in Figure (a). The operation is as explained in FIG. 81 and FIG.

第4図は本発明の第1の応用実施例を示す回路図てあっ
て、−1−述した第1図に示しノた同じ記号の説明はを
略する。図において、FLは負荷て例えば7ff電灯、
fツおよびf2は負荷FLの陰極(フイラメン1−)、
c’はパルス幅延長用のコンデンサ、ROは放電用の抵
抗を示し、R,N間はインダクタLと負荷FLが直列回
路を形成し、該偵荷几の陰極f1、f2の2次側両側間
に、1F列に有痰点Sおよび整流素子りが並列接続され
目、つ半導体Qと直列接続されると伴に有接点Sの放電
極が抵抗を介して陰極f2側に接続されている。またイ
ンダクタLと陰極むの中点および陰極f2と半導体Qの
中点にはコンデンサC′が負荷FLと並列接続している
FIG. 4 is a circuit diagram showing a first applied embodiment of the present invention, and explanations of the same symbols as shown in FIG. 1 described above will be omitted. In the figure, FL is a load, such as a 7ff lamp,
f and f2 are the cathodes of the load FL (filament 1-);
c' is a capacitor for extending the pulse width, RO is a resistor for discharging, and between R and N, an inductor L and a load FL form a series circuit, and both sides of the secondary side of the cathodes f1 and f2 of the carrier In between, the phlegm point S and the rectifier element are connected in parallel in the 1F row, and are connected in series with the semiconductor Q, and the discharge electrode of the contact point S is connected to the cathode f2 side via a resistor. . Further, a capacitor C' is connected in parallel with the load FL at the midpoint between the inductor L and the cathode and between the cathode f2 and the semiconductor Q.

次に第4図の回路について説明すれば、交流vLII源
R,NはAC10θV 、 50Hzまたは60H2,
インダクタLは例えばFCL−30W用単チミークコイ
ルであってイシピータンス降下電圧VID約55Vの線
型インダクタ、負荷FLは例えばFCL−30W蛍光灯
、有接点Sは例えば第1図で説明した有接点スイッチ、
半導体Qは例えばシリコン双方向性スイッチ素子であっ
てV[lO90〜130V 。
Next, to explain the circuit of Fig. 4, the AC vLII sources R and N are AC10θV, 50Hz or 60H2,
The inductor L is, for example, a single-chip coil for FCL-30W, and is a linear inductor with an ishipetance drop voltage VID of about 55V, the load FL is, for example, an FCL-30W fluorescent lamp, and the contact S is, for example, the contact switch explained in FIG. 1.
The semiconductor Q is, for example, a silicon bidirectional switching element and has a voltage of V[lO90 to 130V.

rH約50 mA %ダイオードDは例えば整流用シリ
コン整流素子、コンデンサC′は0・006μF1抵抗
R,ハ’l)なくとも10Ω以十の値で描成されている
。有接点Sは負荷FLの熱?lil数子、電離、放電に
至る点灯時間と同期するように放電用折損と有接点S内
のバイメタルを遊械的、物理的に臼荷几の点灯時間どタ
イミングを合せてあり、例えば周囲γ温度25°Cの時
、負荷Fl−の点灯時間は約0・1〜0・8秒であり、
また低温時の1・11度−10’Cの時、約0・3〜】
・5秒であって負荷PLのフィラメントf+およびf2
の赤熱時間と有接点Sの接点開放時間が周囲温度に対応
して熱応動同期している。
rH about 50 mA% The diode D is, for example, a silicon rectifying element for rectification, and the capacitor C' is drawn with a value of at least 10Ω or more. Is the contact S the heat of the load FL? In order to synchronize with the lighting time leading to lil factor, ionization, and discharge, the breakage for discharge and the bimetal in the contact point S are mechanically and physically synchronized with the lighting time of the load container, and for example, the timing is adjusted depending on the ambient γ temperature. At 25°C, the lighting time of load Fl- is approximately 0.1 to 0.8 seconds,
Also, at a low temperature of 1.11 degrees -10'C, about 0.3 ~]
・Filaments f+ and f2 of load PL for 5 seconds
The red-hot time of the contact point S and the contact open time of the contact point S are thermally synchronized in accordance with the ambient temperature.

