JPS5963785A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS5963785A
JPS5963785A JP17379082A JP17379082A JPS5963785A JP S5963785 A JPS5963785 A JP S5963785A JP 17379082 A JP17379082 A JP 17379082A JP 17379082 A JP17379082 A JP 17379082A JP S5963785 A JPS5963785 A JP S5963785A
Authority
JP
Japan
Prior art keywords
laser
tube
pipe
ring
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17379082A
Other languages
Japanese (ja)
Other versions
JPH047110B2 (en
Inventor
Setsuo Terada
寺田 節夫
Shuzo Yoshizumi
吉住 修三
Tokihide Nibu
丹生 時秀
Shigeru Kokubo
滋 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17379082A priority Critical patent/JPS5963785A/en
Publication of JPS5963785A publication Critical patent/JPS5963785A/en
Publication of JPH047110B2 publication Critical patent/JPH047110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To generate vibration in cooling medium, and to improve cooling capability by surrounding the outer circumference of a laser pipe by a concentric outer pipe, using the outer pipe as a path for the medium while a ring-shaped electrode with a large number of medium flowing grooves is fitted to a central section in the pipe as it is penetrated in the laser pipe and applying AC voltage to the electrode. CONSTITUTION:Electrodes 4 for discharge are set up around the openings at both ends of a laser pipe 1 with a gas inflow port 2 and a gas discharge port 3 in the vicinity of both ends, and the electrodes 4 are supplied with power from a power supply E. The outsides of the electrodes 4 are each clogged by a total reflecting mirror 5 and a partial reflecting mirror 6, the outer circumference of the laser pipe 1 is surrounded by an outer pipe 7 while the pipe 7 is positioned between the inflow port 2 and the discharge port 3, and the inside of the outer pipe is used as a cooling medium path 8. In the constitution, the ring-shaped electrode 11 to which a large number of medium flowing holes 12 are bored is fitted at the central section of the path 8 while surrounding the laser pipe, and AC voltage is applied to the electrode 11. Accordingly, the linearity of the outer pipe 7 and the laser pipe 1 are regulated while a vibration is generated in the medium and cooling capability is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は医療機器、測定機器、加工梼器等に用いられ
るガスレーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a gas laser device used in medical equipment, measuring equipment, processing tools, and the like.

従来例の構成とその問題点 CO2レーザ装置にはいくつかのタイプがあるが、一般
に光軸、−ガス流、放電言回が同一である同軸タイプが
良く知られている。このような同軸タイプCO2レーザ
装置において、安定した高出力を得るためには、レーザ
光軸の直線性が第一に必要であり、第二(てレーザ媒質
の冷却効果を大きくすることが必要とされている。
Conventional Structure and Problems There are several types of CO2 laser devices, but the coaxial type, which has the same optical axis, gas flow, and discharge pattern, is generally well known. In order to obtain stable high output in such a coaxial type CO2 laser device, the first requirement is the linearity of the laser optical axis, and the second requirement is to increase the cooling effect of the laser medium. has been done.

ところが、レーザ管として一般に用いられるガラス管は
管の真直度が悪く、その傾向は管畏が長くなればなるほ
ど強くなり、また、かりに真直度の良い管を用いた場合
においても、ガラス管の両端部を固定した方式のCO2
レーザ装置においては、経時変化とともにガラス管の自
暇により管中央部が湾曲して真直度が悪くなり、出力低
下および出力モードの乱れになるという問題を有してい
た。
However, the straightness of glass tubes commonly used as laser tubes is poor, and this tendency becomes stronger as the tube becomes longer.Also, even when a tube with good straightness is used, both ends of the glass tube CO2 with a fixed part
Laser devices have had a problem in that the central portion of the glass tube curves due to aging and the glass tube loses its straightness, resulting in a decrease in output and a disturbance in the output mode.

また、第2番目の出力増大の方法である冷却方法として
は、レーザ媒質自体の衝突を増大させる様にガス密度の
増大を図る方法と、レーザ媒質が放1■により高温にな
・るので温度勾配を持った砂の拡がりを冷却媒体により
冷却する方法とがある。
In addition, the second method of increasing output, which is a cooling method, is to increase the gas density so as to increase the collisions of the laser medium itself, and to increase the temperature of the laser medium because it becomes hot due to radiation. There is a method in which a sloped spread of sand is cooled using a cooling medium.

ところが、前者は、グロー放電を起こさせる動作圧力が
高くなるため安定してグロー放電を行なうことができな
いと−う欠点があり、彼者は、媒体の循環原皮および最
に、ζる拡散冷却方法には装置上の限界があるという欠
点を有1.でいた。
However, the former method has the disadvantage of not being able to perform stable glow discharge due to the high operating pressure that causes glow discharge. 1. has the disadvantage of having equipment limitations. It was.