次に第4図の電気的動作について説明するとR1N間に
交流電源を印加すると電st R側、インダクタI5、
陰極fL、有接点Sおよび整流素子りの並列回路を通る
電路と、電源N側、陰極f2を通る電路により半導体Q
にV師値内の電圧が印加されて半導(ICQが点弧され
低インピーダンスになる第1の回路、電圧印加と同時に
有接点Sを通り正の半サイクルの間、抵抗を介して放電
する第2の回路、コンデンサC′に充電される第3の回
路がある。該第1の回路の半導体Qが低インピーダンス
になると第1の回路が導通して通電される。この通電に
よって陰極f+、f2は整流素子りの負の半サイクルと
有接点Sの正の半サイクル、つまり並列接続による全波
(実際は有接点Sの導通のため)によって急激に7品度
上昇を始め短時間内に負荷FLは熱電子放出に至る一方
、有接点Sの放電用電極も整流素子りの非4通時の正の
半サイクルごとに急激に自己発熱を始め有接点Sも同様
にして有接点SをONからOFF状態に移行させる。有
接点SがOFFする瞬間、インダクタLはインダクシミ
ンキック電圧を発生すると伴に第3の回路のコンデンサ
C′の働きによってパルス幅が時間延長されて負荷FL
の陰if+、12間に1個の高圧パルスを供給する。こ
の時、陰1Jif+、f2が十分に熱電子が放出されて
いれば、1個の高圧パルスによって負荷FLは陰極f+
、12間で放電に至る。陰極f+ 、 ’f2の熱電子
が不十分な時、@流紫子りは臼の半サイクルによってな
おも予熱続行すると伴に有接点Sは再びONにもとり加
速的に同じ動作を繰返し高圧パルスを発生して負荷比を
放電に至らしめる。負荷FLが′M電に至るとインダク
タしは自己インピーダンス降下して負荷比に一定m力を
供給する。このインピーダンス降下時において3つの動
作が有り、その1つはインピーダンス降下電圧VIDが
Vsoより低い。その2は有接点Sがわずかな時間内で
あるがOFF状態にある。その3は負荷比が臼特性を示
し低インピーダンスになる。このことは半導体Qにおい
て[1]インダクタLと半々ン体Qの関係が■o(Ve
zにより消弧する。[2’l有接点SがOFF状態のた
め保持電流■目の消滅により消弧する。[3)高圧パル
ス発生とコンデンサC′の時間延長によりジャンクシミ
ン間の空間電荷に整流素子りを通して半導体Qに逆バイ
アスがかかり、空間電荷を吸収して消弧する。この[1
)、〔2)、[)の作用により半導体Qは高速阻止移行
して高インピーダンスに至る。また一方において、負荷
比が低インピーダンスのため、もはや第2の回路の有接
点Sは放電を中止して有接点Sを復帰させてONする。
Next, to explain the electrical operation in FIG.
The semiconductor Q is formed by an electric path passing through the parallel circuit of the cathode fL, the contact point S and the rectifying element, and an electric path passing through the power supply N side and the cathode f2.
A voltage within the value of V is applied to the semiconductor (ICQ), which turns on and becomes low impedance.At the same time as the voltage is applied, it passes through the contact S and discharges through the resistor during a positive half cycle. There is a third circuit that charges the second circuit, the capacitor C'.When the semiconductor Q of the first circuit becomes low impedance, the first circuit becomes conductive and is energized.This energization causes the cathode f+, f2 is a negative half cycle of the rectifying element and a positive half cycle of the contact S, that is, the full wave due to parallel connection (actually due to conduction of the contact S), and the quality begins to rise rapidly by 7 and the load is reduced within a short time. FL reaches thermionic emission, while the discharge electrode of the contact point S also starts to rapidly self-heat every positive half cycle when the rectifying element is not connected. Similarly, the contact point S is turned ON. At the moment when the contact S turns OFF, the inductor L generates an inductive kick voltage, and the pulse width is extended by the action of the capacitor C' in the third circuit, and the load FL is
One high voltage pulse is applied between negative if+ and 12 of . At this time, if enough thermionic electrons are emitted from the negative electrodes 1Jif+ and f2, the load FL is changed to the negative electrode f+ by one high-voltage pulse.
, 12, the discharge occurs. When thermionic electrons of the cathodes f+ and 'f2 are insufficient, the @ryu Shikori continues to preheat by half a cycle of the mortar, and the contact point S is turned ON again and the same operation is repeated at an accelerated rate to generate a high-voltage pulse. occurs and causes the load ratio to discharge. When the load FL reaches 'M', the inductor drops its own impedance and supplies a constant m force to the load ratio. There are three operations during this impedance drop, one of which is that the impedance drop voltage VID is lower than Vso. In the second case, the contact point S is in the OFF state for a short period of time. In case 3, the load ratio exhibits mortar characteristics and the impedance becomes low. This means that in the semiconductor Q, the relationship between the [1] inductor L and the half-half body Q is ■o(Ve
The arc is extinguished by z. [2'l Since the contact S is in the OFF state, the arc is extinguished by the disappearance of the holding current (■). [3] By generating a high-voltage pulse and extending the time of the capacitor C', a reverse bias is applied to the semiconductor Q through the rectifier to the space charge between the junctions, which absorbs the space charge and extinguishes the arc. This [1
), [2), and [), the semiconductor Q undergoes a high-speed blocking transition and reaches a high impedance. On the other hand, since the load ratio is low impedance, the contact S of the second circuit stops discharging, returns the contact S, and turns ON.

この時、有接点SがONされても第1の回路の半導f1
、Qが高インピーダンスのため、もはや有接点S1ダイ
オ一ドD1半23T′体Qの直並列回路に通電されずf
〃荷「1、は安定して点灯を続ける。また上記した@3
の回路のコンデンサC′の役目は充力文電の働きをする
以外に、夕1荷比に十分な予熱電流を通電させる一方、
高圧パルス発生時においてパルス幅の持続時間のが長、
それに有接点SのOFF時に発生するアークのヅ〈花消
去による接点保護とラジオノイズ防止を行う。また負荷
FLの点灯後における負荷Fl、自体から発生する高周
波雑音防1Fを行なっている。また整流素子りもコンデ
ンサ(−、冑同様、有接rj:j Sのアーク火花消去
をしている。、I−述した本発明の回路によって負荷F
Lを点灯させる場合、はとんとI C)、1の高圧パル
スの発生によって点灯する。
At this time, even if the contact point S is turned on, the semiconductor f1 of the first circuit
, Q is high impedance, so current is no longer applied to the series-parallel circuit of contact point S1 diode D1 half 23T' body Q.
〃The load "1" continues to light up stably.Also, the above @3
The role of the capacitor C' in the circuit is not only to act as a charging station, but also to pass a sufficient preheating current to the charge ratio.
The duration of the pulse width is long when high voltage pulses are generated.
In addition, the arc generated when the contact S is turned off is erased to protect the contact and prevent radio noise. Further, after the load FL is turned on, high frequency noise generated from the load Fl itself is prevented 1F. In addition, the rectifying element also eliminates the arc spark of the connected rj:j S, like the capacitor (-).
When L is to be lit, it is lit by the generation of a high voltage pulse of IC) and 1.

まt:h文′阻灯の末期においても少なくとも1〜数個
の高圧パルスで点灯できた。しかも低1局時においても
の前孔と有接点Sが周囲温度と感応mルているため安定
した高圧パルスを発生する。
Even at the final stage of blockage, it was possible to turn on the lamp with at least one to several high-voltage pulses. Moreover, even in the low state, the front hole and the contact point S are sensitive to the ambient temperature, so a stable high voltage pulse is generated.