発明の目的 この発明の目的は、管の真直度および冷却U115質の
冷却r止をそれぞわ向上して高出方化を図れるガスレー
ザ装置を提供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a gas laser device that can achieve high output by improving the straightness of the tube and the cooling rate of the cooling U115 quality.

発明の構成 この発明のガスレーザ装置は、レーザ管の外方に外管を
同心状に被覆配置して両管に挾まれる空間を冷却媒質流
通路とするととも(て、その流通路内においてレーザ管
の周胴部ヘリング状電極を外嵌してそのリング伏電極へ
交流電圧を印加可能としたもので、レーザ管と外管との
2重管構造により管、の真直度をだし、リング伏電極へ
の交流電圧の印加により流通路内の冷却媒質に振動を与
えて冷却能を向上させるとともに、レーザ管内のレーザ
媒質ガスを部分的に電離させてガス密度を向上させる。
Structure of the Invention In the gas laser device of the present invention, an outer tube is disposed concentrically to cover the outside of the laser tube, and the space sandwiched between the two tubes is used as a cooling medium flow path. It is possible to apply an AC voltage to the ring-shaped electrode by fitting a herring-shaped electrode around the circumference of the tube to the ring-shaped electrode.The double tube structure of the laser tube and the outer tube maintains the straightness of the tube, and the ring-shaped electrode can be applied to the ring-shaped electrode. By applying the AC voltage, the cooling medium in the flow path is vibrated to improve the cooling performance, and the laser medium gas in the laser tube is partially ionized to improve the gas density.

実施例の説明 この発明の一実施例を第11ン1ないし第4図を用いて
説明する。第1図において、lはレーザ管で、その両端
近傍にガス流入口2とガス排出口3を有する。4はレー
ザ管1の両端に配した放電用電極で、電源Eから給電さ
fするう5は全反射鏡、6は部分反射鏡で、それぞれレ
ーザ管1の管端に密封連結されて、そ)1.らのミラー
面をレーザ管軸に直交配置しており、レーザ管1内で発
生したグロー放″「13.を共振させて、光の一部全部
分反射鏡6から外部へ取り出す接脂をもつ。7は、レー
ザ管1の外方に同心状に被覆配置した外管で、レーザ管
1との間に冷却媒質流通路8を形成する。9は冷却媒質
流入口、10は冷却媒質排出口である。第2図および第
3図において、11は冷却媒質流通孔12を多数形成し
たリング接電庵で、冷却媒質流通W各8内におけるレー
ザ管1のほぼ管中央位置で、レーザ管1周胴部に外嵌し
て、外周を外管7の内周壁に密着する。このリング状?
13.4MT 11には、交流71i: j、E印加手
段により、任意の1湖波数?もつ交流電圧を印加11F
能である。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 11-1 to 4. In FIG. 1, l is a laser tube, which has a gas inlet 2 and a gas outlet 3 near both ends thereof. Reference numeral 4 denotes discharge electrodes disposed at both ends of the laser tube 1, which are supplied with power from a power source E.Furthermore, 5 is a total reflection mirror, and 6 is a partial reflection mirror, each of which is hermetically connected to the end of the laser tube 1. )1. The mirror surfaces of these mirrors are arranged perpendicularly to the laser tube axis, and the laser tube 1 has a greasy coating that resonates the glow emission ``13'' generated in the laser tube 1 and extracts part of the light from the total reflection mirror 6 to the outside. Reference numeral 7 denotes an outer tube that is concentrically coated on the outside of the laser tube 1, and forms a cooling medium flow path 8 between it and the laser tube 1. 9 is a cooling medium inlet, and 10 is a cooling medium outlet. 2 and 3, reference numeral 11 denotes a ring contact hole in which a large number of cooling medium flow holes 12 are formed, and the laser tube 1 is located approximately at the center of the laser tube 1 in each cooling medium flow W 8. It is fitted onto the circumferential trunk portion, and the outer circumference is brought into close contact with the inner circumferential wall of the outer tube 7.This ring shape?
13.4MT 11 has an arbitrary 1 lake wave number by AC 71i: j, E applying means? Apply an AC voltage with 11F
It is Noh.