/Jお、上述した第4図の回路に第2図に示した有接点
S′をもちいて動作させても同様に点灯するのは文論で
ある。
/J Oh, it is a literary theory that even if the circuit shown in FIG. 4 is operated using the contact point S' shown in FIG. 2, the light will turn on in the same way.

第5図は本発明の第2の応用実施例を示す回路図であっ
て、1−述した第1図および第4図に示した同じ記号の
説明は省酪する。図において、LPはり一ケージコイル
、Llはリーケージコイルの昇圧コイル、L2はリーケ
ージコイルの安定コイルを示し、R,、N間は昇圧コイ
ルL1を通る回路と安定コイルし2と負荷FLが通る直
列回路からなり、該負荷Fl、の陰極f+、f2の2次
側両端間に並列に有接点Sおよび整流素子りが並列接続
され目つ半導体Qが2個直列接続されると伴に有接点S
の放電極が抵抗を介して陰極f2側に接続されている。
FIG. 5 is a circuit diagram showing a second applied embodiment of the present invention, and the explanation of the same symbols shown in FIGS. 1 and 4 mentioned above will be omitted. In the figure, LP beam is a cage coil, Ll is a boosting coil of the leakage coil, L2 is a stabilizing coil of the leakage coil, and the circuit between R, and N is a series circuit passing through the boosting coil L1, the stabilizing coil 2, and the load FL. The circuit consists of a contact S and a rectifier element connected in parallel between both terminals of the secondary sides of cathodes f+ and f2 of the load Fl, two semiconductors Q connected in series, and a contact S.
A discharge electrode is connected to the cathode f2 side via a resistor.

また安定コイルL2と陰極f1の中点および陰ifaと
半p一体Qの中点にはコンデンサC′が負荷比と並列j
g、続されている。
In addition, a capacitor C' is connected in parallel with the load ratio at the midpoint between the stabilizing coil L2 and the cathode f1 and the midpoint between the negative ifa and the semi-p integral Q.
g, continued.

次に第5図の回路について説明すれば、交流電@R,N
はAC100V 、 5011zまたは60Hz、リー
ケージコイルLRは例えばFL−40W用リーケージコ
イルて゛あって昇圧2次’Fl! 圧200V −、イ
ンヒーダンス降下電圧V+o約102Vの線型インダク
タ、負荷F[、は例えばPL−40W蛍光灯てあり、有
接点S1整流素子D1半導体Q1抵抗Ro、コンデンサ
C′は第4図に示した第1の応用実施例と同しもので構
成されている。また第51閾の回路において、第4図の
回路と異なる点むよ、インダクタに昇圧コイルL1を有
する点、半7算(1ζQの2個使いによる直列接続によ
ってVBOの拡大をして17)る点、それに2次側電圧
が昇圧されて倍電FEBこなっている〜てあって、例え
ば交流電源200V、 50Hzまたは60Hz 、半
導体Qの獅が160〜300Vを使用すれ心ず第4図の
回路と全<1h]じ構成になり、何等、本発明を制約す
るものでない。
Next, to explain the circuit shown in Figure 5, the AC current @R,N
is AC100V, 5011z or 60Hz, the leakage coil LR is, for example, a leakage coil for FL-40W, and the boost secondary 'Fl! A linear inductor with a voltage of 200 V - and an inheedance drop voltage V+o of about 102 V, a load F[, is, for example, a PL-40W fluorescent lamp, and a contact S1, a rectifier D1, a semiconductor Q1, a resistor Ro, and a capacitor C' are shown in Fig. 4. It is composed of the same components as the first applied example. The 51st threshold circuit differs from the circuit in Figure 4 in that it has a step-up coil L1 in the inductor, and the VBO is expanded to 17 by using two 1ζQs and connecting them in series. In addition, the secondary side voltage is boosted and the doubler FEB is used.For example, when using an AC power supply of 200V, 50Hz or 60Hz, the semiconductor Q circuit uses 160 to 300V, so the circuit shown in Figure 4 The configuration is the same for all <1h], and does not limit the present invention in any way.

次に第5図の電気的動作について説明すれ心ば、R,N
間に交’fU fJ mが印加されるとり一ケージコイ
ルLpの昇圧コイルL1によって2次側電圧が倍電圧に
昇圧される。昇圧電圧によって、電原R側、安定コイル
L2、陰極f+、有接点Sおよび整流累子りの並列回路
を通る電路と電源N側、陰極f2を通る電路により半導
体Qの2個の両端に電圧印加され、VHO拡大した2個
の半導体Qが点弧されて低インピーダンスになる。半導
体Qが低インピーダンスになると回路が通電され、以後
第4口筒1の応用実施例と全く同様の動作によって陰極
f+、f2、有接点Sが急激にあっためられ有接点Sの
接点開放によって高圧パルスを発生し負荷比を点灯せし
める一方、半導体Qを高速阻止移行して高インピーダン
スに至る。またコンデンサC′の働きも、全く第1の応
用実施例と同じである。
Next, to explain the electrical operation in Fig. 5, R, N
The voltage on the secondary side is boosted to a double voltage by the boost coil L1 of the single cage coil Lp to which the cross current fU fJ m is applied. Due to the boosted voltage, a voltage is generated across the two ends of the semiconductor Q by an electric path passing through the parallel circuit of the electric field R side, the stabilizing coil L2, the cathode f+, the contact point S and the rectifier resistor, and the electric path passing through the power source N side and the cathode f2. When the voltage is applied, the two VHO-enlarged semiconductors Q are ignited and become low impedance. When the impedance of the semiconductor Q becomes low, the circuit is energized, and thereafter the cathodes f+, f2, and the contact point S are rapidly warmed up by the operation exactly the same as in the applied example of the fourth mouthpiece 1, and when the contact point S is opened, a high voltage is generated. While generating a pulse to turn on the load ratio, the semiconductor Q undergoes a high-speed blocking transition to a high impedance. The function of capacitor C' is also exactly the same as in the first applied embodiment.

なお本発明の第5図の応用回路に第251の有接点S′
をもちいて動作させると同様に高圧パルスを発生するの
は文論である。
Note that the 251st contact point S' is added to the applied circuit of FIG. 5 of the present invention.
It is a literature theory that high voltage pulses are generated in the same way when operated using a .

以上のように本発明は特に高圧パルス発生回路において
顕暑な効果を奏する一方、周囲温度および負荷との感応
動作、負荷寿命の延長、半導体の高速阻1トなとの多く
の利点を有すると伴に簡単、nつ安価な111η成回路
で種々の応用回路を岬供できるきわめて有用な発明であ
る。
As described above, the present invention has a remarkable effect on high-voltage pulse generation circuits in particular, and also has many advantages such as responsive operation to ambient temperature and load, extended load life, and high speed inhibition of semiconductors. It is also an extremely useful invention that can provide various application circuits with a simple and inexpensive 111η circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1四および第2図は本発明の一実施例を示す等価回路
図、第3図は本発明の一実施例を示す有を示す第2の1
.r用回路図である。 R,N・・・・・交流電隙       fl、f2・
・・・・陰極(フィラメント)L  ・・・・・インダ
クタ      CI   ・・・・・コンデンサQ 
 ・・・・・半fN’、!yスイッチ素子  Lρ  
・・・・・リーケージコイルs 、s’・・・・・有接
点スイッチ    い  ・・・・・昇圧コイルASB
・・・・・中点         [,2・・・・・安
定コイル化  ・・・・・負荷         RO
・・・・・抵抗、A  ・・・・・発熱体 1.6・・・・・バイメタル      2  ・・・
・・熱結合3  ・・・・・ガラス球       5
  ・・・・・固定極に)(b) 紘 11辺 CC) 結21目 (a >             < b>第314 D   C’   α f+  I”L  S
14 and 2 are equivalent circuit diagrams showing one embodiment of the present invention, and FIG. 3 is a second circuit diagram showing one embodiment of the present invention.
.. It is a circuit diagram for r. R, N... AC electric gap fl, f2.
...Cathode (filament) L ...Inductor CI ...Capacitor Q
...Half fN',! y switch element Lρ
...Leakage coil s, s'...Contact switch Yes...Boost coil ASB
...Middle point [,2... Stable coil ... Load RO
...Resistance, A ... Heating element 1.6 ... Bimetal 2 ...
...Thermal bond 3 ...Glass bulb 5
...Fixed pole) (b) Hiro 11th side CC) Connection 21st (a ><b> 314th D C' α f+ I"L S