このように、レーザ管1と外管7との2取管11り造と
し、しかも両51へ・1.7をリング状′1÷c枠11
により補強する41’t iM Lしたため、管の真直
度を出せる。′!また、リング4に電極11に交流顕:
圧を印加すfl、ば、その交流′I[(圧が冷却媒体で
ある水や油およびレーザ管1並びにレーザ媒質ガスに印
加さゎることとなり、その結果、冷却媒体である水や油
の分子振1tfjlを活発にし7て冷却効果を高めるこ
とができるとともに、レーザ媒質ガスの一部を電離化し
てレーザ管1内のガス注を高めることができる。
In this way, the laser tube 1 and the outer tube 7 are made into a two-way tube 11, and the ring-shaped '1÷c frame 11 is connected to both 51 and 1.7.
The straightness of the tube can be maintained because it is reinforced by 41't iM L. ′! In addition, an AC microscope is attached to the electrode 11 on the ring 4:
The pressure is applied to the cooling medium, such as water or oil, and the laser tube 1, as well as to the laser medium gas. Molecular vibration 1tfjl can be activated 7 to enhance the cooling effect, and a part of the laser medium gas can be ionized to increase the gas injection inside the laser tube 1.

実陥′:l/こ、上言己装置1イを用いて宜験したとこ
ろ、リング接電IQIIに交流電圧を印加していない場
合の゛動作圧力が30TOrrであったのに対し、交流
電圧を印加するとfiOTorrにすることができ、ガ
ス密度の増大を図ることができて約15%の出方増大を
得ることができた。な卦、上記実験例においては交流電
圧の周波数をIKH2K設定したが、第4図に示すよう
に、交流電圧のrfd波数を変えると上記効果に差が生
じ、すなわち同一交流電圧のもとでは周波数を?tb 
くするほど動作圧力を高くできることが判明した。同図
において、つAは従来例(第1図においてリング接電棒
11を有しない場合め動作圧力を示し、曲線Bけリング
接電梗11に加える交流電圧の周波数を漸次父化させて
いった場合の動作圧力を示す。このようにして、管の真
直度を出せ、冷却媒質の冷却能を高め、レーザ媒質ガス
のガス密度を増大できる結果、高出方化を図ることがで
きる。
Actual failure: I/I conducted an experiment using the above-mentioned device 1, and found that when no AC voltage was applied to the ring contact IQII, the operating pressure was 30 TOrr, whereas the AC voltage By applying , it was possible to achieve fiOTorr, increase the gas density, and obtain an increase in output of about 15%. Note that in the above experimental example, the frequency of the AC voltage was set to IKH2K, but as shown in Figure 4, changing the rfd wave number of the AC voltage causes a difference in the above effect, that is, under the same AC voltage, the frequency of? tb
It has been found that the operating pressure can be increased as the temperature decreases. In the figure, curve A indicates the operating pressure of the conventional example (without the ring contact rod 11 in FIG. In this way, the straightness of the tube can be achieved, the cooling capacity of the cooling medium can be increased, and the gas density of the laser medium gas can be increased, resulting in a high output.

なお、上記実施例は、全反射鏡59部分反射鏡6を一直
線上に配置して、−放遊区間の両端に全反射鏡5と部分
反射鏡6を有するレーザ共振構造であるが、放電区Il
lを数多くし、中間全反剖鉾によりレーザ共振を多段折
返しさせ、終端反射鋳と部分反射鏡とによるレーザ共振
格迫の場合および両端とも部分反J1.l鏡を用いたレ
ーザ共振構造の場合にもこの発明は適用可能である。
The above embodiment has a laser resonant structure in which the total reflection mirror 59 and the partial reflection mirror 6 are arranged in a straight line, and the total reflection mirror 5 and the partial reflection mirror 6 are provided at both ends of the discharge section. Il
In the case where the laser resonance is folded in multiple stages by an intermediate total anti-reflection mirror, and the laser resonance is severe with a terminal reflection casting and a partial reflection mirror, and both ends are partially anti-resonance J1. The present invention is also applicable to a laser resonant structure using an L mirror.

発明の効果 この発明のガスレーザ装置によilば、管の真直度を出
せ、冷却媒質の冷却能を向上でき、レーザ媒質ガスのガ
ス密度を晶めることかできて、高出力化を図iするとい
う効果が得らfl、る。
Effects of the Invention The gas laser device of the present invention can improve the straightness of the tube, improve the cooling ability of the cooling medium, and crystallize the gas density of the laser medium gas, thereby achieving high output. The effect of doing this is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面1’、g+ 、第2
図はその要部拡大断面図I、第3図はリング状電極の斜
視図、第4図は交流電圧周波数と動作圧力との関係特性
図である。 1・・・レーザ管、2・・・ガス流入口、3・・・ガス
排出口、4・・・電極、5・・・全反射管、6・・・部
分反射鏡、7・・・外管、8・・・冷却媒質流通路、1
1・・・リング状”「1℃4゛赦
FIG. 1 shows cross sections 1', g+, and 2nd cross sections of an embodiment of the present invention.
The figure is an enlarged sectional view I of the main part, FIG. 3 is a perspective view of the ring-shaped electrode, and FIG. 4 is a characteristic diagram of the relationship between the AC voltage frequency and the operating pressure. DESCRIPTION OF SYMBOLS 1... Laser tube, 2... Gas inlet, 3... Gas outlet, 4... Electrode, 5... Total reflection tube, 6... Partial reflection mirror, 7... Outside Pipe, 8...Cooling medium flow path, 1
1...Ring-shaped""1℃4゛excuse