Claims (2)

【特許請求の範囲】[Claims] (1)角性角荷と並列に有接点スイッチおよび半導体ス
イッチ素子を備えてなり、熱放散によって有接点スイッ
チを動作させることを特徴とする高圧パルス発生回路。
(1) A high-voltage pulse generation circuit comprising a contact switch and a semiconductor switching element in parallel with a square load, and operating the contact switch by heat dissipation.
(2)前記戦中の有接点スイッチにダイオードを並列接
続することを含む前記戦中の特許請求範囲。
(2) The scope of the wartime claims includes connecting a diode in parallel to the wartime contact switch.
JP17345882A 1982-10-02 1982-10-02 Circuit for generating high voltage pulse Pending JPS5963819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17345882A JPS5963819A (en) 1982-10-02 1982-10-02 Circuit for generating high voltage pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17345882A JPS5963819A (en) 1982-10-02 1982-10-02 Circuit for generating high voltage pulse

Publications (1)

Publication Number Publication Date
JPS5963819A true JPS5963819A (en) 1984-04-11

Family

ID=15960845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17345882A Pending JPS5963819A (en) 1982-10-02 1982-10-02 Circuit for generating high voltage pulse

Country Status (1)

Country Link
JP (1) JPS5963819A (en)

Similar Documents

Publication Publication Date Title
KR950013272B1 (en) Start hot restart and operating lamp circuit
US3334270A (en) Discharge lamp circuit
US4132925A (en) Direct current ballasting and starting circuitry for gaseous discharge lamps
US4145638A (en) Discharge lamp lighting system using series connected starters
US3919590A (en) Arrangement for igniting a gas and/or vapour discharge lamp provided with preheatable electrodes
JPH06500887A (en) Arc discharge ballast circuit suitable for automotive applications
US4079292A (en) Arc discharge sustaining circuit system for a discharge lamp
JPS5830062A (en) Illuminator
US4464607A (en) Lighting unit
EP0195248A2 (en) High intensity discharge lamp starting and operating apparatus
US4398130A (en) Arc lamp lighting unit with low and high light levels
KR830002716B1 (en) Lighting device
US4177403A (en) Electronic starter for igniting a discharge lamp
US4238708A (en) Discharge lamp operating system
US5208515A (en) Protection circuit for stabilizer for discharge apparatus
US4382210A (en) Ballast circuit for direct current arc lamp
JPS5963819A (en) Circuit for generating high voltage pulse
US3760224A (en) Discharge lamp igniting circuit
US4555647A (en) Ballast circuit for gas discharge tubes utilizing time-pulse additions
JPS60150586A (en) Safety circuit for gas discharge tube using additional pulseat dimmint time
US3345538A (en) Current switching arrangement to cutout the defective gas lamp upon failure
GB2066596A (en) An arc lamp lighting unit with low and high light levels
US3436595A (en) Illuminating lamp power supply
JPS5963818A (en) Circuit for generating high voltage pulse
JPS5918631Y2 (en) discharge lamp lighting device