Claims (2)

【特許請求の範囲】[Claims] (1)両端近傍にガス流入口とガス排出口を有するレー
ザ管と、とのレーザ管の両端に密封連結してミラー面を
レーザ管軸に対し直交配置し7た一対のミラーと、前記
レーザ管の両端に配した一対の放電用電極と、前記レー
ザ管の外方に同心状に波器配置1°イしてレーザ管との
間に冷却媒質流通路を形成した外管と、前記冷却媒質流
通路内において前記レーザ管の周胴部に外嵌したリング
状電極と、このリング状電極に交流電圧を印加する交流
電圧印加手段とを備えたガスレーザ装置。
(1) a laser tube having a gas inlet and a gas outlet near both ends; a pair of mirrors which are sealed and connected to both ends of the laser tube and whose mirror surfaces are disposed perpendicular to the laser tube axis; A pair of discharge electrodes arranged at both ends of the tube, an outer tube having a corrugated waveform arranged 1° concentrically outward of the laser tube to form a cooling medium flow path between the tube and the cooling medium; A gas laser device comprising: a ring-shaped electrode fitted around the peripheral body of the laser tube in a medium flow path; and an AC voltage applying means for applying an AC voltage to the ring-shaped electrode.
(2)  前記リング状電極は、その外周を前記外管の
内周壁に密着するとともに、厚み方向へ延びる冷却媒質
流通孔を貫通穿孔した特許請求の範囲第(1)項記載の
ガスレーザ装置。
(2) The gas laser device according to claim (1), wherein the ring-shaped electrode has its outer circumference brought into close contact with the inner circumferential wall of the outer tube, and has cooling medium flow holes extending in the thickness direction formed therethrough.
JP17379082A 1982-10-01 1982-10-01 Gas laser device Granted JPS5963785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17379082A JPS5963785A (en) 1982-10-01 1982-10-01 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17379082A JPS5963785A (en) 1982-10-01 1982-10-01 Gas laser device

Publications (2)

Publication Number Publication Date
JPS5963785A true JPS5963785A (en) 1984-04-11
JPH047110B2 JPH047110B2 (en) 1992-02-07

Family

ID=15967196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17379082A Granted JPS5963785A (en) 1982-10-01 1982-10-01 Gas laser device

Country Status (1)

Country Link
JP (1) JPS5963785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284981A (en) * 1985-06-06 1986-12-15 レーザー コーポレーション オブ アメリカ Gas laser unit having thermally stable optical mount base
JPS62262476A (en) * 1986-05-09 1987-11-14 Shimada Phys & Chem Ind Co Ltd High-speed axial-flow gas laser oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284981A (en) * 1985-06-06 1986-12-15 レーザー コーポレーション オブ アメリカ Gas laser unit having thermally stable optical mount base
JPS62262476A (en) * 1986-05-09 1987-11-14 Shimada Phys & Chem Ind Co Ltd High-speed axial-flow gas laser oscillator

Also Published As

Publication number Publication date
JPH047110B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
JPH0141263B2 (en)
JPS5963785A (en) Gas laser device
JPS61280689A (en) Gas laser apparatus
JPS6026310B2 (en) gas laser equipment
JPH06326379A (en) Gas laser oscillator
JPH02281675A (en) Gas laser oscillation device
JPH04211183A (en) Metallic vapor laser device, metallic vapor laser, and metallic vapor laser device cooling jacket
JPS61142783A (en) Electrode tube for laser oscillator
JPS5936984A (en) Gas laser device
JPH0240973A (en) Gas laser oscillator
JPH0445266Y2 (en)
JPS58178579A (en) Laser oscillator
JPS62174989A (en) Gas laser generator
JPH02281671A (en) Gas laser oscillation device
JPS5936983A (en) Gas laser device
EP0315695A1 (en) Laser oscillator
JPS5963786A (en) Gas laser device
JPH0240978A (en) Gas laser oscillator
JPH02281670A (en) High frequency excitation gas laser oscillation device
JPS5824025B2 (en) Stable eddy convection laser
JPS60133772A (en) Gas laser device
JPH01293679A (en) Gas laser apparatus
JPH01291474A (en) Gas laser equipment
JPS5932185A (en) Silent discharge type gas laser device
JPH01151279A (en) Gas laser equipment